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Abstract. We present Fitness Expectation Maximization (FEM), a novel
method for performing ‘black box’ function optimization. FEM searches
the fitness landscape of an objective function using an instantiation of
the well-known Expectation Maximization algorithm, producing search
points to match the sample distribution weighted according to higher ex-
pected fitness. FEM updates both candidate solution parameters and the
search policy, which is represented as a multinormal distribution. Inherit-
ing EM’s stability and strong guarantees, the method is both elegant and
competitive with some of the best heuristic search methods in the field,
and performs well on a number of unimodal and multimodal benchmark
tasks. To illustrate the potential practical applications of the approach,
we also show experiments on finding the parameters for a controller of
the challenging non-Markovian double pole balancing task.

1 Introduction

Real-valued ‘black box’ function optimization is one of the major topics in mod-
ern applied machine learning research (e.g. see [1]). It concerns itself with opti-
mizing the continuous parameters of an unknown (black box) objective fitness
function, the exact analytical structure of which is assumed to be unknown or
unspecified. Specific function measurements can be performed, however. The
goal is to find a reasonably high-fitness candidate solution while keeping the
number of function measurements limited. The black box optimization frame-
work is crucial for many real-world domains, since often the precise structure of
a problem is either not available to the engineer, or too expensive to model or
simulate.

Now, since exhaustively searching the entire space of solution parameters is
considered to be infeasible, and since we do not assume we have access to a
precise model of our fitness function, we are forced to settle for trying to find
a reasonably good solution that satisfies certain pre-specified constraints. This,
inevitably, involves using a sufficiently intelligent heuristic approach, since in
practice it is important to find the right domain-specific trade-off on issues such
as convergence speed, expected quality of the solutions found and the algorithm’s
sensitivity to local suboptima on the fitness landscape.

A variety of algorithms has been developed within this framework, including
methods such as Simulated Annealing [2], Simultaneous Perturbation Stochastic



Approximation [3], the Cross-Entropy method [4, 5], and evolutionary methods
such as Covariance Matrix Adaption (CMA) [6] and the class of Estimation of
Distribution Algorithms (EDAs) [7].

In this paper, we postulate the similarity and actual equivalence of black box
function optimization and one-step reinforcement learning. In our attempt to
create a viable optimization technique based on reinforcement learning, we fall
back onto a classical goal of reinforcement learning (RL), i.e., we search for a way
to reduce the reinforcement learning problem to a supervised learning problem.
In order to do so, we re-evaluate the recent result in machine learning, that rein-
forcement learning can be reduced onto reward-weighted regression [8] which is
a novel algorithm derived from Dayan & Hinton’s [9] expectation maximization
(EM) perspective on RL. We show that this approach generalizes from reinforce-
ment learning to fitness maximization to form Fitness Expectation Maximization
(FEM), a relatively well-founded instantiation of EDAs which relates to other
(EM-inspired) methods for optimization (e.g. see [10, 11]).

This algorithm is tested on a set of unimodal and multimodal benchmark
functions, and is shown to exhibit excellent performance on both unimodal and
multimodal benchmarks. A defining feature of FEM is its adaptive search pol-
icy, which takes the form of a multinormal distribution that produces correlated
search points in search space. Its covariance matrix makes the algorithm invari-
ant across rotations in the search space, and enables the algorithm to fine-tune
its search appropriately, resulting in arbitrarily high-precision solutions. Further-
more, using the stability properties of the EM algorithm, the algorithm seeks
to avoid catastrophically greedy updates on the search policy, thus preventing
premature convergence in some cases.

The paper is organized as follows. The next section provides a quick overview
of the general problem framework of real-valued black box function optimiza-
tion. The ensuing sections describe the derivation of the EM-based algorithm,
the concept of ‘fitness shaping’, and the online instantiation of our algorithm.
The experiments section shows initial results with a number of unimodal and
multimodal benchmark problems. Furthermore, results with the non-Markovian
double pole balancing problem are discussed. The paper concludes with a discus-
sion on the advantages and problems of the method, and points to some possible
directions for future extensions.

2 Algorithm Framework

First let us introduce the algorithm framework and the corresponding notation.
The objective is to optimize the n-dimensional continuous vector of objective pa-
rameters x for an unknown fitness function f : Rn → R. The function is unknown
or ‘black box’, in that the only information accessible to the algorithm consists of
function measurements selected by the algorithm. The goal is to optimize f(x),
while keeping the number of function evaluations – which are considered costly
– as low as possible. This is done by successively evaluating batches of a number
1 . . . N of separate search points z1 . . . zN on the fitness function, while using the



information extracted from fitness evaluations f(z1) . . . f(zN ) to adjust both the
current candidate solution x and the search policy defined as a Gaussian with
mean x and covariance matrix Σ.

3 Expectation Maximization for Black Box Function
Optimization

At every point in time while running the algorithm, we want to optimize the
expected fitness J = Ez[f(z)] of the next batch, given the current batch of
search samples. We assume that every batch g is generated by search policy π(g)

parameterized by θ = 〈x,Σ〉, representing the current candidate solution x and
covariance matrix Σ.

In order to adjust parameters θ = 〈x,Σ〉 towards solutions with higher as-
sociated fitness, we match the search distribution to the actual sample points,
but weighted by their utilities. Now let f(z) be the fitness at a particular search
point z, and, utilizing the familiar multivariate normal distribution, let π(z|θ) =
N (z|x,Σ) = 1

(2π)n/2|Σ|1/2 exp
[
− 1

2 (z− x)TΣ−1(z− x)
]

denote the probability
density of search point z given the current search policy π. The expectation

J = Ez[f(z)] =
∫

π(z|θ)f(z)dz.

indicates the expected fitness over all possible sample points, weighted by their
respective probabilities under policy π.

3.1 Optimizing Utility-transformed Fitness

While an objective function such as the above is sufficient in theory, algorithms
which simply optimize it have major disadvantages. They might be too aggressive
when little experience – few sample points – is available, and converge prema-
turely to the best solution they have seen so far. On the opposite extreme, they
might prove to be too passive and be biased by less fortunate experiences. Trad-
ing off such problems has been a long-standing challenge in reinforcement learn-
ing. However, in decision theory, such problems are surprisingly well-understood
[12]. In that framework it is common to introduce a so-called utility transfor-
mation u(f(z)) which has to fulfill the requirement that it scales monotonically
with f , is semi-positive and integrates to a constant. Once a utility transforma-
tion is inserted, we obtain an expected utility function given by

Ju (θ) =
∫

p(z|θ)u(f(z))dz. (1)

The utility function u(f) is an adjustment for the aggressiveness of the decision
making algorithms, e.g., if it is concave, it’s attitude is risk-averse while if it
is convex, it will be more likely to consider a fitness more than a coincidence.



Obviously, it is of essential importance that this risk function is properly set
in accordance with the expected fitness landscape, and should be regarded as a
metaparameter of the algorithm. Notice the similarity to the selection operator
in evolutionary methods.

We have empirically found that rank-based shaping functions (rank-based se-
lection) work best for various problems, also because they circumvent the prob-
lem of extreme fitness values disproportionately distorting the estimation of the
search distribution, making careful adaptation of the forget factor during search
unnecessary even for problems with wildly fluctuating fitness. In this paper,
we will consider a simple rank-based utility transformation function, the piece-
wise linear uk = u(f(zk)|f(zk−1), . . . , f(zk−N )) which first ranks all samples
k −N, . . . , k based on fitness value, then assigns zero to the N −m worst ones
and assigns values linearly from 0 . . . 1 to the m best samples.

3.2 Fitness Expectation Maximization

Analogously as in [8, 9], we can establish the lower bound

log Ju (θ) = log
∫

q(z)
p(z|θ)u(f(z))

q(z)
dz (2)

≥
∫

q(z) log
p(z|θ)u(f(z))

q(z)
dz (3)

=
∫

q(z) [log p(z|θ) + log u(f(z))− log q(z)] dz (4)

:= F (q, θ) , (5)

due to Jensen’s inequality with the additional constraint 0 =
∫

q(z)dz− 1. This
points us to the following EM algorithm:

Proposition 1. An Expectation Maximization algorithm for both optimizing ex-
pected utility and the raw expected fitness is given by

E-Step: qg+1(z) =
p(z|θ)u(f(z))∫
p(z̃|θ)u(f(z̃))dz̃

, (6)

M-Step Policy: θg+1 = arg max
θ

∫
qg+1(z) log p(z|θ)dz. (7)

Proof. The E-Step is given by q = argmaxqF (q, θ) while fulfilling the constraint
0 =

∫
q(z)dz − 1. Thus, we have a Lagrangian L (λ, q) = F (q, θ) − λ. When

differentiating L (λ, q) with respect to q and setting the derivative to zero,
we obtain q∗(z) = p(z|θ)u(f(z)) exp (λ− 1). We insert this back into the La-
grangian obtaining the dual function L (λ, q∗) =

∫
q∗(z)dz−λ. Thus, by setting

dL (λ, q∗) /dλ = 0, we obtain λ = 1 − log
∫

p(z|θ)u(f(z))dz, and solving for q∗

implies Eq (6). The M-steps compute θg+1 = argmaxθF (qg+1, θ).

In practice, when using a Gaussian search distribution parameterized by
θ(k) = 〈x,Σ〉, the EM process comes down to simply fitting the samples in every
batch to the Gaussian, weighted by the utilities.



4 Online Fitness Expectation Maximization

In order to speed up convergence, the algorithm can be executed online, that is,
sample by sample, instead of batch by batch. The online version of the algorithm
can yield superior performance since updates to the policy can be made at every
sample instead of just once per batch, and because doing so tends to preserve
sample diversity better than by using the batch version of the algorithm. Crucial
is that a forget factor α is now introduced to modulate the speed at which the
search policy adapts to the current sample. Batch size N is now only used for
utility ranking function u which ranks the current sample among the N last seen
samples. The resulting FEM algorithm pseudocode can be found in Algorithm 1.

Algorithm 1 Fitness Expectation Maximization
use shaping function u, batch size N , forget factor α
k ← 1
initialize search parameters θ(k) = 〈x,Σ〉
repeat

draw sample zk ∼ π(x,Σ)
evaluate fitness f(zk)
compute rank-based fitness shaping uk = u(f(zk)|f(zk−1), . . . , f(zk−N ))
x← (1− αuk)x + αukx
Σ← (1− αuk)Σ + αuk (x− zk) (x− zk)T

k ← k + 1
until stopping criterion is met

5 Experiments

5.1 Standard benchmark functions

Good test functions should be easy to interpret, but scale up with n. They must
be highly nonlinear, non-separable, largely resistant to hill-climbing, and prefer-
ably contain deceptive local suboptima. To test the performance of the algo-
rithm, we chose 6 unimodal functions (Sphere, Schwefel, Tablet, Cigar, Different-
Powers, Ellipsoid) and 4 multimodal functions (Ackley, Rastrigin, Weierstrass
and Griewank) from a set of benchmark functions from [13] and [6] that are
typically used in the literature, for comparison purposes and for competitions.
As those functions are designed to be minimized, we take the fitness to be the
negative function value. The multimodal functions were tested with both FEM
and the Covariance Matrix Adaptation (CMA) [6] algorithm – widely regarded
as one of the premier algorithms in this field – for comparison purposes.

In order to prevent potentially biased results, and to avoid trivial optima
(e.g. at the origin), we follow [13] and consistently transform (by a combined
rotation and translation) the functions’ inputs in order to make the variables
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Fig. 1. Results for experiments on the unimodal benchmark functions. Left: dimen-
sionality 5, right: dimensionality 15.

non-separable. This immediately renders many direct search method virtually
useless, since they cannot cope with correlated search directions, unlike FEM
and CMA.

The tunable parameters of the FEM algorithm are comprised of batch size N ,
the fitness shaping function u applied on the fitness function f and forget factor
α. The parameters should be chosen by the expert to fit the expected ruggedness
of the fitness landscape. The forget factor must be low enough such that it does
not too quickly forget earlier successful search points. The shaping function must
be chosen such that enough randomness is preserved in the search policy after
every update, which entails including the lesser samples in utility attribution. For
all experiments, comprising both the benchmark unimodal/multimodal functions
and the non-Markovian double pole balancing task, initial Σ was set to the
identity matrix Σ = I and x was always randomly initialized as x ∼ N (0, I).

We ran FEM on the set of unimodal benchmark functions with dimensions 5
and 15 using a target precision of 10−10. Figure 1 shows the average number of
evaluations until success over 20 runs on the unimodal functions. The parameter
settings for dimensionality 5 were identical in all runs: α = 0.1 and N = 50,
parameter m for selecting the shaping function’s top m samples was set at m = 5.
The parameter settings for all runs in dimensionality 15 were: α = 0.02, N = 25
and m = 10. All runs converged. The number of evaluations was roughly equal
to that of CMA on the small dimensionality, and for most problems not more
than a factor 3 slower, even with dimensionality 15 [6].

On the multimodal benchmark functions we performed experiments while
varying the distance of the initial guess to the optimum between 1 and 100. As
with the unimodal functions, the problems were appropriately translated and
rotated, while the initial x was randomly initialized on the surface of the hyper-



sphere with radius 1, 10 or 100 and the optimum at its center. Those runs were
performed on dimension 2 with a target precision of 0.01, since here the focus
was on avoiding local maxima. The parameter settings for the multimodal runs
were: α = 0.02, N = 25 and m = 10. Table 1 shows, for all multimodal func-
tions, the percentage of runs where FEM found the global optimum (as opposed
to it getting stuck in a local suboptimum) depending on the distance from the
initial guess to the optimum. The percentages are computed over 100 runs. For
comparison purposes we included the results for the CMA implementation of [6],
although it must be said that in all likelihood better results can be achieved for
CMA using population sizes that are larger than standard for that algorithm.

One additional, linear benchmark function f(z) =
∑

j zj was tested to verify
the expected premature convergence of the algorithm. Indeed, FEM converges
prematurely like EDAs typically do (e.g. [14]), while CMA performed well (see
e.g. [15]). This suggests the approach might not be applicable to all domains and
that it might benefit from a mutative approach modeling mutations instead of
weighted sample distributions.

Lastly, we performed experiments using a batch-based version of the algo-
rithm instead of the online version. We found the standard benchmark problems
could only be solved using large batch sizes (1000 and up), slowing down the
algorithm considerably. This might be due to the reduced sample diversity using
small batch sizes, which is ameliorated using an online update rule which only
gradually adjusts Σ values.

To summarize, our experiments on these standard black box optimization
benchmarks indicate that FEM is competitive with other high-performance al-
gorithms. The premature convergence on the simple linear test function was
expected and it remains to be seen whether this will affect the long-term viabil-
ity of the approach. Last, the superior performance of the online version of this
algorithm might indicate that the problem of diversity maintenance could prove
to be an important topic of future research on FEM and EDAs in general.

Table 1. Results for the multimodal benchmark functions. Shown are percentages of
runs that found the global optimum, for both FEM and CMA, for varying starting
distances.

FEM CMA
Distance 1 10 100 1 10 100

Rastrigin 91% 87% 64% 13% 11% 14%
Ackley 100% 100% 0% 89% 70% 3%
Weierstrass 19% 9% 19% 90% 92% 92%
Griewank 100% 2% 0% 100% 2% 0%



5.2 Non-markovian Double Pole Balancing

Non-Markovian double pole balancing [16] can be considered a difficult bench-
mark task for control optimization. We use the implementation as found in [17].
The FEM algorithm optimizes the parameters of the controller, which is im-
plemented as a simple neural network with three inputs, three hidden sigmoid
neurons, and one output neuron.

The algorithm’s parameters were set as follows: piecewise linear shaping func-
tion with m = 5 (top 5 selection), forget factor α = 0.05 and batch size N = 50.
A run was considered a success when the poles did not fall over for 100, 000 time
steps. The results on a total of 200 runs are, on average, 2099 evaluations until
success (standard deviation: 1505). Not included in these statistics are 49/200
runs that did not reach success within the limit of 10000 evaluations, which
compares badly with both CoSyNE and CMA which (almost) always converge.
Table 2 shows results of other premier algorithms applied to this task, including
CMA. All methods optimized the same type of recurrent neural network, albeit
with differing numbers of hidden neurons. FEM, when it converges, outperforms
all other methods except CoSyNE. Since our algorithm performs well on this
relatively hard control benchmark, we expect the algorithm to do well on future
real-world experiments.

Table 2. Results for non-Markovian double pole balancing. The table shows the
average number of evaluations for SANE [18], ESP [17], NEAT [19], CMA [20, 6],
CoSyNE [21] and FEM.

Method SANE ESP NEAT CMA CoSyNE FEM

Evaluations 262, 700 7, 374 6, 929 3, 521 1, 249 2, 099

6 Discussion

Fitness Expectation Maximization constitutes a simple, principled approach to
real-valued black box function optimization with a rather clean derivation from
first principles. Its theoretical relationship to the field of reinforcement learning
and in particular reward-weighted regression should be clear to any reader famil-
iar with both fields. We anticipate that rephrasing the black box optimization
problem as a reinforcement learning problem solvable by RL methods will spawn
a whole series of additional new algorithms exploiting this connection.

The experiments show that, on the unimodal and multimodal benchmarks,
FEM is competitive with respect to its the main ‘competitor’ algorithm CMA, at
least on lower dimensional problems. Taking into account the good results on the
pole balancing tasks, we envision that FEM might become a serious competitor
in the field of black box function optimization, especially for neuroevolution.



Future work on FEM will include a systematic study that must determine
whether it can be made to outperform other search methods consistently on
other typical benchmarks and real-world tasks. It remains to be seen how the
method scales up with increased dimensionality, especially compared to CMA.
We suggest extending the algorithm from a single multinormal distribution as
search policy representation to a mixture of Gaussians (which is a common pro-
cedure for ‘vanilla’ EM), thus further reducing its sensitivity to local suboptima.
Other pressing work includes a theoretical analysis of the shaping (selection)
function, which should ideally be made to adapt automatically based on the
data instead of tuned manually.

The premature convergence on the linear test function is worrisome. Future
work will determine whether this phenomenon affects the practical applicability
to real-world problems such as neurocontrol. Alternatively, we must investigate
whether the introduction of a more mutative approach like CMA might be ben-
eficial.

7 Conclusion

We introduced Fitness Expectation Maximization to tackle the important class
of real-valued ‘black box’ function optimization problems. Reframing black box
optimization as a one-step reinforcement learning problem, we developed a method
similar in spirit to expectation maximization. Using a search policy which matches
samples weighted by their utilities, the algorithm performs competitively on
a standard benchmark set of unimodal and multimodal functions and non-
Markovian double pole balancing control.
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