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Abstract� We present a new type of fuzzy controller constructed with
the B�spline model and its applications in modelling and control� Un�
like the other normalised parameterised set functions for de	ning fuzzy
sets� B�spline basis functions do not necessarily span from membership
value � to �� but possess the property 
partition of unity�� These B�
spline basis functions are automatically determined after the input space
is partitioned� By using 
product� as fuzzy conjunction� 
centroid� as
defuzzi	cation� 
fuzzy singletons� for modelling output variables and
adding marginal linguistic terms� fuzzy controllers can be constructed
which have advantages like smoothness� automatic design and intuitive
interpretation of controller parameters� Furthermore� both theoretical
analysis and experimental results show the rapid convergence for tasks
of data approximation and unsupervised learning with this type of fuzzy
controller�

� Introduction

In most fuzzy systems� linguistic terms are de�ned with fuzzy numbers� i�e� nor�
malised� closed� convex fuzzy sets� In approximate reasoning� usually only the
qualitative information is referred to� thus the �nal result is not very sensitive
to the shape and the height of the fuzzy sets� However� if a fuzzy logic system
is applied in modelling or control problems� the shape as well as the position of
fuzzy sets are implicitly or explicitly synthesised both in the inference procedure
and in the defuzzi�cation� Therefore� the speci�cation of the fuzzy sets for both
the IF� and THEN�part is worth being discussed in more detail�
IF�part� All fuzzy controllers employ true fuzzy sets for modelling linguistic

terms for each input� The input space is partioned into overlapping cells�
which re�ects the vague modelling of linguistic concepts on one side and
enables the continuous transition of output values on the other side�
The IF�part of a rule is generally modelled as

�
�

�
��x� is A

�
i�
� and �x� is A

�
i�
� and � � � �xn is An

in
��

where xj is the j�th input �j 	 
� � � � � n� and Aj
ij
is the i�th linguistic term

de�ned on xj� The �and��operation is implemented with a so�called t�norm�
which is represented by �min� or �product� in most applications�
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While discrete representation of fuzzy sets avoids the on�line function eval�
uation on a fuzzy hardware chip� parameterised representation is adopted
in fuzzy controllers running on a general�purpose� non�fuzzy computer ar�
chitecture� In up�to�date control applications� mainly triangle and trapezoid
set functions are used� Recently� Fuzzy Basis Functions based on Gaussian
functions are also proposed for function approximation� 
��� In 
�� several
exotic functions like �Cauchy�� �sinc�� �Laplace�� �Logistic�� �Hyperbolic
Tangent� are introduced and their abilities of function approximation are
compared�� However� all the above set functions need additional special pa�
rameters apart from the partition positions �called knots in the following� on
the universe of discourse of each input� Since the knots are the only intrinsic
parameters resulting from the partition of the input space� the selection and
tuning of these additional parameters are neither natural nor intuitive�

THEN�part� The classical fuzzy controller of Mamdani type is based on the
idea of directly using symbolic rules for control tasks� A rule has the form

�

�

�

�
IF �x� is A�

i�
� and �x� is A�

i�
� and � � � and �xn is An

in
�

THEN y is Bk�

where Bk is a fuzzy set with the same properties as that used in the �IF�
part�� k 	 
� � � � � t� and t is the total number of linguistic terms for modelling
the output y� The aggregation of output values of all the �ring rules are
realised either by the �max��operator 
�� or simple addition 
��� where the
second method is a small variation of the �rst one and even more simple to
compute�

Another important type of fuzzy controllers is based on the TSK �Tagaki�
Sugeno�Kang� model� A rule using a TSK model of order 
 looks like�

�

�

�

�
IF �x� is A�

i�
� and �x� is A�

i�
� and � � � and �xn is An

in
�

THEN y 	 ai� � ai�x� � � � �� ainxn�

where ai�� a
i
�� � � � � a

i
n are the coe�cients of a simpli�ed local linear model�

These parameters can be identi�ed by optimising a least squares performance
index using the data acquired by observing a skilled human operator�s control
action� The recent work with TSK model shows that it is a suitable function
approximator� However� some authors 

� pointed out that the TSK model
is a multi�local�model black�box� Obviously� the knowledge acquisition with
this model is indirect and not intuitive�

We propose an approach which can systematically build the fuzzy sets for
linguistic terms of the IF�part while the fuzzy sets of the THEN�part can be
adapted through learning� The model of linguistic terms in our approach is
based on B�spline basis functions� a special set of piecewise polynomial curves�

� The experimental results in ��� show that the non�convex functions sinx works gen�
erally better for a quick and accurate function approximation� Nevertheless� this
function possesses more than one peak and thus cannot be assigned an appropriate
linguistic meaning�

�



� B�Spline Basis Functions as Fuzzy Sets

��� De�nition

In our previous work 
�� we compared the basis functions of periodical Non�
Uniform B�Splines �NUBS� with a fuzzy controller� In this paper� we also follow
the usage of this type of NUBS basis functions �B�functions for short��

Assume x is a general input variable of a control system which is de�ned
on the universe of discourse 
x�� xm�� Given a sequence of ordered parameters
�knots�� �x�� x�� x�� � � � � xm�� the i�th normalised B�spline basis function �B�
function� Xi�k of order k is de�ned as�

Xi�k�x� �

���
��

�
� for xi � x � xi��

� otherwise
if k � �

x�xi
xi�k���xi

Xi�k���x� �
xi�k�x

xi�k�xi��
Xi���k���x� if k � �

with i 	 �� 
� � � ��m � k� The B�functions of order 
� �� �� � are illustrated in
Fig� 
�
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Fig� �� Fuzzy sets de	ned by B�spline basis functions of di�erent orders �examples of
uniform cases��

The important properties of B�functions are�

�



Partition of unity�
Pm

i��Xi�k�x� 	 
�
Positivity� Xi�k�x� � ��
Local support� Xi�k�x� 	 � for x �� 
xi� xi�k��
Ck�� continuity� If the knots fxig are pairwise di�erent from each

other� then Xi�k�x� � Ck��� i�e� Xi�k�x� is �k � ��
times continuously di�erentiable�

��� Real and Virtual Linguistic Terms

It is assumed that linguistic terms are to be de�ned over 
x�� xm�� the universe
of an input variable x of a fuzzy controller� They are referred to as real linguistic
terms� In order to maintain the �partition of unity� for all x � 
x�� xm�� some
more B�functions should be added at both ends of 
x�� xm�� They are called
marginal B�functions� de�ning virtual linguistic terms� Real and virtual linguistic
terms are denoted as Ai in Fig� ��

� In case of order �� no marginal B�function is needed� Fig� ��a��
� In case of order � or �� two marginal B�functions are needed� one for the left
end and another for the right end� Fig� ��b�� �c��

� Generally� ��k � 
� div �� marginal B�functions are needed�

�a� Order �

�b� Order �

�c� Order �

Fig� �� Non�uniform B�functions of di�erent orders de	ned for real and virtual linguistic
terms by the same knot vector �Peak supprot points� �� Iknots� �� Eknots� �� virtual
linguistic terms� shaded��
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��� Peak Support Points and Knots

In fuzzy set theory� the support of a fuzzy set A within a universal set X is the
crisp set that contains all the elements of X that have non�zero membership
grades in A� If a B�function of order k �k � 
� is used for modelling a fuzzy
set� it possesses only one peak which has the largest membership grade� The
support point of this peak� denoted as the Psupp�point �peak support point��
can be de�ned as Psupp�A� 	 fxjA�x� 	 maximumg� where A is de�ned by a
B�function�

A B�function representing Ai is de�ned by the knots� the boundary points
of the support of Ai� The complete knots consist of two parts� the interior knots
�noted as Iknots� which lie within the universe of discourse and Extended knots
�Eknots� which are generated at both ends of the universe for de�ning the
marginal linguistic terms� Generally� m � �k mod �� interior knots are needed�
where

� m is the number of the real linguistic terms� and

� k is the order of the B�functions �k � m��

If k is even� the interior knots coincide with the Psupp�points� If k is odd�
the m � 
 interior knots can be determined by

Iknoti 	 Psuppi �
Psuppi�� � Psuppi

�
� i 	 
� � � � �m� 
� �
�

At each end of the universe of discourse 
Psupp�� P suppm�� ��k � 
� div ��
Eknots can be determined by re�ecting the Iknots with respect to Psupp� and
Psuppm� Altogether there are k � m knots�

If the Psupp�points are chosen evenly� i�e� Psuppi���Psuppi�� 	 Psuppi���
Psuppi for i 	 
� � � � �m��� the B�functions are uniform �Fig� 
�� otherwise they
are non�uniform �Fig� ���

� B�Spline Model for Fuzzy Controllers

��� Core and Marginal Rules

We de�ne the core rules as linguistic rules which use real linguistic terms� If
virtual linguistic terms appear in the IF�part� in order to maintain the output
continuity at both ends of the universe of x� additional rules are needed to de�
scribe the control action for these cases� Since these rules use the virtual linguistic
terms which are de�ned by membership functions neighbouring the ends of the
universe of each variable� they are called marginal rules� The output value of
each marginal rule is selected just as the output value of the �nearest� core rule�
i�e� the rule using the directly adjacent linguistic terms in its IF�part �Fig� ���
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Fig� �� The outputs of the marginal rules are copied from that of the neighbouring
core rules�

��� A B�Spline Interpolator

Since a MIMO �Multiple�Input�Multiple�Output� rule base is normally divided
into several MISO �Multiple�Input�Single�Output� rule bases� we consider only
the MISO case� Under the following conditions�

� periodical B�spline basis functions as membership functions for inputs�

� fuzzy singletons as membership functions for outputs�

� �product� as fuzzy conjunctions�

� �centroid� as defuzzi�cation method�

� addition of �virtual linguistic terms� at both ends of each input variable and

� extension of the rule base for the �virtual linguistic terms� by copying the
output values of the �nearest� neighbourhood�

the computation of the output of such a fuzzy controller is equivalent to that
of a general B�spline hypersurface� Generally� we consider a MISO system with n
inputs x�� x�� � � � � xn� A Rule�i�� i�� � � � � in� with the n conjunctive terms in the
IF�part is given in the following form�

�

�

�

�
IF �x� is X�

i��k�
� and �x� is X�

i��k�
� and � � � and �xn is Xn

in�kn
�

THEN y is Yi�i����in �

where

� xj� the j�th input �j 	 
� � � � � n��

� kj� the order of the B�spline basis functions used for xj�

� Xj

ij �kj
� the i�th linguistic term of xj de�ned by B�spline basis functions�

� ij 	 
� � � � �mj� representing how �ne the j�th input is fuzzy partitioned�

� Yi�i����in � the control vertex �deBoor points� of Rule�i�� i�� � � � � in��

�



Then� the output y of a MISO fuzzy controller is�

y �

Pm�

i���
� � �
Pmn

in��
�Yi������in

Qn

j��
X

j

ij �kj
�xj��Pm�

i���
� � �
Pmn

in��

Qn

j��
X

j
ij �kj

�xj�
���

�

m�X
i���

� � �

mnX
in��

�Yi� �����in

nY
j��

X
j

ij �kj
�xj�� ���

This is called a general NUBS hypersurface� which possesses the following
properties�

� If the B�functions of order k�� k�� � � � � kn are employed to specify the linguistic
terms of the input variables x�� x�� � � � � xn� it can be guaranteed that the
output variable y is �kj � �� times continuously di�erentiable with respect
to the input variable xj� j 	 
� � � � � n �see Fig� � for an example��

� If the input space is partitioned �ne enough and at the correct positions� the
interpolation with the B�spline hypersurface can reach a given precision�
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Fig� �� Trajectory of the output y with respect to the input x� The core rule set of �
rules� CRS � fIF x is Ai THEN y is Yi� i � �� � � � � �g� where the universe of discourse
of x is de	ned on ��� �� and Y� to Y� are fuzzy singletons with the following values� ����
���� ���� ����� ����

We will show later in section � that the output of the fuzzy controller can
be �exibly adapted to anticipated values by adjusting the positions of the fuzzy
singletons �control vertices� of the core rules after the order of the B�functions
and the linguistic terms used in the IF�part are chosen�

��� SISO Systems

To illustrate the corresponding procedures of fuzzi�cation� inference and de�
fuzzi�cation with our B�spline fuzzy controller� we �rst consider a system with

�



single input and single output �SISO�� Fig� �� For clarity� we suppose the input
is covered with four B�functions of order ��
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Fig� �� A SISO system with B�functions of order � �Xi�x�� 	ring strength of rule i� yi�
the contribution of rule i to the output��

��	 MISO Systems

We further illustrate the principle of the fuzzy controller by an example with two
input variables �x and y� and an output z� The control vertices of the output
are Z�� Z�� Z�� Z�� Fig� ��a� and ��b� depict the linguistic terms of the input and
output�

The rule base consists of four rules�
Rule


� IF x is X� and y is Y� THEN z is Z�
�� IF x is X� and y is Y� THEN z is Z�
�� IF x is X� and y is Y� THEN z is Z�
�� IF x is X� and y is Y� THEN z is Z�

�
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Fig� �� Linguistic terms used in a Two�Input�One�Output system

Fig� � demonstrates the inference and Fig� � the defuzzi�cation procedure by
illustrating the computation of the crisp output z�

��
 Rule Weighting

Some fuzzy control systems allow using a weight for each rule� That provides one
more parameter to each rule� surely more �exibility for shaping control surface
in a Mamdani type controller� but it results in more work for �ne�tuning�

In fact� if we add one more rule weight to each rule in a B�spline fuzzy
controller� then this controller corresponds a NURBS �Non�Uniform Rational
B�Spline� model�

y �

Pm�

i���
� � �
Pmn

in��
wi������inYi������in

Qn

j��
X

j

ij �kj
�xj�Pm�

i���
� � �
Pmn

in��
wi������in

Qn

j��
X

j

ij �kj
�xj�

Experience of using B�splines in CAD shows that by using su�cient B�spline
basis functions� NUBS of non�rational form may approximate any shape to a
given precision� 
��� NURBS curves and surfaces are mainly used for exactly
modelling special analytical functions like a circle� square� etc� The control vertex
of each rule in a B�Spline fuzzy controller plays the role of the rule weight as
well as the control action� Therefore we adopt the NUBS of non�rational form
for constructing fuzzy controllers�

��� Acceleration of Rule Evaluation

The index coding of the B�functions makes the evaluation of fuzzy rules highly
e�cient� For an input x � �xi� xi���� it is known that exact k �the order of B�
functions� linguistic terms will be activated� i�e� k B�functionsXi�k�x��Xi���k�x��
� � � �Xi�k���k�x� � �� All the other linguistic terms are unactivated� In the whole
rule base with n inputs� exact kn rules are �ring for any input vector in the
universe of discourse�
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Fig� 	� Inference with a B�spline fuzzy controller with two inputs

� Adaptation and Learning

	�� Adaptation of Peak Support Points

We developed an algorithm for adapting the Psupp�points� This algorithm is
a modi�ed algorithm for self�organising neural networks� On the left and right
neighbour of a Psupp�point x� two new Psupp�points xl and xr are selected and
the output values of the controller� noted as yl and yr� for these two points are
computed� If the desired training data yd is greater or smaller with a threshold
� � � than both yl and yr� a modi�cation of x is necessary�

Assume x��x�� � � � �xm are the Psupp�points of the input variables and
X��k�X��k� � � � �Xm�k are their corresponding linguistic terms �B�functions of
order k��

�� Apply a new training input�output pair �x� yd��
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Fig� 
� Defuzzi	cation by blending the control vertices with B�function values

�� Select two neighbouring Psupp�points xl�xr	 so that
xi � xl � x � xr � xj	 for i 	 
� � � � � l � 
 and j 	 r � 
� � � � �m
Compute yl� yr� Assume that yl � yr


� If yd � yl � ��
Modify xl� xl 	 xl � �x � xl� �Xl�k�x�

If yr � � � yd�
Modify xr� xr 	 xr � �x � xr� �Xr�k�x�

�� Optimise the control vertices of the output variables �see section �����
�� Continue with ��

As an example we show the approximation of a function sin���x��� The
function has a minimumat x 	 ���� and a maximumat x 	 ���� At the beginning
�ve Psupp�points are evenly distributed within the interval 
�� 
�� All the �ve
control vertices are set to �� The training data are randomly generated from the
interval 
�� 
�� In the following implementation� we select � as ���� The dashed
curve represents the desired values� the solid curve the output of the controller�
The points depicted as ��� are the control vertices� whose abscissas are the
Psupp�points�

	�� Supervised Learning of Control Vertices

Assume f�X� yd�g is a set of training data� where
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Fig� �� Approximation of the function y � sin���x��� The initial uniform B�functions
are adapted to non�uniform ones�

� X 	 �x�� x�� � � � � xs� � the input data vector�
� yd � the desired output for X�
The squared error is computed as�

E �
�

�
�yr � yd�

�
� ���

where yr is the current real output value during training�
The parameters to be found are Yi��i������in � which make the error in ��� as

small as possible� i�e�

E �
�

�
�yr � yd�

� � MIN� ���


�



Each control vertex Yi������in can be modi�ed by using the gradient descent
method�

�Yi������in � ��
	E

	Yi� �����in
���

� ��yr � yd�

nY
j��

X
j

ij �kj
�xj� �
�

where � � 	 � 
�
The gradient descent method guarantees that the learning algorithm con�

verges to the global minimum of the error function because the second partial
di�erentiation with respect to Yi��i������in is always positive�

	�E

	�Yi������in
�

nY
j��

X
j
ij �kj

�xj� � �� ���

This means that the error function ��� is convex in the space Yi��i������in and
therefore possesses only one �global� minimum�

	�� Implemented Examples

The following examples were implemented �for details of these functions see

������

� Approximation of very non�linear functions with one� two and three variables
�see Fig� 
� and 

 for an example of approximating a function with two
variables��

� Parameter identi�cation and time series prediction�
� Supervised learning of �Truck Backer�Upper� �see Fig� 
� for the learned
control surfaces and Fig� 
� for two test examples� and �Inverse Kinematics��

The results show that B�spline fuzzy systems can achieve the same and some�
times better modelling e�ect as done by the ANFIS �Adaptive�Network�Based
Fuzzy Inference System� 
�� and �Additive Systems� 
�� methods� but B�spline
fuzzy systems converge faster in all these cases�

	�	 Unsupervised Learning

In unsupervised learning� it is usually possible to de�ne an �evaluation function�
if the desired data of the output are unknown� Such an evaluation function should
describe how �good� the current system state ��x�� x�� � � � � xn�� y� is� For each
input vector� an output is generated� With this output� the system transits to
another state� The new state is compared with the old one� an adaptation is
performed if necessary�

Assume the evaluation function� denoted by F ���� possesses a bigger value
for a better state� i�e� for two states A and B� if A is better than B� then
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Fig� ��� The control surfaces during the optimisation for approximating the function
z � sin���x� � cos��y�� with �� � x � � and � � y � �� The membership functions
de	ning the real and virtual linguistic terms of x and y are 
 B�functions of order �
for both x and y�
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Fig� ��� Learning results after ��� optimisation steps of the problem shown in Fig� ���

F �A� � F �B�� The adaptation of the control vertices can be performed with a
similar representation as in supervised learning� Assume that the desired state
is Ad� The change of control vertices can be written as�

�Yi� �����in � S � � � jF �B�� F �Ad�j �

nY
j��

Xij �kj �xj�� ���

where

S � sign�F �A�� F �B�� � sign�F �B�� F �Ad�� � sign�y� ����

represents the direction to modify the control vertex�
By appropriately de�ning certain cost functions� we have successfully applied

the B�spline fuzzy systems to the following control problem�
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truck backer�upper� problem� output 
 after learning �
 was
initialised as zero for all inputs�� Both inputs are covered with � B�functions of order
�� Altogether �� training trajectories are prepared�

� �Cart�pole�Balancing�� Fig� 
��

� Collision�avoidance and contour�tracking of a real mobile robot� Fig� 
��a��

� Sensor�based screwing with two robot arms� Fig� 
��b��

� Characteristics

Computing parameters of such a B�spline fuzzy system is divided into two steps�
for the IF�part and for the THEN�part�

Characteristics of modelling the IF�part are�

� Considering the granularity of the input space and the extrema distribution
of the control space if known� the fuzzy sets can be generated using the re�
cursive computation of B�spline basis functions� This approach provides an
natural� automatic approach to generate the information granularity pro�
posed by Zadeh 
���

� These fuzzy sets can be further adapted during the generation of the whole
system�

Characteristics for generating the THEN�part are�

� Fuzzy singletons can be initialised with the values acquired from expert
knowledge� These approximately determined parameters will be �ne�tuned
with learning algorithms�

� For supervised learning� the di�erentials of the Square�Error with respect
to control vertices are convex functions� Therefore� rapid convergence for
supervised learning is guaranteed� and a reinforced learning process can also
converge quite well if the change of cost function is piecewise approximately
linear with the change of control vertices�
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Fig� ��� Two motion trajectories produced by the trained fuzzy controller of the 
truck
backer�upper� problem�

� The control space changes locally while the control vertices are modi�ed�
Based on this feature� the control vertices can be optimised gradually� area�
by�area� This is especially important for a high�dimensional control space
with a large amount of parameters�

� Discussions

The curse of dimensionality� Like all other types of fuzzy controllers� B�
spline type controllers cannot avoid this problem� i�e� the number of rules
increases exponentially with the number of inputs� However� as shown in
section ���� the evaluation time of the whole rule base can be reduced form
mn to kn� where m is the number of linguistic terms for input� k the order
of B�functions and k is usually selected as � or � for most applications� The
adaptation of knots also contributes to the e�cient utilisation of linguistic
terms� Additionally� the learning process of a MISO system does not su�er
from the problem of local minima even for a high�dimensional control space
thanks to the local in�uence of control vertices�

Conversion back to classic type� For some applications� e�g� data mining or
qualitative analysis� we may �nd the large number of fuzzy singletons too
numerical and want to approximately transform them into a small number
of linguistic terms� Such a transformation can best be realised by fuzzy c�
means clustering� given the number of linguistic terms we want� the fuzzy
singletons can be grouped naturally into fuzzy sets� which represents a fuzzy
partition of the output variable� Fig� 
��


�



−20
−10

0
10

20 −15

−10

−5

0

5

10

15

−1

−0.5

0

0.5

1

angle velocity ��

an
gl
e
�

a
p
p
li
ed
fo
rc
e
f

�a� at the be�
ginning

−20
−10

0
10

20 −15

−10

−5

0

5

10

15

−40

−20

0

20

40

angle velocity ��

an
gl
e
�

a
p
p
li
ed
fo
rc
e
f

�b� after ���
learning steps

−20
−10

0
10

20 −15

−10

−5

0

5

10

15

−40

−20

0

20

40

angle velocity ��

an
gl
e
�

a
p
p
li
ed
fo
rc
e
f

�c� after
���� learning
steps

Fig� ��� Applied force f to the cart�pole system

In this way� our approach can optimally combine the numerical interpolation
with linguistic interpretation� it is thus very promising for a wide range of
applications in adaptive modelling and control�
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�a� Motion control of a mobile
robot� The robot learns to avoid
obstacles and to track an unknow
contour� For details see �����

�b� Two cooperating manip�
ulators for 	xture�less assem�
bly� Compensation motions
are determined by a self�
learning B�spline controller with
force�moment sensor readings�
�����

Fig� ��� Applications of unsupervised learning in robot systems�
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