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Abstract. We present a new type of fuzzy controller constructed with
the B-spline model and its applications in modelling and control. Un-
like the other normalised parameterised set functions for defining fuzzy
sets, B-spline basis functions do not necessarily span from membership
value 0 to 1, but possess the property “partition of unity”. These B-
spline basis functions are automatically determined after the input space
is partitioned. By using “product” as fuzzy conjunction, “centroid” as
defuzzification, “fuzzy singletons” for modelling output variables and
adding marginal linguistic terms, fuzzy controllers can be constructed
which have advantages like smoothness, automatic design and intuitive
interpretation of controller parameters. Furthermore, both theoretical
analysis and experimental results show the rapid convergence for tasks
of data approximation and unsupervised learning with this type of fuzzy
controller.

1 Introduction

In most fuzzy systems, linguistic terms are defined with fuzzy numbers, i.e. nor-
malised, closed, convex fuzzy sets. In approximate reasoning, usually only the
qualitative information is referred to, thus the final result is not very sensitive
to the shape and the height of the fuzzy sets. However, if a fuzzy logic system
is applied in modelling or control problems; the shape as well as the position of
fuzzy sets are implicitly or explicitly synthesised both in the inference procedure
and in the defuzzification. Therefore, the specification of the fuzzy sets for both
the TF- and THEN-part is worth being discussed in more detail.

IF-part. All fuzzy controllers employ true fuzzy sets for modelling linguistic
terms for each input. The input space 1s partioned into overlapping cells,
which reflects the vague modelling of linguistic concepts on one side and
enables the continuous transition of output values on the other side.

The IF-part of a rule is generally modelled as

[ (%7 is Alll) and (z2 is AZZQ) and ... (z, is A?n),]

where «; is the j-th input (j = 1,... n) and A‘Zj is the i-th linguistic term
defined on ;. The “and”-operation is implemented with a so-called ¢—norm,
which is represented by “min” or “product” in most applications.

* Published in Proceedings of the International Conference on Computational Intelli-
gence, Dortmund, 1997. Springer Verlag.



While discrete representation of fuzzy sets avoids the on-line function eval-
uation on a fuzzy hardware chip, parameterised representation is adopted
in fuzzy controllers running on a general-purpose, non-fuzzy computer ar-
chitecture. In up-to-date control applications, mainly triangle and trapezoid
set functions are used. Recently, Fuzzy Basis Functions based on Gaussian
functions are also proposed for function approximation, [7]. In [6] several
exotic functions like “Cauchy”, “sine¢”, “Laplace”, “Logistic”, “Hyperbolic
Tangent” are introduced and their abilities of function approximation are
compared!. However, all the above set functions need additional special pa-
rameters apart from the partition positions (called knots in the following) on
the universe of discourse of each input. Since the knots are the only intrinsic
parameters resulting from the partition of the input space, the selection and
tuning of these additional parameters are neither natural nor intuitive.
THEN-part. The classical fuzzy controller of Mamdani type is based on the
idea of directly using symbolic rules for control tasks. A rule has the form

IF (%7 is Alll) and (zq is AZZQ) and ... and (@, is A7)

THEN vy is By,
where By i1s a fuzzy set with the same properties as that used in the “IF-
part”, k =1,...,¢, and ¢ 1s the total number of linguistic terms for modelling

the output y. The aggregation of output values of all the firing rules are
realised either by the “max”-operator [5] or simple addition [4], where the
second method is a small variation of the first one and even more simple to
compute.

Another important type of fuzzy controllers is based on the TSK (Tagaki-
Sugeno-Kang) model. A rule using a TSK model of order 1 looks like:

IF (%7 is Alll) and (zq is AZZQ) and ... and (@, is A7)
THEN y = al, + alxy + - - -+ a',xp,

where ai,al, ... a’ are the coefficients of a simplified local linear model.
These parameters can be identified by optimising a least squares performance
index using the data acquired by observing a skilled human operator’s control
action. The recent work with TSK model shows that it is a suitable function
approximator. However, some authors [1] pointed out that the TSK model
1s a multi-local-model black-box. Obviously, the knowledge acquisition with

this model 1s indirect and not intuitive.

We propose an approach which can systematically build the fuzzy sets for
linguistic terms of the IF-part while the fuzzy sets of the THEN-part can be
adapted through learning. The model of linguistic terms in our approach is
based on B-spline basis functions, a special set of piecewise polynomial curves.

! The experimental results in [6] show that the non-convex functions sinz works gen-
erally better for a quick and accurate function approximation. Nevertheless, this
function possesses more than one peak and thus cannot be assigned an appropriate
linguistic meaning.



2 B-Spline Basis Functions as Fuzzy Sets

2.1 Definition

In our previous work [9] we compared the basis functions of periodical Non-
Uniform B-Splines (NUBS) with a fuzzy controller. In this paper, we also follow
the usage of this type of NUBS basis functions (B-functions for short).

Assume z is a general input variable of a control system which is defined
on the universe of discourse [zg, 2,,]. Given a sequence of ordered parameters
(knots): (wg,#1,22,...,%m), the i—th normalised B-spline basis function (B-
function) X, 5 of order k is defined as:

i < i .
1 for =z fa:<a:_|.1 ok
Xix(z)= 0 otherwise
ﬁX,‘y;ﬁ_l(m) —+ %Xﬁl,k—l(l") if E>1
with ¢ = 0,1,...,m — k. The B-functions of order 1, 2, 3, 4 are illustrated in
Fig. 1.

05

Fig. 1. Fuzzy sets defined by B-spline basis functions of different orders (examples of
uniform cases).

The important properties of B-functions are:



Partition of unity: Yo Xig(z) =1,
X

Positivity: ZV;Z z) > 0.
Local support: Xig(x) =0 for = ¢ [x;, 541
C*=2 continuity: If the knots {x;} are pairwise different from each

other, then X; x(z) € CF=2 e, Xig(z)is (k—2)
times continuously differentiable.

2.2 Real and Virtual Linguistic Terms

It is assumed that linguistic terms are to be defined over [z, ¢,,], the universe
of an input variable x of a fuzzy controller. They are referred to as real linguistic
terms. In order to maintain the “partition of unity” for all # € [zg, #,,], some
more B-functions should be added at both ends of [zg,2,,]. They are called
marginal B-functions, defining virtual linguistic terms. Real and virtual linguistic
terms are denoted as A; in Fig. 2:

— In case of order 2, no marginal B-function is needed, Fig. 2(a).

— In case of order 3 or 4, two marginal B-functions are needed, one for the left

end and another for the right end, Fig. 2(b), (c).
— Generally, ((k+ 1) div 2) marginal B-functions are needed.

() Order 4

Fig. 2. Non-uniform B-functions of different orders defined for real and virtuallinguistic
terms by the same knot vector (Peak supprot points: O; Iknots: A; Eknots: O; virtual
linguistic terms: shaded).



2.3 Peak Support Points and Knots

In fuzzy set theory, the support of a fuzzy set A within a universal set X 1s the
crisp set that contains all the elements of X that have non-zero membership
grades in A. If a B-function of order & (k > 1) is used for modelling a fuzzy
set, it possesses only one peak which has the largest membership grade. The
support point of this peak, denoted as the Psupp-point (peak support point),
can be defined as Psupp(A) = {z|A(x) = mazimum}, where A is defined by a
B-function.

A B-function representing A; is defined by the knots, the boundary points
of the support of A;. The complete knots consist of two parts, the interior knots
(noted as Iknots) which lie within the universe of discourse and FExtended knots
(Eknots) which are generated at both ends of the universe for defining the
marginal linguistic terms. Generally, m — (k mod 2) interior knots are needed,
where

— m is the number of the real linguistic terms, and
— k is the order of the B-functions (k < m).

If k is even, the interior knots coincide with the Psupp-points. If k& 1s odd,
the m — 1 interior knots can be determined by

Psupp;y1 — Psupp;

Iknot; = Psupp; + 9 )

At each end of the universe of discourse [Psupp1, Psuppnm], (k + 1) div 2)
Eknots can be determined by reflecting the Iknots with respect to Psupp; and
Psuppy,. Altogether there are & 4+ m knots.

If the Psupp-points are chosen evenly, i.e. Psupp;1o—Psuppit1 = Psuppiy1—
Psupp; for i = 1,...,m—2, the B-functions are uniform (Fig. 1), otherwise they
are non-uniform (Fig. 2).

3 B-Spline Model for Fuzzy Controllers

3.1 Core and Marginal Rules

We define the core rules as linguistic rules which use real linguistic terms. If
virtual linguistic terms appear in the IF-part, in order to maintain the output
continuity at both ends of the universe of x, additional rules are needed to de-
scribe the control action for these cases. Since these rules use the virtual linguistic
terms which are defined by membership functions neighbouring the ends of the
universe of each variable, they are called marginal rules. The output value of
each marginal rule is selected just as the output value of the “nearest” core rule,
i.e. the rule using the directly adjacent linguistic terms in its IF-part (Fig. 3).
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Fig.3. The outputs of the marginal rules are copied from that of the neighbouring
core rules.

3.2 A B-Spline Interpolator

Since a MIMO (Multiple-Input-Multiple-Output) rule base is normally divided
into several MISO (Multiple-Input-Single-Output) rule bases, we consider only
the MISO case. Under the following conditions:

— periodical B-spline basis functions as membership functions for inputs;
— fuzzy singletons as membership functions for outputs;

“product” as fuzzy conjunctions;

— “centroid” as defuzzification method,;

— addition of “virtual linguistic terms” at both ends of each input variable and
extension of the rule base for the “virtual linguistic terms” by copying the
output values of the “nearest” neighbourhood,;

the computation of the output of such a fuzzy controller is equivalent to that
of a general B-spline hypersurface. Generally, we consider a MISO system with n
inputs 1, 29,...,2y. A Rule(iy,da,...,1,) with the n conjunctive terms in the
IF-part is given in the following form:

THEN y is Y;

where

192,00

[IF (%7 is Xill,kl) and (z2 is Xiy,w) and ... and (z, is anykn)]

— ;: the j-th input (j =1,...,n),
k;: the order of the B-spline basis functions used for z;,

— ng Ky the ¢-th linguistic term of z; defined by B-spline basis functions,
— 1; = 1,...,m;, representing how fine the j-th input is fuzzy partitioned,
-V

1ia. i, the control vertex (deBoor points) of Rule(i1, iz, ..., in).



Then, the output y of a MISO fuzzy controller is:

_ Z:rlll:l ZZil(Ynzn H;;l Xijj,kj (z;))
et ey Ty X, (25)
n

SRS DIt ) BEANER) ©

i1=1 inp=1

This is called a general NUBS hypersurface, which possesses the following
properties:

— If the B-functions of order k1, k2, . . ., k, are employed to specify the linguistic
terms of the input variables xy,zs,...,2,, it can be guaranteed that the
output variable y is (k; — 2) times continuously differentiable with respect
to the input variable z;,7 = 1,...,n (see Fig. 4 for an example).

— If the input space is partitioned fine enough and at the correct positions, the
interpolation with the B-spline hypersurface can reach a given precision.

(a) order 2: C°- (b) order 3: C'- (c) order 4: C*-

continuous continuous continuous

Fig. 4. Trajectory of the output y with respect to the input z. The core rule set of 5
rules: CRS = {IF zis A; THEN y is Y;,i =1,...,5}, where the universe of discourse
of z is defined on [0, 1] and Yi to Y5 are fuzzy singletons with the following values: 0.5,
1.0, 0.3, 0.55, 0.2.

We will show later in section 4 that the output of the fuzzy controller can
be flexibly adapted to anticipated values by adjusting the positions of the fuzzy
singletons (control vertices) of the core rules after the order of the B-functions
and the linguistic terms used in the IF-part are chosen.

3.3 SISO Systems

To illustrate the corresponding procedures of fuzzification, inference and de-
fuzzification with our B-spline fuzzy controller, we first consider a system with



single input and single output (SISO), Fig. 5. For clarity, we suppose the input
is covered with four B-functions of order 2.

fuzzification inference defuzzification
IF x IS Cold THEN Yy ISY_1
X b
Y=Y,y
IF x IS5 Warm THEN y ISY_2

X Yy
IF x IS Hot THEN y ISY_3 ‘
P y - = X3(X)*Y3=y3
//‘\ X3

/ \ = Xa(X)*Ya=yq
/ _— Y
IF x I8 VHot THEN y IS Y_4

— y3+y4

X3 (X)+Xgq (X

X, 3(X) + X4 (X)
X X Y

Fig.5. A SISO system with B-functions of order 2 (X;(z): firing strength of rule ; y;:
the contribution of rule i to the output).

3.4 MISO Systems

We further illustrate the principle of the fuzzy controller by an example with two
input variables (# and y) and an output z. The control vertices of the output
are 71, Z2, 73, Z4. Fig. 6(a) and 6(b) depict the linguistic terms of the input and
output.

The rule base consists of four rules:

Rule
1) TFx is Xyandy is Yy THENz is 73
2) IFx is Xjandy is Y, THENz is 7
3) IFx is Xsandy is Yy THENz is 73
4) TFx is Xsandy is Ys THENz is Z,
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ering the input « and y

Fig. 6. Linguistic terms used in a Two-Input-One-Output system

Fig. 7 demonstrates the inference and Fig. 8 the defuzzification procedure by
illustrating the computation of the crisp output z.

3.5 Rule Weighting

Some fuzzy control systems allow using a weight for each rule. That provides one
more parameter to each rule, surely more flexibility for shaping control surface
in a Mamdani type controller, but it results in more work for fine-tuning.

In fact, if we add one more rule weight to each rule in a B-spline fuzzy
controller, then this controller corresponds a NURBS (Non-Uniform Rational
B-Spline) model:

:.71”:1 Z’;l Wig,oin Yy, in H;lzl ij,kj (x5)

27111:1 er:;l Wiy, in H;lzl Xijj,kj (;)

Experience of using B-splines in CAD shows that by using sufficient B-spline
basis functions, NUBS of non-rational form may approximate any shape to a
given precision, [2]. NURBS curves and surfaces are mainly used for exactly
modelling special analytical functions like a circle; square, etc. The control vertex
of each rule in a B-Spline fuzzy controller plays the role of the rule weight as
well as the control action. Therefore we adopt the NUBS of non-rational form
for constructing fuzzy controllers.

3.6 Acceleration of Rule Evaluation

The index coding of the B-functions makes the evaluation of fuzzy rules highly
efficient. For an input « € (#;, #;41), it is known that exact k (the order of B-
functions) linguistic terms will be activated, i.e. k B-functions X; (), X;_1 x(z),

oy Xi—gt1,k(z) > 0. All the other linguistic terms are unactivated. In the whole
rule base with n inputs, exact k” rules are firing for any input vector in the
universe of discourse.
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IF (xis X_1) and (yisY_1) THEN zisZ_1 IF (xis X_1) and (yisY_2) THEN zisZ_2

(a) Rule 1 (b) Rule 2

xyd
IF (xis X 2) and (yisY_1) THEN zisZ3 IF (xis X_2) and (yisY_2) THEN zisZ. 4

(c) Rule 3 (d) Rule 4

Fig. 7. Inference with a B-spline fuzzy controller with two inputs

4 Adaptation and Learning

4.1 Adaptation of Peak Support Points

We developed an algorithm for adapting the Psupp-points. This algorithm is
a modified algorithm for self-organising neural networks. On the left and right
neighbour of a Psupp-point x, two new Psupp-points x) and x, are selected and
the output values of the controller, noted as y; and y,., for these two points are
computed. If the desired training data y¢ is greater or smaller with a threshold
¢ > 0 than both y; and y,, a modification of x is necessary.

Assume x1,Xa2,...,Xm are the Psupp-points of the input variables and
X1k, X2k, .., Xmk are their corresponding linguistic terms (B-functions of
order k).

1. Apply a new training input-output pair (x,y?).

10



z1

71=Z_1* (xy1)
_;”/1;;
xyl
72 //
2=21472+23+24

72=7_2*(xy2)

Xy2
23

7327 3 (xy3) [ 3

4

- I z1+22+23+ 74
xy3 —
z4 —

" 28=7_a%(xy4)

xy4

Fig. 8. Defuzzification by blending the control vertices with B-function values

2. Select two neighbouring Psupp-points X1, Xy, so that
Xi<x1<x<x, <xj, fore=1,...,l—landj=r+1,....m
Compute y;, y,. Assume that y; < y,

3 Ify* <y —0:
Modify x1: x1 = x1 + (x — x1) - X k(%)

Ify, +6 <y’

Modify xy: % = % + (x — %¢) - X k(%)

4. Optimise the control vertices of the output variables (see section 4.2).

5. Continue with 1.

As an example we show the approximation of a function sin(27x?). The
function has a minimum at = 0.86 and a maximum at = 0.5. At the beginning
five Psupp-points are evenly distributed within the interval [0,1]. All the five
control vertices are set to 0. The training data are randomly generated from the
interval [0,1]. In the following implementation, we select 6 as 0.2. The dashed
curve represents the desired values, the solid curve the output of the controller.
The points depicted as “¢” are the control vertices, whose abscissas are the
Psupp-points.

4.2 Supervised Learning of Control Vertices

Assume {(X, yq)} is a set of training data, where

11
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(c) After 2000 learning steps with (d) After 2000 learning steps without
Psupp-point adaptation Psupp-point adaptation

Fig.9. Approximation of the function y = sin(27%?). The initial uniform B-functions
are adapted to non-uniform ones.

— X = (#1,22,...,2,) : the input data vector,
— yq : the desired output for X.
The squared error is computed as:

E =2 - va)’, (1)

where y, is the current real output value during training.
The parameters to be found are Y; which make the error in (4) as
small as possible, i.e.

1,72, 5000

E=—(y. —ya)’> = MIN. (5)

12



Each control vertex Y; can be modified by using the gradient descent

10-5tn

method:
oF
AVipin = —egp—— 6
Lrerin oY, .. i
= e(yr — ya) Hij,kj (z5) "
J=1

where 0 < e < 1.
The gradient descent method guarantees that the learning algorithm con-
verges to the global minimum of the error function because the second partial

differentiation with respect to Y;, ;, ;. is always positive:

PE
Y, = Xz‘]j,kj(xj) > 0. (8)
rin i

This means that the error function (4) is convex in the space Y; and

1yt2,0n
therefore possesses only one (global) minimum.

4.3 Implemented Examples

The following examples were implemented (for details of these functions see
[3,6]):

— Approximation of very non-linear functions with one, two and three variables
(see Fig. 10 and 11 for an example of approximating a function with two
variables).

— Parameter identification and time series prediction.

— Supervised learning of “Truck Backer-Upper” (see Fig. 12 for the learned
control surfaces and Fig. 13 for two test examples) and “Inverse Kinematics”.
The results show that B-spline fuzzy systems can achieve the same and some-

times better modelling effect as done by the ANFIS (Adaptive-Network-Based
Fuzzy Inference System) [3] and “Additive Systems” [6] methods, but B-spline
fuzzy systems converge faster in all these cases.

4.4 Unsupervised Learning

In unsupervised learning, it is usually possible to define an “evaluation function”
if the desired data of the output are unknown. Such an evaluation function should
describe how “good” the current system state ((#1,a,...,%y,),y) is. For each
input vector, an output is generated. With this output, the system transits to
another state. The new state 1s compared with the old one; an adaptation is
performed if necessary.

Assume the evaluation function, denoted by F'(-), possesses a bigger value
for a better state, i.e. for two states A and B, if A is better than B, then

13
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Fig. 10. The control surfaces during the optimisation for approximating the function
z = sin(2rz) - cos(wy), with —1 < # < 1 and 0 < y < 1. The membership functions
defining the real and virtual linguistic terms of & and y are 7 B-functions of order 3

for both  and y.

Error
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0.2

0.1

N
0 50 100 150 200
optimisation step

(a) Automatically generated (b) Convergence of the approx-
control vertices Z;; imation error

Fig. 11. Learning results after 100 optimisation steps of the problem shown in Fig. 10.

F(A) > F(B). The adaptation of the control vertices can be performed with a
similar representation as in supervised learning. Assume that the desired state

is Ag4. The change of control vertices can be written as:

AYiy iy =S5 e |F(B) = F(Ad)| . ] Xijm(2s). (9)
where
S = sign(F(A) — F(B)) * sign(F(B) — F(Aa)) * sign(y) (10)

represents the direction to modify the control vertex.
By appropriately defining certain cost functions, we have successfully applied

the B-spline fuzzy systems to the following control problem:

14



Fig.12. Solution of the “truck backer-upper” problem: output 8 after learning (8 was
initialised as zero for all inputs). Both inputs are covered with 5 B-functions of order
3. Altogether 14 training trajectories are prepared.

— “Cart-pole-Balancing”, Fig. 14;
— Collision-avoidance and contour-tracking of a real mobile robot, Fig. 15(a);
— Sensor-based screwing with two robot arms, Fig. 15(b).

5 Characteristics

Computing parameters of such a B-spline fuzzy system is divided into two steps:
for the IF-part and for the THEN-part.

Characteristics of modelling the IF-part are:

— Considering the granularity of the input space and the extrema distribution
of the control space if known, the fuzzy sets can be generated using the re-
cursive computation of B-spline basis functions. This approach provides an
natural, automatic approach to generate the information granularity pro-
posed by Zadeh [8].

— These fuzzy sets can be further adapted during the generation of the whole
system.

Characteristics for generating the THEN-part are:

— Fuzzy singletons can be initialised with the values acquired from expert
knowledge. These approximately determined parameters will be fine-tuned
with learning algorithms.

— For supervised learning, the differentials of the Square-Error with respect
to control vertices are convex functions. Therefore, rapid convergence for
supervised learning is guaranteed, and a reinforced learning process can also
converge quite well if the change of cost function is piecewise approximately
linear with the change of control vertices.

15
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Fig. 13. Two motion trajectories produced by the trained fuzzy controller of the “truck
backer-upper” problem.

— The control space changes locally while the control vertices are modified.
Based on this feature, the control vertices can be optimised gradually, area-
by-area. This is especially important for a high-dimensional control space
with a large amount of parameters.

6 Discussions

The curse of dimensionality. Like all other types of fuzzy controllers, B-
spline type controllers cannot avoid this problem, i.e. the number of rules
increases exponentially with the number of inputs. However, as shown in
section 3.6, the evaluation time of the whole rule base can be reduced form
m” to k™, where m is the number of linguistic terms for input, k the order
of B-functions and & is usually selected as 2 or 3 for most applications. The
adaptation of knots also contributes to the efficient utilisation of linguistic
terms. Additionally, the learning process of a MISO system does not suffer
from the problem of local minima even for a high-dimensional control space
thanks to the local influence of control vertices.

Conversion back to classic type. For some applications, e.g. data mining or
qualitative analysis, we may find the large number of fuzzy singletons too
numerical and want to approximately transform them into a small number
of linguistic terms. Such a transformation can best be realised by fuzzy c-
means clustering: given the number of linguistic terms we want, the fuzzy
singletons can be grouped naturally into fuzzy sets, which represents a fuzzy
partition of the output variable, Fig. 16.

16
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Fig. 14. Applied force f to the cart-pole system

In this way, our approach can optimally combine the numerical interpolation
with linguistic interpretation, it is thus very promising for a wide range of
applications in adaptive modelling and control.
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(a) Motion control of a mobile
robot. The robot learns to avoid
obstacles and to track an unknow
contour. For details see [10].

(b) Two cooperating manip-
ulators for fixture-less assem-
bly. Compensation  motions
are determined by a self-
learning B-spline controller with
force/moment sensor readings,
[11].

Fig. 15. Applications of unsupervised learning in robot systems.
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Fig. 16. All fuzzy singletons can be clustered into linguistic terms.



