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Abstract: we point out that B-spline basis functions are naturally defined membership functions for
fuzzy logic systems, i.e. the specification of these functions depends only on the partition points of each
linguistic variables, no more necessarily also on the additional parameters if normal set functions are used.
Based on B-spline basis functions, a fuzzy controller can be constructed, which works like an adaptive B-spline
interpolator. Through comparative examples for function approximation, we show that learning of such a
fuzzy controller generally converges faster. The approximation errors are in most cases not larger than the
results achieved by using the normal set functions, in some cases even smaller, depending on the type of test
functions. The good approximation ability and the fast convergence of learning make this model suitable to
supervised and unsupervised learning for a wide range of modelling and control tasks.

1 Introduction

After it is theoretically proven that fuzzy controllers are general function approximators, some constructing
methods are reported. Typical systems are ANFIS (Adaptive-Network-based Fuzzy Inference System) [Jan93],
NEFCON (NEural Fuzzy CONtroller) [NKK94] and SAM (Standard Additive Model) [MK96]. To contruct a
fuzzy controller for such a task, a basic problem is the selection of membership functions (MFs) for modelling
linguistic terms.

Recently, Non-Uniform B-Splines (NUBS) model is compared with a fuzzy controller, [BH94, ZK96]. In this
paper, we also follow the usage of this type of NUBS basis functions (B-functions for short). In our previous
work, we compared the fuzzy controlllers based on B-functions with ANFIS based TSK model and showed
some advantages of our system. In this work, we compare B-functions with a series of parameterised set
functions selected by [MK96]. These set functions were used by SAM, which is close to the classical controller
type, to approximate non-linear functions.

2 B-Spline Basis Functions as Fuzzy Sets

2.1 Definition

Assume 2z is a general input variable of a control system which is defined on the universe of discourse [z, Z,].
Given a sequence of ordered parameters (knots): (zg,21,%2,...,2m), the i—th normalised B-spline basis
function (B-function) X;  of order k is defined as:

1 fora; <z <zip k=1
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Xik(z) = 0 otherwise with 1 =0,1,...,m — k.
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2.2 Peak Support Points and Knots

In fuzzy set theory, the support of a fuzzy set A within a universal set X is the crisp set that contains all
the elements of X that have non-zero membership grades in A. If a B-function of order & (k > 1) is used for



modelling a fuzzy set, it possesses only one peak which has the largest membership grade. If the order k = 2
or the knots are evenly distributed, the support point of this peak, denoted as the Psupp-point (peak support
point), can be defined as Psupp(A) = {x|A(x) = mazimum}, where A is defined by a B-function.

A B-function representing A; is defined by the knots, the boundary points of the support of A;. The complete
knots consist of two parts, the interior knots (noted as Iknots) which lie within the universe of discourse and
extended knots (Eknots) which are generated at both ends of the universe for defining the wvirtual linguistic
terms. Generally, m — (k mod 2) interior knots are needed, where m is the number of the real linguistic terms,
and k is the order of the B-functions (k < m).

If k is even, the interior knots coincide with the Psupp-points. If k is odd, the m — 1 interior knots can be
determined by the Psupp-points, Fig. 1.

2.3 A B-Spline Interpolator
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the computation of the output of such a fuzzy controller is equivalent to that of a general B-spline hyper-
surface. Generally, we consider a MISO system with n inputs 1, 2a,...,2,. A Rule(iy,ia,...,i,) with the n
conjunctive terms in the IF-part is given in the following form:

[IF (%7 is Xill,kl) and (z2 is XZ»2 oo yand ... and (z, is X2 g ) THEN yis Y i, ]

where «; is the j-th input (j = 1,...,n), k; is the order of the B-spline basis functions used for z;, X] e
is the i-th linguistic term of z; defined by B-spline basis functions, ¢; = 1,..., m; represents how fine the _] th
input is fuzzy partitioned, Y;,;, 4, is the control vertex (deBoor points) of Rule(zl7 12,0y tn).

Then, the output y of a MISO fuzzy controller is:

27111:1 Z:’::l(ylh . H;l 1 ij, k; - I
= = Z Z t,ein H v,k (‘TJ)) (1)
Zzl 1° Zzn_l H] 1 l], ] 11=1 =1 =1

2.4 Adaptation of Control Vertices and Knots

Assume {(X, yq)} is a set of training data, the squared error is computed as £ = %(yr — y4)?, Each control
vertex Y; can be modified by using the gradient descent method:
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The gradient descent method guarantees that the learning algorithm converges to the global minimum of
the error function because the second partial differentiation with respect to Y;, ;, . ;. is always positive. This
means that the error function is convex in the space Y; and therefore possesses only one (global)
minimuin.

We also developed an algorithm for adapting the knots. This algorithm is a modified algorithm for self-
organising neural networks, [ZLK97].
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3 Comparative Results for Function Approximation

3.1 Test Functions

We tested our approach with the functions used in [MK96]:
One-dimensional functions:

filz) = 3z(z—1)(x —1.9)(z —0.7)(z +18), for —2<z <2
_ —1 {(z=0.2)(z = 0.7)(z +0.8) B .
f2(z) = 10tan ( L) ) , for —1<zr<1
_100(z 4 0.95)(x + 0.6)(x + 0.4)( — 0.1)(z — 0.4)(x — 0.8)(x — 0.9)
fa(z) = CrlnE -2 , for —1<z<1
fa(x) = 8sin(10e” +52+1), for — 1<z <1

_ —1 {(z=0.2)(z = 0.7)(z +0.8)
fo(w) = 10tan ( (z + 14)(z — L.0)z + 0.7

fo(w) = 10 (6—5|m|_1_6—3|m—0.8|/10_1_6—10|m+0.6|)7 for —1<ae<1

), for —1 <2 <1

Two-dimensional functions:

g1(z,y) = fo(r) x 10 (sin(4dy + 0.1) +sin(11y — 0.2) + sin(14y) +sin(17y +0.3)), for —1 <z,y <1

—0.142 7582 0.2
g (2,y) fa(w) x 2 (e‘(—y0~551) — 0.8~ (M) L gge-(5F10) ) , for —1<my<1

g3(z,y) fi(z) xsin(y), for —2 <=z,y <2

Three-dimensional functions:

Jz—0.8] _ le40.6]

| ]
hi(z,y,z) = 0.1 (6_ﬁ +e" 08 e 01 ) X (tan3(1.5y) + 10 tan®(y) —20tan(0.7y)) X

(arccoss(z) — arccos2(—z) — arccos(—z)) , for —1<2,y,2<1
sin (&) 3 3
7115 _
ha(z,y,2) = e (ay=0.N)(22=05) o ( ) X (zy” —627) tan_l(IOxy + 23), for —1<z,y,2<1
y+ 1.1 (ryz +2)
hs(z,y,z) = 1000(z +0.95)(z 4+ 0.6)(x +0.4) x (z — 0.1)(z — 0.4)(z — 0.8)(z — 0.9)(y + 0.7) x

(y—0.35)(y —0.9)(z 4+ 0.7)(2 + 0.2)(z — 0.4) X (yz + 0.6)(z + yz), for —1<=z,y,2<1

3.2 Implementation with B-functions

The simulation results achieved by [MK96] are summarised in Table 1. The same test functions were approx-
imated with the fuzzy controller based on the model proposed in section 2. We first used the same number of
linguistic terms as in [MK96], then several more. Curves of the Mean-Squared Error are plotted in Fig. 2.

4 Conclusions

e B-spline basis functions are one of the most suitable parameterised set functions for modelling fuzzy sets
of a controller. B-functions are naturally defined fuzzy sets, i.e. no additional parameters are needed



Function Rules Membership Functions in the Standard Additive Model
Triangle | Gaussian | Cauchy | Sinc | Laplace | Hyperbolic Tangent | Logistic

f1 12 0.4 0.2 0.2 0.18 0.28 0.08 0.7
f2 12 0.3 0.02 0.05 0.07 0.07 0.09 0.1
fs 12 0.03 0.008 0.005 0.01 0.002 0.005 0.03
fa 12 6 6 2 0.1 6 6 10
fs 12 0.2 0.05 0.9 0.01 0.1 0.02 1

fe 12 0.1 0.2 0.2 0.1 0.2 0.1 0.4
g1 8% 8 23 12 12 9 18 10 26
g2 8% 8 18 14 14 7 17 12 19
gs 8% 8 3.8 2 3 1.2 3 2 6

hy 5X5x5 9 7 6 4 5 7 8

ho 5X5x5 18 15 15 15 15 16 15
hs 5X5x5 3 1 0.9 1 0.9 1 0.05

Table 1: Summary of the Results of [MK96]. The contents of the table indicate the Mean-Sqaured Erorr after
sufficient epochs of learning.

apart from the partition parameters (knots) of an input. This feature enables that a user only needs to
concentrate on the initial partition of the input space using a prior: knowledge if it is available.

e Although it i1s natural that using more B-functions in the IF-part increases the approximation precision,
it 1s an important property that the price for that is merely more external memories to store the knots
and control vertices. The computation cost (k" instead of m™) stays the same regardless how many more
B-functions are used.

The real meaning of this experiment is not only to test the ability for function approximation, but to
test how fast and how flexible a fuzzy controller can be automatically constructed for shaping any control
surfaces. Fuzzy controllers based on the B-spline model possess not only the intrinsic advantages of B-splines,
like smoothness, intuitive geometric interpretation of parameters and control vertices, but also the following
desired properties for adaptive modelling and control:

e By applying the algorithm in [ZLK97], the knots for defining the B-functions can be automatically
adjusted, which results in precise positioning and efficient utilisation of linguistic terms.

o Based on the Squared-Error goal function and Gradient Descent method, the learning of control vertices
converges very fast (much faster than SAM with any set function used in [MK96]) since the modification
of control vertices only influences the local area of control surface.

o The efficient evaluation of rule basis and simple gradient descent computation enable on-line learning. We
have applied the approach in on-line learning of robot motions both for mobile robots and manipulators,

[ZvCKIT).

e By selecting an appropriate cost function, this learning method can be generalised for unsupervised
learning, [ZLK].

References

[BHO94] M. Brown and C. J. Harris. Neurofuzzy Adaptive Modelling and Control. Prentice Hall, 1994.

[Jan93] J.-S. R. Jang. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on
System, Man and Cybernetics, 23(3):665-685, 1993.

[MK96] S. Mitaim and B. Kosko. What is the best shape of a fuzzy set in function approximation. In IEEE
International Conference on Fuzzy Systems, 1996.

[NKK94] D. Nauck, F. Klawonn, and R. Kruse. Neuronale Netze und Fuzzy-Systeme. Vieweg, 1994.



MSE

opochs

MSE

opschs

opschs

MSE

opschs

Figure 2: Mean-squared error of approximating functions of f; to fs (one-dimensional), g1 to gz (two-
dimensional) and hy to hg (three-dimensional). Each function was approximated with as many MFs as used
in [MK96] and with several more MFs. In both cases, the computation times for evaluation of the rule base

are the same.
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