Utile Distinction Hidden Markov Models

Daan Wierstra
Marco Wiering

INFOQWIERSTRA.COM
MARCO@CS.UU.NL

Institute of Information and Computing Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands

Abstract

This paper addresses the problem of con-
structing good action selection policies for
agents acting in partially observable en-
vironments, a class of problems generally
known as Partially Observable Markov Deci-
sion Processes. We present a novel approach
that uses a modification of the well-known
Baum-Welch algorithm for learning a Hid-
den Markov Model (HMM) to predict both
percepts and utility in a non-deterministic
world. This enables an agent to make deci-
sions based on its previous history of actions,
observations, and rewards. Our algorithm,
called Utile Distinction Hidden Markov Mod-
els (UDHMM), handles the creation of mem-
ory well in that it tends to create perceptual
and utility distinctions only when needed,
while it can still discriminate states based on
histories of arbitrary length. The experimen-
tal results in highly stochastic problem do-
mains show very good performance.

1. INTRODUCTION

Consider the problem of an explorer robot navigat-
ing the surface of the planet Mars. The robot moves
about and makes local observations. Since no human
operators are available to steer the machine in real-
time, the robot must decide for itself what to do given
the circumstances, the ‘circumstances’ being its his-
tory of observations and previously taken actions. It
cannot disambiguate its current situation and position
from the current observation alone, because different
situations might produce the same observations. This
robot has to deal with the problem of hidden state
(Lin & Mitchell, 1993), and with perceptual aliasing
(Whitehead & Ballard, 1991). These problems are

Appearing in Proceedings of the 215 International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
by the authors.

caused by the fact that multiple states look the same to
the agent, which has limited sensor capabilities. The
agent’s task, nevertheless, is to find an optimal policy
in such an uncertain and ambiguous environment. We
generally refer to this sort of problem as a Partially
Observable Markov Decision Process or POMDP.

Perceptual aliasing can be viewed as both a blessing
and a curse. It is a blessing, because it gives the agent
the opportunity to generalize across states — different
states that nevertheless produce the same or similar
observations are likely to require the same actions. It
is a curse, because, for optimal action selection, the
agent needs some kind of memory. That is a very seri-
ous problem indeed, because, in order to create mem-
ory, it has to keep track of its history of actions and ob-
servations to make a good estimate of its current world
state. Unexpected events, malfunctioning motors and
noisy observations make the problem even more diffi-
cult. How can this problem possibly be solved?

In this paper we present a novel algorithm, Utile
Distinction Hidden Markov Models (UDHMMs). It
is based on the construction of anticipatory behav-
ior models using a generalization of Hidden Markov
Models (HMMs) (Rabiner, 1989). The nodes of this
HMM are used to model the internal state space (hid-
den states) and the transitions between them are used
to represent the actions executed by the agent. Us-
ing this model, we can propagate belief about inter-
nal states during the execution of a trial. During a
trial, we update the belief for every internal state at
each time step. Building on this probabilistic frame-
work, we modify the Baum-Welch parameter estima-
tion procedure such that it enables the HMM to make
utility distinctions, which amounts to a search for rele-
vant discriminations between states. Superimposed on
this model, we use a particular form of Reinforcement
Learning (Kaelbling, Littman & Moore, 1996; Sutton
& Barto, 1998) to be able to estimate the utility of
actions for newly learnt hidden behavior states.

Previous work relevant to UDHMM has been carried
out by Chrisman (1992) and McCallum (1993, 1995a,

1995b). Chrisman first used a HMM to predict hid-
den world state. His Perceptual Distinctions Approach
constructs a world model (HMM) that predicts obser-
vations based on actions, and can solve a number of
POMDP problems. However, it fails to make distic-
tions based on utility — it cannot discriminate be-
tween different parts of a world that look the same but
are different in the assignment of rewards. He posed
the Utile Distinction Conjecture claiming that state
distinctions based on utility would not be possible.

McCallum (1993) refuted that conjecture by devel-
oping a similar HMM-based algorithm that splits
states based on their utility, Utile Distinction Memory
(UDM). However, apart from being slow, UDM suf-
fers from a severe limitation: while considering a state
split, it only considers the previous belief state, while
ignoring longer history traces. This renders certain
POMDP problems which involve memory of more than
one time step insoluble by UDM. McCallum solved
this problem by introducing USM (McCallum, 1995a)
and U-tree (McCallum, 1995b). Those algorithms con-
struct variable-depth decision trees in which historical
information is stored along the branches of the tree.
The branches are split if a statistical test shows that
splitting aids the algorithm in predicting future dis-
counted reward (return or utility).

Aberdeen (2003), like McCallum for UDM, also uti-
lizes a HMM as a model, although in quite a different
way. His method models the rewards at every HMM
node. This algorithm does not lead to very good re-
sults, though. This is because of Baum-Welch’s diffi-
culty with relating events that take place several time
steps from one another, and because no future infor-
mation is included in the modeling procedure.

We present an approach that can make utility distinc-
tions based on history traces of arbitrary length, while
at the same time constructing a behavior model that
can be used by any POMDP reinforcement learning
method. The agent using UDHMM is able to cope
with noisy observations, actions, and rewards, and uses
Baum-Welch to decide which features of the environ-
ment are relevant to its task. Furthermore, the algo-
rithm is simple and performs well in the number of
steps required for the agent to learn its task.

In section 2 we outline our utile distinctions approach
and briefly describe the algorithm. In section 3 we
elaborate on the details of UDHMM. Section 4 presents
experimental results on two problems, where we show
a very good performance of the UDHMM approach,
especially in a highly stochastic domain. In section 5
we discuss the results and leave room for some specu-
lation.

2. UTILE DISTINCTION AND
HIDDEN MARKOV MODELS

The behavior model used by UDHMM is a general-
ization of the Input-Output Hidden Markov Model
(IOHMM) (Bengio & Frasconi, 1995), an extension of
the standard HMM, in which the agent’s actions serve
as input signals. The IOHMM in our case extends the
standard HMM by allowing for transition probabili-
ties between states conditioned by the actions. In this
model, we represent actions as transition probabilities

between states and we model observations for every
node in the IOHMM.

So, using this IOHMM framework, how do we intro-
duce the necessary utile distinction? It is important
to allow for history traces of length more than one,
in order to provide enough flexibility to cope with a
complex environment. Simple environments may con-
tain landmark observations that indicate utility to the
agent. UDM is able to distinguish those. But if a
landmark consists of a sequence of events instead of
one single observation, UDM would have considerable
difficulty with the task, or might even fail to solve it.

But, not only do we want to be able to discriminate
between longer history traces, we want to avoid un-
necessary memory bookkeeping that slows down the
performance, and might produce overfitting. We want
model memory to be created where needed, going back
as long as needed.

For an elegant solution, we turn to the Baum-Welch
procedure itself. We define return to be an approxima-
tion to expected utility, the future discounted reward.
By including the return at every time step in the ob-
servation vector of every time step, we let Baum-Welch
search for a model that predicts both observations and
utility, in relation to one another. This encourages the
modeling of distinctions predictive of utility.

The general idea behind UDHMM is as follows. We
split up learning by constantly repeating two phases
after one another, one for online control learning (rein-
forcement learning during trials), one for offline model
learning (model learning between trials). When the
agent is online, that is, acting in the world and learn-
ing its control policy, the utilities are not known yet.
Only after the completion of a trial we can compute
what the returns were at every time step. So, dur-
ing online performance, we simply ignore the utility
factor. During online execution, the agent uses the
forward-pass of Baum-Welch to update its belief over
internal states. It observes the environment, chooses
an action based on Q-values calculated by a version of
SARSA(A)-learning (Sutton & Barto, 1998), then up-

dates its Q-values according to the perceived results
and updated belief.

As soon as a trial is finished, offline learning — model
learning between trials — begins. It consists of updat-
ing the behavior model, the HMM, this time includ-
ing the now known returns. The returns are handled
as being part of the observation, and used in the re-
estimation of the model parameters. Every internal
state now not only models transition statistics for all
actions and probability densities for observation vec-
tors, but also probability densities for the perceived
returns. Utility becomes part of the model.

UDHMM exploits the interaction between the model-
learning and model-solving stages. The idea is that
a better model leads to a better policy, and a better
policy leads to a better model. Of course, for model-
learning, UDHMM should only consider recent histo-
ries, since those are produced by the most recent and
presumably best policies.

By using Baum-Welch, UDHMM manages to create a
behavior model that uses memory that can span mul-
tiple time steps. By including the utility in the obser-
vation, Baum-Welch is enabled to predict utility based
on history, creating memory where needed. In order
to be able to do this, the system needs spare states to
be used for the creation of memory. By splitting states
whose utility distributions are not Gaussian according
to a statistical test, the algorithm creates its own state
space to craft its utility predictions.

3. ALGORITHM DETAILS

The Utile Distinction Hidden Markov Model consists
of a finite number of states S = {s1,82,...,8n}, a fi-
nite number of actions A = {ay, as,...,ax} and a set
of possible observations O = R%*+!. Note that with ob-
servations of dimension d, we add one element to the
vector — the return — to obtain a vector of length
d + 1. In case of discrete observations, as is the case
in our experiments below, the observation vector will
be a tuple (n,r) where n is a natural number indicat-
ing the observation and r a real number indicating the
return. For every state s we keep transition probabil-
ities T'(s;, ak, s;) to other states for every action. For
every state, there is an observation mean vector and
a covariance matrix that together describe a Gaus-
sian probability density function p(o;|s;). There are
also the mean utility pr(s) and the utility variance
or(s), kept at every node s. The agent’s belief at ev-
ery timestep about hidden state is denoted by the be-
lief vector by = (bs(s1), bi(s2), ..., be(sn)). See Figure
1 for a Bayesian representation of the model.

\ \
\ \ \
\ \ @ \
\ \ \
\ \ \
t—2 St—1 St St+1 t+2

Figure 1. A dynamic Bayes net diagram representing
graphically the relations between the different parts of a
UDHMM. The influence of actions a: is represented by
dashed arrows.

We compute the belief of the agent at every time step
by using the forward-pass of Baum-Welch:

be(si) =1 - plotls;) ZT(% ai—1,8:)bt—1(s5)

where 7 is a normalization constant to ensure the belief
values correctly add up to 1.

In this paper we use a highly approximate reinforce-
ment learning algorithm for adjusting the agent’s
policy: BARBA())-learning. Since we face non-
deterministic environments in which state certainty is
unavailable and the only information we have is a be-
lief vector over internal states, we need to design a
method to deal with this uncertainty. At every node
s, for every action a, we store Q-values ¢(s,a). Then,
we define the Q-value of a particular action a for a
particular belief vector by to be a result of a weighting
process of all states:

bt, th 51;

Using the belief vector, we let the agent update its
Q-values by BARBA())-learning, an approach similar
to that of Loch and Singh (1998) but generalized to
the linear case like in Littman, Cassandra and Kael-
bling (1995). It uses eligibility traces e;(s, a) to update
state-actlon values. On experiencing experience tuple
(bt, ag, T, bt+1, at+1) the following updates are made:

V(s,a#ar): eis,a):=vrer—1(s,a)

V(s): ei(s,ar) =y er—1(s,ar) + be(s)

6 = 1t +7Q(bre1, are1) — Q(br, ar)

V(s,a) 1 Ag(s,a) = ae(s,a)d;

where « is the learning rate and « the discount factor.

So far we have described the online control-learning
part of the learning algorithm. Now we consider
the offline part, anticipatory model learning. We use
Baum-Welch to update the model parameters such as
the transition probabilities T'(s;, ax, s;), initial occupa-
tion probabilities 7(s), and the observation probability
density function p(o|s) parameters. But we ought to
include the utility as well. We define an approxima-
tion to expected utility, future discounted reward or
return, to be:

Rt =T¢ +"}/Tt+1 +’)’27’t+2 + e +’}/n7"t+n + e

These are the values we are going to model. For if
the distributions of returns from one state are signif-
icantly different depending on what history preceded
it, the state is not a consistent, Markovian state in
that it may require a different policy depending on its
history. In order to make the state Markovian again
concerning utility, UDHMM uses Baum-Welch to re-
late events with multiple time steps in between. As-
suming independence between o; and Ry, we include
the probability density function (pdf) of the return in
the observation probability densities for Baum-Welch
parameter re-estimation:

p(or, Ryls) := p(ot]s) - N'(Re, ur(s), or(s))’

where N'(z, i,) is a function for variable x in a Gaus-
sian bell curve with mean p and variance o. 6 is a pa-
rameter indicating the importance and impact of util-
ity modeling relative to observation modeling. In prin-
ciple, o is divided by 6 in the Gaussian, which lessens
or strengthens the sensitivity of the nodes to ‘observ-
ing’ utilities. In our experiments, we found that when
0 was too high, the perception modeling degraded too
much, while when too low, utility prediction failed.
By replacing the observation pdf with the combined
normalized observation-utility pdf, we enable the al-
gorithm to use Baum-Welch to make utility distinc-
tions that span multiple time steps. This is in sharp
contrast with McCallum’s UDM, which only looks at
the node active at the previous time step in order to
decide whether it should split a state.

As noted before, including the utility in the observa-
tion is only done during model learning. During trial
execution (model solving), returns are not available
yet, since they depend on future events. Therefore,
online belief updates are done ignoring the utility in-
formation.

It should be noted that, as the agent becomes more
adept at its task, the utility statistics change for hid-
den states. As its policy improves, its behavior model
should improve, and a better behavior model leads
to better policies. However, early experiences tend
to be less interesting, and even misleading since util-
ity statistics are still very bad (because of bad poli-
cies). This means that Baum-Welch should preferably
be performed on the latest trials, since trials from its
early history might distort utility modeling. Therefore
we only keep a limited history of trials.

In order to be able to predict utility, the algorithm
needs enough nodes in the HMM in order to create
memory. This means that some kind of heuristic for
state-splitting would be appropriate. We choose to
split states that do not have a Gaussian return distri-
bution. This means return statistics must be gathered
in order to be able to do this test.

Determining whether and how a state should be split
involves a statistical test to falsify beyond reasonable
doubt that a state’s utility distribution is not normal
(i.e., Gaussian). If a split is performed, the EM algo-
rithm is used to find the best fit to the utility distribu-
tion, and state splitting occurs according to the found
mixture components. Transition probabilities are dis-
tributed evenly among the resulting split states.

We split states after the Chi-Square test on a dis-
cretized return distribution for a node shows that the
return distribution is not a Gaussian. When this hap-
pens, the UDHMM invokes the EM algorithm on the
node, where mixtures of Gaussians with various (2, 3
and 4) numbers of components are used to determine
the best fit for the distribution. We define ‘best fit’
to be the Gaussian mixture with the smallest number
of components that still offers an acceptable fit. After
this is determined, the state is split, where a new state
is created for each component. Transition probabilities
are distributed equally over the newly created states.
After each state-splitting, Baum-Welch is re-invoked
to improve the overall model.

This state-splitting leads to enough excess states to
enable the algorithm to discriminate good policies.
It also does lead to some splits that do not enhance
performance. However, it is necessary to have excess
states in order to be able to discover more complex re-

|| ||
| P
HEEEEEE

Figure 2. The Hallway navigation maze. The agent ran-
domly starts each trial at one of the four corners. It ob-
serves its immediate surroundings and is capable of the
actions goNorth, goEast, goSouth, and goWest. It must
reach the center (labeled with ‘G’) to gain a reward.

lationships between events and utilities (compare ex-
cess states with fringe nodes in McCallum’s U-tree).
Also note that this, in our experience, rarely leads to
more than twice the number of nodes that is strictly
necessary for performing a task.

4. EXPERIMENTAL RESULTS

Utile Distinction Hidden Markov Models have been
tested in several environments, of which two are de-
scribed below. The first environment is a determin-
istic maze, which has previously been described and
successfully solved by McCallum (1995a). The second
is a large and extremely stochastic navigation envi-
ronment with 89 states, for which we show very good
results with UDHMM.

4.1. HALLWAY NAVIGATION

The first problem we tested was McCallum’s hallway
navigation task (McCallum 1995a). In this task (see
Figure 2), the agent starts randomly in one of the four
corners of the maze. It can only detect whether there
is a wall immediately north, east, south, and/or west
of itself, so there are 2 = 16 possible observations. It
can perform four different actions: goNorth, goEast,
goSouth, and goWest, which move the agent in the
indicated direction. Its objective is to reach the goal,
labeled with ‘G’ in the figure — it gets a reward of
5.0 there. When attempting to move into a barrier, it
gets a punishment of —1.0. All other actions result in
a reward of —0.1. We use a temporal discount factor
v=0.9.

For a number of settings, we ran 21 experiments, which
all consisted of many online trials and offline between-
trial Baum-Welch steps. During each offline phase, we
ran Baum-Welch only for the last 12 trials in order to
save computation time and to prevent the model from
settling down in a local suboptimum (world dynamics

250 -

theta= 02 —
theta=00 —-
theta=04

200

Steps to Task Completion

Trial

Figure 3. Performance of UDHMM on the Hallway Maze
for different values of #. We plot the number of steps it
takes to reach the goal.

change over time because the agent’s policy changes
as well). Of those 21 runs we plotted the one with
median performance, where performance is defined as
the number of trials it takes for the algorithm to con-
sistently have an average number of steps to the goal
under 7.0.

In Figure 3 we see the results for the UDHMM algo-
rithm with different values of §. When 6 = 0.0 we ob-
served that in most runs, the algorithm does not reach
the success criterion within 100 trials. This is because
with § = 0.0, return is effectively ignored and cannot
help with modeling utile distinction. Relying only on
observations, the algorithm does not find a suitable
model close to the underlying MDP. So clearly, utile
distinction is needed to ensure effective behavior mod-
eling.

When we tried § = 0.4, the algorithm did find a model
close to the underlying MDP and good performance in
all runs, but later than with # = 0.2. This is probably
due to the fact that, certainly in the first few trials,
a too large emphasis on return modeling causes too
much modeling of bad policy noise in the return values.

The plot in Figure 4 shows the results of UDHMM
with added noise. Noise consisted of a 0.1 probability
of performing a random action, a 0.1 probability of
observing a random observation and at every step a
random number from the range -0.1 to +0.1 added to
the reward.

250 T T T T
No noiseadded —
Noise -~

200

150 | R

100

Steps to Task Completion

50

Tria

Figure 4. Results for UDHMM with 6 = 0.2. Results are
shown for UDHMM in a Hallway Maze without noise, and
for UDHMM with noise added to the observations, actions
and rewards.

When compared to the results of McCallum (1995a),
we must concede that his USM achieves success in
about 4 times as few trials. We do note, however,
that our algorithm is ideally suited to noisy stochastic
environments, which USM and U-tree are not. The
next problem will illustrate this.

4.2. THE 89-STATE MAZE

This problem is taken directly from Littman, Cas-
sandra and Kaelbling (1995), where seeded Linear Q-
learning is applied on the task. It involves a maze
in which the agent, next to position, also has an ori-
entation, five actions Forward, TurnLeft, TurnRight,
TurnAbout, and doNothing. Like the Hallway prob-
lem, here the agent also does not perceive its imme-
diate location or orientation. It only senses one of
the 2 = 16 possible observations. It starts each trial
at a random location with random orientation, and
its goal is to reach the goal labeled ‘G’, where it gets
the task’s only reward 1.0. (see also Figure 5). The
actions and observations are extremely noisy. For ex-
ample, the chances of getting a correct observation are
only about 70%. Also, the actions are only successful
with a probability of about 70%.

Seeded Linear Q-learning’s (Littman, Cassandra and
Kaelbling, 1995) good performance can be explained
by the availability of the world model to the algorithm.
Loch and Singh (1998) showed very good results (see

Figure 5. The 89-state maze. In this maze, the agent has
a position, an orientation, and can execute five different
actions: Forward, TurnLeft, TurnRight, TurnAbout and
doNothing. The agent starts every trial in a random po-
sition. Its goal is to move to the square labeled ‘G’. The
actions and observations are extremely noisy, for example,
there is only about 70% chance that the agent will get an
observation right. For the precise world model we refer to
Littman, Cassandra and Kaelbling (1995).

Table 1) with a simple model-less and memory-less
SARSA()) approach, where Q-values are stored not
for states but directly for observations.

We took Loch and Singh’s parameters (exploration
method, A = 0.9, « = 0.01, v = 0.9) and gen-
eralized the algorithm to our UDHMM version with
BARBA(A) by replacing direct observations with
UDHMM’s hidden states. We set § = 0.2. Every trial
was allowed up to 251 steps. We ran 21 runs. The
results for the median run (median in the sense of me-
dian percentage success in all test trials) are shown in
Figure 6 and 7.

Of course, this algorithm performs worse than recent
algorithms that do have a world model. A good com-
parison must therefore be sought among model-free al-
gorithms. Within that domain, the results are similar
to RL-LSTM (Bakker, 2004), a recurrent neural net-
work approach that uses gating to handle long-term

Table 1. Overview of the performance of several algorithms
on the 89-state maze. Shown is the percentage that reached
the goal within 251 steps, and the median number of steps
to task completion. ‘Human’ refers to the experiments
Littman (Littman, Cassandra and Kaelbling, 1995) did
himself.

ALGORITHM GOAL% MEDIAN STEPS
RANDOM WALK 26 >251

HumaN 100 29

LINEAR QQ (SEEDED) 84 33

SARSA(A) 7 73

RL-LSTM 94 61

UDHMM 92 62

time dependencies. RL-LSTM yields very good re-
sults, although it is slow to converge. Our algorithm
converges much faster, because it both learns and uses
a behavior model.

UDHMM’s model is inherently probabilistic in nature
and handles noise well. That partly explains its good
performance on the 89-state maze. McCallum’s U-tree
should also be able to learn this task. But because
of its discrete decision tree model structure, it often
needs a new branch for a new noisy event, leading to
a very large tree model. This makes UDHMM more
appropriate for the task. Our algorithm is among the
best model-free algorithms available.

As a final note, we want to report our findings on ex-
perimental results without the state-splitting heuristic.
In these cases, instead of using states that model Gaus-
sian return distributions, we used states that use miz-
tures of Gaussians to approximate their return distri-
butions arbitrarily closely. This should be an improve-
ment, since the assumption that return distributions
are always Gaussian is not realistic. Because of the
mixtures, we could not use the state-splitting test any-
more, though. This we compensated by starting out
with large models with many states. The results, sur-
prisingly, were almost identical to the results achieved
with state-splitting and single Gaussians. However,
many more Baum steps were required to arrive at those
same results.

5. DISCUSSION

The computational complexity of UDHMM is
quadratic in the number of states, per Baum step
O(N?T). This is not very bad but considering that
many hundreds of Baum steps are needed even to solve
small POMDPs, it is a rather slow algorithm. In this
sense it compares unfavorably with, for example, U-
tree, which is instance-based.

UDHMM’s performance measured in the number of
steps taken in the world in order to approach a good
policy is very good for certain classes of problems,
though it varies considerably due to possible subopti-
mal local maxima. Utility modeling is done elegantly
using Baum-Welch, and a state-splitting heuristic en-
sures the availability of enough memory nodes. More-
over, UDHMM), unlike U-tree, allows for a continuous
multi-dimensional observation space in a very natural
way and develops a probabilistic behavior model dur-
ing its task performance. Also, UDHMM includes a
method for selective attention in multi-dimensional ob-
servation spaces: parts of the observation vector that
are helpful to utility prediction tend to be modeled

08 r i

06 R

Percentage Correct

0.2 i

0 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

Trial

Figure 6. Results for the 89-state maze. Here we plot the
percentage of tests that reach the goal within 251 steps.

more precisely than parts of the vector that are not.
Now UDHMM heavily biases the modeling of obser-
vations together with the modeling of utility, thereby
leading to a kind of selective perception. In our find-
ings, the behavior models found by UDHMM were very
close or equivalent to the underlying MDP, and cer-
tainly much closer than model-learning with 8 = 0.
However, the behavior models we found were some-
times larger than the underlying MDP. This suggests
we might benefit from a merge operator in order to
keep the model small.

In this paper, we used a highly approximate POMDP-
control learning algorithm. However, recent advances
in solving POMDPs with models suggests the pos-
sibility of using other model-solving methods. The
UDHMM can also be used in combination with other
reinforcement learning methods such as other Q-
learning variants or policy-gradient methods (Ab-
erdeen, 2003). This makes it a flexible tool for multiple
POMDP approaches (including exact algorithms). We
think more research on the interaction between model-
learning and model-solving stages could be useful.

Much research has been directed at many different ex-
tensions to the basic HMM framework. Future work on
UDHMM could include factorizing the internal state
space by using Factorial or Coupled Hidden Markov
Models. We could think of hierarchical approaches,
using Hierarchical Hidden Markov Models, that could
increase detection of relevant long-term dependencies
and could facilitate the re-use of (parts of) already

300 T T T T T T T

250 r 8

200 r §

150 | 1

100 r

50

Median Stepsto Task Completion

0 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

Trial

Figure 7. Results for the 89-state maze. Here we plot the
median number of steps taken to task completion, i.e.
reaching the goal. Note that the first trials have all 251
median steps associated with them, since if a trial takes
longer than 251 steps, we break off and start a new trial.

learnt policies. Several other EM methods seem ap-
plicable. Another possible improvement could be the
modeling of difference in utility instead of utility per
se. Considering all this, we conclude this is a very
promising direction of research.

Acknowledgements

We would like to thank the anonymous reviewers for
their helpful comments and suggestions.

References

Aberdeen, D. (2003). Policy-Gradient Algorithms for
Partially Observable Markov Decision Processes.
Doctoral dissertation, Research School of Informa-
tion Science and Engineering, Australian National
University.

Bakker, B. (2004). The State of Mind. Doctoral disser-
tation, Unit of Cognitive Psychology, Leiden Univer-
sity.

Bengio, Y., & Frasconi, P. (1995). An input/output
HMM architecture. In G. Tesauro & D. Touretzky &
T. Leen (Ed.), Advances in Neural Information Pro-
cessing Systems 7 (pp. 427-434). Cambridge, MA:
MIT Press.

Chrisman, L. (1992). Reinforcement learning with per-

ceptual aliasing: The perceptual distinctions ap-
proach. Proceedings of the Tenth International Con-
ference on Artificial Intelligence (pp. 183-188). San
Jose, California: AAAT Press.

Kaelbling, L. P., Littman, M. L., & Moore, A. W.
(1996). Reinforcement learning: a survey. Journal
of Artificial Intelligence Research, 4, 237-285.

Lin, L., & Mitchell, T. (1993). Reinforcement learn-
ing with hidden states. From animals to animats 2:
Proceedings of the second international conference
on simulation of adaptive behavior (pp. 271-280).
Cambridge, MA: MIT Press.

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P.
(1995). Learning policies for partially observable en-
vironments: Scaling up. Proceedings of the Twelfth
International Conference on Machine Learning (pp.
362-370). San Francisco: Morgan Kaufmann.

Loch, J., & Singh, S. (1998). Using eligibility traces to
find the best memoryless policy in partially observ-
able Markov decision processes. The Proceedings of
the Fifteenth International Machine Learning Con-
ference (pp. 141-150). San Francisco: Morgan Kauf-
mann.

McCallum, R. A. (1993). Overcoming incomplete per-
ception with utile distinction memory. The Proceed-
ings of the Tenth International Conference on Ma-
chine Learning (pp. 190-196). San Francisco: Mor-
gan Kaufmann.

McCallum, R. A. (1995a). Instance-Based Utile Dis-
tinctions for Reinforcement Learning with Hidden
State. The Proceedings of the Twelfth International
Conference on Machine Learning (pp. 387-395).

McCallum, R. A. (1995b). Reinforcement Learning
with Selective Attention and Hidden State. Doctoral
dissertation, Department of Computer Science, Uni-
versity of Rochester.

Rabiner, L. R. (1989). A tutorial on hidden Markov
models and selected applications in speech recogni-
tion. Proceedings of the IEEE, 77(2) (pp. 257-286).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
Learning: An Introduction. Cambridge, MA: MIT
Press.

Whitehead, S. D., & Ballard, D. H. (1991). Learn-
ing to perceive and act by trial and error. Machine
Learning, 7(1), 45-83.

