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Abstract

We propose a self-optimisation approach for designing fuzzy controllers. B-spline basis functions of
different orders are regarded as a class of membership functions (MFs) with some special properties. These
properties lead to several interesting conclusions about fuzzy controllers if such membership functions are
employed to specify the linguistic terms of the input variables. By appropriately designing the rule base,

2™-contimuity of the output can be achieved (n is the order of the B-spline basis functions). This type of
fuzzy controllers are applied in function approximation. Using the gradient descent technique, such a fuzzy
controller can be optimised automatically.

1 Introduction

This paper will first briefly introduce the principle of constructing fuzzy controllers with B-spline models, then
discuss the problem of automatical optimisation of such type of controllers.

Although fuzzy logic control (FL.C) has been successfully applied to a wide range of control problems
and has demonstrated some advantages, [TAS94, YT.794], one obstacle to the wide acceptance for industrial
applications is, as pointed out in [DHP95], that “it is still not clear how membership functions, defuzzification
procedures, ..., contribute, either in combination or as stand-alone factors, to the performance of the FL.C”.

Part of these issues can be addressed by comparing B-spline models with a fuzzy logic controller. Tn our
previous work [ZRH94] and [ZK96], we compared splines and a fuzzy controller with SISO (single-input-single-
output) and MISO (multi-inpui-single-output) structures; periodical non-uniform B-spline basis functions are
interpreted as membership functions. In this paper, we concentrate on the self-optimisation for function
approximation using a fuzzy controller constructed by the B-spline models.

2 Principle of Constructing Fuzzy Controllers with B-Splines

2.1 B-Spline Basis Functions vs. Membership Functions

We consider the membership functions which are used in the context of specifying linguistic terms (“values”
or “labels”) of input variables of a fuzzy controller. Tn the following, basis functions of Non-Uniform B-Splines
(NUBS) are summarised and compared with the membership functions. We also use B-functions for the NUBS
basis functions.

Given a sequence of ordered parameters: (2q, 21,22, ..., Zm, Tmi1,-- -, Zmin), the normalised B-functions
Njn of order n are defined as:

1 foro; <2< Xigq .
. if n=1 .
0 otherwise with 1 =0,1,...,m.

Nin(z) =
r—x, Nv‘,,n71 (T) + MNH’L”*1 (T) if n>1
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One important property of the B-functions is the “paritition of unity”, i.e. S 0 N, . (x) = 1.
The B-functions are employed to specify the MFs. Visually, the selection of n, the order of the B-functions
determines the following factors of the fuzzy sets for modelling the linguistic terms, Table 1.



order n 1 2 3 4
degree 0 1 2 3

shape rectangular triangular quadratic cubic
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overlap 1 2 3 4

Table 1: The visual effect of fuzzy sets depends mainly on choosing the order of B-functions

2.2 Real and Virtual Linguistic Terms

Tt 1s assumed that linguistic terms are to be used
to cover [xq, ., ], the universe of an input variable A= A= A= A= A

m m+l T

x of a fuzzy controller. They are referred as real 1 N ' Nm2z N2

linguistic terms. Tn order to maintain the “par-
tition of unity”, some more B-functions should

be added at the both ends of [xq, #,,]. They are 0 % X, Yoz w1 X
called marginal B-functions, defining the virtual @n=2

linguistic terms. Real and virtual linguistic terms A= A= A= A Anf
are denoted as A; in Fig. 1.

e In case of order 2, no marginal B-function ! ‘ ‘ >
is needed, P]g 1(8) X, X, % X Xz Kmi Xm X1 Xm2 x

e In case of order 3, two marginal B-functions
are needed, one for the left end and another

for the right end, Fig. 1(b).
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I
e In case of order 4, if the two B-functions 9 x‘_z S % X% % w2 Kmi %m Kma Kmz Xme x
N_s 4 and N,,_» 4 are regarded as the real © =4
linguistic terms, two marginal B-functions
are needed. one for the left end and the Figure 1: Real and virtual linguistic terms

other one for the right end, Fig. 1(c).

e If higher order n is used, more marginal B-
functions are needed.

In the following section, 1t can be seen that additional rules should

be generated for dealing with virtual linguistic terms. Therefore, Ul es o0 [e e o |6e |
linguistic terms should be selected appropriately in order to use the :

Aa
least number of marginal B-functions. T T T T T
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o
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2.3 Core and Marginal Rules

A -~ < = 1=
We define the core rules as linguistic rules which use real linguistic P o -
terms. 1f wirtual linguistic terms appear in the premise, in order to L I 1
maintain the output continuity at both ends of the universe of z, ad- " I B l
ditional rules are needed to deal with the cases. Since these rules use

the wirtual linguistic terms which are defined by MFs neighbouring I weus
the ends of the universe of each variable, they are called marginal

D marginal rules ——= :copy

rules. The output value of each marginal rule 1s just selected as the Figure 2: Core and marginal rules
output value of the “nearest” core rule, 1.e. the rule using the direct
adjacent linguistic terms in its premise (Fig. 2).



2.4 The General MISO Controllers

Since MIMO rule base is normally divided into several MISO rule bases, we need only to consider the MTSO
case. Generally, rules with ¢ conjunctive terms in the premise are given in the following form:

{Rule(ir,12,...,1q): TF (118 Ny n, (z1)) and (z2 18 N; (r2)) and ... and (x4 is Nigng (r4)) THEN y is y,;”;Qm,;q}

2,72
Under the following conditions:
e B-functions as MFs for inputs and fuzzy-singletons as MFs for outputs,
e “product” as fuzzy-conjunctions, and
e “center average” defuzzification method,

the output y of a MISO fuzzy controller is:

mq+ng—1 Mmg+ng—1 g
y = § § u12qH “Nijmg () (1)
t1=—mnq+1 ig=—mng+1 g=1

This is called a general NUBS hypersurface, which possesses the following features:

o Ifthe B-functions of order ny, ny, ..., n, are employed to specify the linguistic terms of the input variables
X1, %9, ..., Lq, it can be guaranteed that the output variable y is (n; —2) times continuously differentiable
with respect to the input variable z;, 7 =1,... q.

e If the input space is partitioned enough fine, the interpolation with B-spline hypersurface can reach a
given precision.

If the order of the B-functions and the number of linguistic terms used in the premise are chosen, the
output of the fuzzy controller can be flexibly adapted to anticipated values by adjusting the positions of the
fuzzy-singletons (control vertices) of the core rules.

3 Application in Function Approximation

If the pure B-spline interpolation is employed for function approximation, a straightforward computation
model can be applied which has to mainly solve tridiagonal matrices. Such a procedure is generously used in
CAD/CAM areas. For realising adaptive control system, we propose a self-optimisation approach to find the
appropriate control vertices iteratively.

3.1 Self-Optimisation of Control Vertices

The optimisation procedure is based on the gradient, descent, approach (See [Jan93] and [WWTLT95]). An error
function is defined as:

1
F= §(Empe(:ted_Value — Controller_Qutput)?

In each optimisation step, the control vertices are modified with:

3y, = (Fapected_Value — Controller_Output) - N;

3.2 Examples
3.2.1 A One-Input-One-Output Controller

A function y = sin(2m2) is assumed to be approximated with a fuzzy controller. Fig. 3 depicts the mapping of
the input x to the output y, where x is covered with B-functions of order 3 and fuzzy-singletons are defined on
y. The initial positions of the fuzzy-singletons are arbitrarily chosen, e.g. as zero, see Fig. 3(a). The output
curve and the fuzzy-singletons after the self-optimisation process are illustrated in Fig. 3(b).

Fig. 4(a) (c) show several intermediate steps during the optimisation. The approximation error is shown in

Fig. 4(d).
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(a) before optimisation (b) after optimisation

Figure 3: Mapping the input to the output with B-functions as MFs
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(a) step O (b) step 10 (c) step 200 (d) approx. error

Figure 4: Self-optimisation of positions of the fuzzy-singletons defined on the output

3.2.2 A 2D Example

A 2D example is implemented to approximate the function z = sin(2r2) - cos(my), with —1 < 2 < 1 and
0 <y < 1. Fig. 5 (a) and (b) show the MFs defining the real and virtual linguistic terms of # and y. The
control surface in several intermediate steps of the optimisation can be seen in Fig. 6. Fig. 7 shows the
final results after the optimisation process terminates: Fig. 7(a) depicts the automatically generated control
vertices, Fig. T(h) depicts the convergence of the approximation error.

(a) variable x (b) variable y

Figure 5: B-functions as MFs for the input variables

4 Conclusions

We propose an approach for constructing a fuzzy controller to approximate a sequence of points of a known
function. The advantages with B-Spline fuzzy controllers can be summarised as followings: a). transparency
of the interpolation process using fuzzy-controllers; b). smoothness of the output and ¢). no information loss
after the defuzzification.

Although the proposed self-optimisation approach is a kind of supervised learning methods, we can easily
extend the concept to the usage for unsupervised learning based on this controller structure. If no training
data available, an evaluation function can be designed to represent the goal of the controller, the control
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(a) step 0O (b) step 5 (c) step 100
Figure 6: The control surfaces during the optimisation
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(a) control vertices

Figure 7: After 100 optimisation steps

vertices can be then adapted to realise the optimal value. We are applying unsupervised learning with this
kind of fuzzy controller in the navigation problem for mobile robots, some preliminary results have shown the
feasibility of the idea. Tn our point of view, fuzzy controllers with B-spline models provide a suitable structure
for realising adaptive systems as well as smooth control tasks.
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