
A Cross Platform Development Workflow for C/C++ Applications.

Martin Wojtczyk and Alois Knoll
Department of Informatics

Robotics and Embedded Systems
Technische Universität München

Boltzmannstr. 3, 85748 Garching b. München, Germany
wojtczyk@in.tum.de

Abstract

Even though the programming languages C and C++
have been standardized by the American National Stan-
dards Institute (ANSI) and the International Standards Or-
ganization (ISO) [2, 15] and - in addition to that - the avail-
ability of the C library and the Standard Template Library
(STL) [26] enormously simplified development of platform
independent applications for the most common operating
systems, such a project often already fails at the beginning
of the toolchain – the build system or the source code project
management.

In our opinion this gap is filled by the open source project
CMake in an excellent way. It allows developers to use
their favourite development environment on each operat-
ing system, yet spares the time intensive synchronization of
platform specific project files, by providing a simple, single
source, textual description. With KDE4, CMake was intro-
duced to a very popular project [28]. In this article we
propose a workflow to ease the development of cross plat-
form projects and we show, how we used CMake to create
an OpenGL application as a demonstrator for a windowed
application running on Windows, Linux and Mac OS X as
well as a platform independent camera interface as an ex-
ample for hardware dependent cross platform applications.

1. Introduction

Due to the standardization of C and C++, applications

which can be compiled on multiple different platforms, can

be easily implemented. On Windows platforms, given a

source file like the very simple ”Hello world!” applica-

tion in Listing 1, the translation however requires the man-

ual creation of a Visual Studio project file referencing the

source file [22]. On Macintosh computers, people often

are used to the Xcode IDE, where the developers need to

create the necessary Xcode projects, which reference the

source [3]. On Unix/Linux systems developers often use the

GNU Autotools or even write Makefiles manually [29, 10].

#include <iostream>

using namespace std;

int main(int argc, char** argv)
{

cout << "Hello world!" << endl;
return 0;

};

Listing 1: hello.cpp

At a final stage of a cross platform application, the de-

velopers may just provide project files for the different plat-

forms, but in most cases a software project is continuously

being maintained and as soon as new classes or modules

are added to a project or as soon as multiple engineers

co-operate on a project, developers desire a tool, that sup-

ports synchronizing the different Visual Studio- or Xcode

projects as well as the Unix Makefiles. The open source

project CMake supports developers to manage this kind

of projects with simple textual project descriptions, out of

which generators provide platform specific project files. Ta-

ble 1 summarizes the project generators of the current ver-

sion 2.6.0 for the Windows, Mac OS X and Unix/Linux op-

erating systems. As you can see, a wide variety of develop-

ment environments is supported on every platform, for ex-

ample Eclipse with the C/C++ Development Tooling (CDT)

extension and even KDevelop 3 or CodeBlocks on each of

them in addition to the previously mentioned ones [7, 17, 5].

2. Application

CMake can be downloaded as source code or as instal-

lable executable for Windows or as precompiled binaries for

The Third International Conference on Software Engineering Advances

978-0-7695-3372-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ICSEA.2008.41

224

The Third International Conference on Software Engineering Advances

978-0-7695-3372-8/08 $25.00 © 2008 IEEE

DOI 10.1109/ICSEA.2008.41

224

Windows Unix/Linux Mac OS X
Borland Makefiles Unix Makefiles Unix Makefiles

MSYS Makefiles CodeBlocks - Unix Makefiles Xcode

MinGW Makefiles Eclipse CDT4 - Unix Makefiles CodeBlocks - Unix Makefiles

NMake Makefiles KDevelop3 Eclipse CDT4 - Unix Makefiles

Unix Makefiles KDevelop3 - Unix Makefiles KDevelop3

Visual Studio 6 KDevelop3 - Unix Makefiles

Visual Studio 7

Visual Studio 7 .NET 2003

Visual Studio 8 2005

Visual Studio 8 2005 Win64

Visual Studio 9 2008

Visual Studio 9 2008 Win64

Watcom WMake

CodeBlocks - MinGW Makefiles

CodeBlocks - Unix Makefiles

Eclipse CDT4 - MinGW Makefiles

Eclipse CDT4 - NMake Makefiles

Eclipse CDT4 - Unix Makefiles

Table 1. Available project generators for the supported operating systems.

Mac OS X, Linux and several Unix systems for free at [18].

Furthermore packages for many Linux distributions, the

MacPorts- and the Fink-project for Macintosh users are pro-

vided in their repositories for convenient installation and au-

tomated updates [21, 9]. By default the precompiled Win-

dows package comes with a Qt based GUI to ease the setup

of initial settings for the project under development, while

the Unix/Linux and Mac OS X versions of the precompiled

package come with a ncurses based console user interface

application ccmake (see Figure 1, 2nd row) [27, 11]. If

built from source, a Qt based GUI and/or a ncurses based

console user interface will be built on each platform, pro-

vided that the necessary libraries Qt and ncurses are in-

stalled and accessible by the compiler. Subsequent project

updates can be generated by the utilization of the cmake
command on each platform.

SET(SRCS main.cpp)
ADD_EXECUTABLE(hello ${SRCS})

Listing 2: CMakeLists.txt

Listing 2 shows a simple project description for the pre-

viously mentioned ”Hello world!” application. Invoking

CMake with this description will produce a project for the

desired development environment on each supported plat-

form. A subsequent build process in the individual devel-

oper’s favourite environment will then build a native appli-

cation for this platform.

To build an application out of the two files hello.cpp

and CMakeLists.txt, the path to the project descrip-

tion in the CMakeLists.txt file is passed to cmake, an op-

tional parameter -G can specify the desired generator. Call-

ing cmake --help lists all possible parameters and the

supported generators on the running platform.

On Unix/Linux/Mac OS X the build process is per-

formed by the calls in Listing 3, since per default Unix

Makefiles are generated.

hello$ cmake .
hello$ make

Listing 3: Building the ”Hello world!” application on

Linux/Unix and Mac OS X.

On Windows the commands in Listing 4 perform the

same, provided that Visual Studio is installed. If installed,

also the GUI application or the ncurses based console user

interface application can be used to create the project files.

As an alternative to Listings 3 and 4 you can also generate

a Visual Studio Solution, a Xcode project or a KDevelop 3

project as desired and invoke the build process within the

IDEs as usual. The only important prerequisite is, that the

necessary dependent tools (make, nmake, gcc, link, cl, ...)

are available on the command line, thus the environment

variables are set properly. A very useful feature is the out of

source build, which means that the source code of a project

stays separated from the created project files, compilations

and possibly generated temporary files to avoid the acciden-

tal submission of platform specific files to the sourcecode

225225

repository.

hello$ cmake . -G "NMake Makefiles"
hello$ nmake

Listing 4: Building the ”Hello world!” application on Win-

dows.

2.1. Project Description

The project description of the ”Hello world!” ex-

ample only defines a variable ${SRCS}, which refer-

ences the necessary source code files. The instruction

ADD EXECUTABLE notifies CMake to create a hello ex-

ecutable target out of the source files passed as an argu-

ment. In a similar way static or dynamic libraries can

be created by the ADD LIBRARY(libname [SHARED
| STATIC] sourcelist) instruction. A complete list

of the CMake instructions can be found in the online docu-

mentation at [19]. In contrast to the GNU Autotools - which

are only available for Unix environments - complex projects

can be described and maintained after a very short learning

phase already.

Often software systems need to access external libraries

or connected hardware, which is accessed differently on dif-

ferent operating systems. Sections 2.2 and 2.3 describe

both scenarios.

2.2. Project Configuration

Since nowadays software projects often rely on exter-

nal libraries, one of the most necessary features of a build

system is the support of the configuration step, hence find-

ing necessary header and library files of external pack-

ages. CMake simplifies this step by providing many Con-

figuration scripts for the most common libraries. How-

ever reusable configuration scripts can also be easily im-

plemented by the user himself as described in the documen-

tation. If, for example, a cross platform application should

not be restricted to the command line, you can easily uti-

lize one of the supported GUI toolkits (Qt3, Qt4, GTK+,

wxWidgets, FLTK etc.) [13, 16, 8]. This way impressive,

windowed cross platform applications can already be im-

plemented just by choosing the right external libraries.

To inspect 3D models on every operating system in the

same environment and to establish a software basis for an-

imated simulations for future use, qiew, a demonstrator

and test-bench, was implemented. Using the Qt toolkit

and Coin3D, a reimplementation of SGI’s Open Inventor, a

platform independent VRML viewer was created (see Fig-

ures 1, 4th row) [20, 25]. The source code of the application

is available at its website [30]. In the source we also con-

tributed configuration scripts to find the Coin3D libraries on

Windows, Linux and Mac OS X.

2.3. Resolving Platform Characteristics

When it comes to hardware access, software engineers

often have to deal with different Application Programming

Interfaces (APIs) on each operating system.

As part of a unified, vision based tracking library, we

needed to implement a platform independent camera inter-

face, which was put into effect by applying common soft-

ware engineering methods [24]. In this case we utilized the

AbstractFactory Design Pattern as described in [12]

to encapsulate platform specific code in specialized classes

derived from an abstract interface class, which provides the

function interfaces for the end user. Figure 2 shows the im-

plemented UML class hierarchy with a subset of the imple-

mented methods.

ImageDevice

+ open(): void
+ close(): void
+ init(): void
+ captureStart(): void
+ captureStop(): void
+ captureNext(): void
+ getImage(): Image*

FirewireCamera

+ getNumberOfCameras(): int
+ createCamera(int number):
FirewireCamera*

LinuxDC1394Camera

+ getNumberOfCameras(): int
+ createCamera(int number):
LinuxDC1394Camera*

MacDC1394Camera

+ getNumberOfCameras(): int
+ createCamera(int number):
MacDC1394Camera*

WindowsCMU1394Camera

+ getNumberOfCameras(): int
+ createCamera(int number):
WindowsCMU1394Camera*

OpenCVCameraMoviePlayer

Figure 2. A Cross Platform class hierarchy for
unified camera access.

Video sources which we defined as cameras can be

recorded movie sequences, USB web-cams out of which

many are supported by the open source vision library

OpenCV [14] or Firewire cameras. Since most Firewire

cameras support the Instrumentation & Industrial Digital

Camera (IIDC) Standard [1], they are frequently used in

academia. Therefore enhanced support for Firewire cam-

eras was implemented to make use of the standardized ac-

cess to relevant registers such as white balance, gain or shut-

ter speed.

On Linux and Mac OS X access to Firewire cameras is

provided by the commonly used library libdc1394 [6] while

the CMU 1394 Digital Camera Driver [4] provides a sim-

ilar functionality for Windows, yet with a completely dif-

ferent interface. We contributed the necessary configura-

tion scripts to find the libdc1394 library on Linux and Mac

226226

OS X and the CMU 1394 Digital Camera Driver on Win-

dows. Furthermore we contributed a software package pro-

viding a uniform programming interface for the platform

specific APIs.

2.4. Deployment

Once an application or library is built, it is usually pack-

aged for distribution. While Windows packages mostly

come as installable setup files, Unix/Linux packages are of-

ten Tarballs or self-extracting shell-scripts and Mac OS X

packages usually come as DMG disk images, which directly

contain the binaries or an installer package. By the sim-

ple use of an INCLUDE(CPack) directive in the CMake-

Lists.txt file, a package target will be generated in the

project file and all files, which are tagged with an INSTALL
command will automatically be added to the appropriate de-

ployment package, when invoked. Table 2 summarizes all

package generators. The generators STGZ, TBZ2, TGZ,

TZ and ZIP are available on every platform, provided that

the necessary packaging tool is available and create archives

with the necessary binaries and/or sources if tagged for in-

stallation. The NSIS generator creates an installable win-

dows package based on the Open Source Tool: Nullsoft

Scriptable Install System (NSIS) [23]. The generated and

installed package will also show up in the system wide list

of installed Programs and provides an uninstaller for clean

removal. The DEB and RPM generators are available on

Linux machines to build commonly used Debian- (DEB) or

Red Hat Package Manager (RPM) packages which can be

installed and removed easily. The OSXX11 and Package-

Maker generators are only available on Macintosh systems

and provide native installers for this platform.

3. Workflow

Single
Source
Code

svn, cvs,
CMake

Platform
specific
Project

Native
Application

Deployment
File

Native IDE CPack

Figure 3. The Cross Platform Workflow and
its involved Tools.

To sum up, we propose the following workflow for cross

platform applications or software components. In the first

place, developers get the current source code and project

descriptions from a source code and version management

system such as Subversion or CVS, no matter which oper-

ating system they work on. Afterwards they generate native

project files for the development environment, which they

prefer to work with by the use of the CMake project gen-

erator. From within their favourite IDE they contribute to

the project and, if necessary, to the project description files,

which are committed back to the source code management

system, once a goal is achieved. For testing, the native build

processes are invoked from within the IDE. In addition to

that, packaging for deployment can be performed automat-

ically on each supported platform to reduce the effort of

application bundling for every new version. Figure 3 shows

the workflow depicting the project’s states in boxes and the

utilized transformation tools and their impact directions as

arrows. Figure 1 depicts the workflow for the previously

mentioned cross platform application in section 2.2 at its

different stages which was developed for Windows, Linux

and Mac OS X.

4. Future Work

One feature we were missing and hence are working on

ourselves is the automatic generation of the textual project

descriptions by scanning an application’s directories for

source files and inspecting it’s #include directives. That

will ease the migration of software projects towards cross

platform support dramatically from our point of view.

5. Conclusions

It is true, that the proposed workflow requires software

engineers developing C/C++ applications to learn an addi-

tional tool, on the other hand doing so could make their

applications available for many more users using different

operating systems. And actually the learning curve with

CMake is not as steep as with the GNU Autotools by far. In

some software projects the co-operation of users of different

platforms is just inevitable. At the chair for Robotics and

Embedded Systems at the Technische Universität München

a majority of the vision group prefers to implement their

algorithms on Windows, while the robotics group usually

uses Realtime Linux on their robot platforms, where the

vision algorithms are put into effect. This was the initial

reason to create a workflow connecting both worlds.

The authors are not affiliated in any way with CMake or

the company behind this open source tool. However CMake

was the most promising out of several other tested tools dur-

ing an evaluation by the author in 2004 and has been used

in very many cross platform projects at the chair since then.

Furthermore it has been introduced in two spin-off compa-

nies of the chair due to the many advantages: from project

generation and synchronization, to configuration and de-

pendency resolving and to deployment packaging, as men-

tioned above. Still, many developers don’t know the power

of this tool. This is the reason, why we want to share our

227227

Generator Description Windows Unix/Linux Mac OS X
NSIS Null Soft Installer + – –

DEB Debian packages – + –

RPM RPM packages – + –

OSXX11 Mac OSX X11 bundle – – +

PackageMaker Mac OSX Package Maker installer – – +

STGZ Self extracting Tar GZip compression + + +

TBZ2 Tar BZip2 compression + + +

TGZ Tar GZip compression + + +

TZ Tar Compress compression + + +

ZIP ZIP file format + + +

Table 2. Available deployment package generators for the supported operating systems.

experience with the community. The utilization within well-

known projects such as KDE4 or OpenSceneGraph may

raise its popularity. We showed, it can be easily integrated

in the development process on the most popular operating

systems, still letting the developer choose his favourite en-

vironment, however more important than that, we showed,

it can be used very well as the missing link in managing

cross platform projects.

References

[1] 1394 Trade Association. IIDC 1394-based Digital Camera
Specification, 2000.

[2] American National Standards Institute. ANSI X3.159-1989
”Programming Language C”.

[3] Apple Inc. Xcode. http://developer.apple.com/
tools/xcode/.

[4] C. Baker. CMU 1394 Digital Camera Driver. http://
www.cs.cmu.edu/˜iwan/1394/.

[5] The Code::Blocks Team. Code::Blocks – The open
source, cross platform, free C++ IDE. http://www.
codeblocks.org/.

[6] D. Douxchamps. libdc1394: The API for IEEE1394 /
Firewire cameras. http://damien.douxchamps.
net/ieee1394/libdc1394/.

[7] The Eclipse Foundation. Eclipse – an open development
platform. http://www.eclipse.org/.

[8] B. S. et al. Fast Light Toolkit (FLTK). http://www.
fltk.org/.

[9] The Fink Team. Fink. http://www.finkproject.
org/.

[10] Free Software Foundation, Inc. GNU Make. http://
www.gnu.org/software/make/.

[11] Free Software Foundation, Inc. ncurses. http://www.
gnu.org/software/ncurses/.

[12] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, Boston, 2003.

[13] GTK+ Team. GTK+. http://www.gtk.org/.
[14] Intel Corporation. OpenCV – Open Source Computer Vision.

http://opencvlibrary.sourceforge.net/.

[15] International Standards Organization. ISO/IEC Interna-
tional Standard 14882, Programming Languages – C++.

[16] Julian Smart et al. wxWidgets. http://www.
wxwidgets.org/.

[17] KDevelop Team. KDevelop – an Integrated Development
Environment. http://www.kdevelop.org/.

[18] Kitware Inc. CMake - Cross-platform Make. http://
www.cmake.org.

[19] Kitware Inc. CMake documentation. http://www.
cmake.org/HTML/Documentation.html.

[20] Kongsberg SIM AS. Coin3D – 3D Graphics Developer Kit.
http://www.coin3d.org/.

[21] The MacPorts Project Team. The MacPorts Project. http:
//www.macports.org/.

[22] Microsoft Corporation. Visual Studio Developer Cen-
ter. http://msdn.microsoft.com/en-us/
vstudio/default.aspx.

[23] NSIS Team. Nullsoft Scriptable Install System (NSIS).
http://nsis.sourceforge.net/.

[24] G. Panin, C. Lenz, M. Wojtczyk, S. Nair, E. Roth, T. Friedl-

huber, and A. Knoll. A unifying software architecture for

model-based visual tracking. In Image Processing: Ma-
chine Vision Applications. Edited by Niel, Kurt S.; Fofi,
David. Proceedings of the SPIE, Volume 6813, pp. 681303-
681303-14 (2008)., volume 6813 of Presented at the Society
of Photo-Optical Instrumentation Engineers (SPIE) Confer-
ence, Mar. 2008.

[25] Silicon Graphics, Inc. Open Inventor. http://oss.
sgi.com/projects/inventor/.

[26] Silicon Graphics, Inc. Standard Template Library Program-
mer’s Guide. http://www.sgi.com/tech/stl/.

[27] Trolltech. Qt Cross-Platform Application Framework.

http://trolltech.com/products/qt/.
[28] T. Unrau. The Road to KDE 4: CMake, a New

Build System for KDE, 2007. http://dot.kde.org/
1172083974/.

[29] G. V. Vaughan, B. Elliston, T. Tromey, and I. L. Taylor. GNU
Autoconf, Automake, and Libtool. Sams, 2000. http://
sources.redhat.com/autobook/.

[30] M. Wojtczyk. qiew – a minimalistic and portable
VRML/Inventor Viewer. http://www.qiew.org.

228228

Single Source Code for a
Cross Platform Project.

The CMake Configuration
Dialog on Windows.

The CMake Configuration
Dialog on Linux.

The CMake Configuration
Dialog on Mac OS X.

Visual Studio is a common
IDE on Windows.

Eclipse+CDT as an example
for a Linux environment.

The Xcode IDE is the native
environment on Mac OS X.

Native Application on
Windows.

Native Application on
Linux.

Native Application on
Mac OS X.

setup-package.exe package.dmg package.tar.gz

Figure 1. Exemplary workflows depicted for the development process on Windows, Linux and
Mac OS X platforms. The first row symbolises the single source for the cross platform application.
The configuration step in the second row shows the Qt-based user interface of CMake on Windows
and the ncurses-based application ccmake on Linux and Mac OS X. In the depicted case, Visual Stu-
dio was used to build the native Windows application, eclipse was used for Linux and Xcode for Mac
OS X. Changes can be commited directly to the source code repository from within the IDEs. The
result of the build process is a native application on each system, which optionally can be packaged
automatically for deployment.

229229

