
Model Checking Industrial Robot Systems

Markus Weißmann1, Stefan Bedenk2, Christian Buckl3, and Alois Knoll1

1 Technische Universität München, Fakultät für Informatik
Boltzmannstrasse 3, 85748 Garching, Germany

weissmann@ini.tum.de

knoll@in.tum.de
2 AUDI AG

85057 Ingolstadt, Germany
stefan.bedenk@audi.de

3 fortiss GmbH
Guerickestr. 25, 80805 München, Germany

buckl@fortiss.org

Abstract. Modern production plants are highly automated complex
systems consisting of several robots and other working machines. Er-
rors leading to damage and stop of production are extremely expensive
and must be avoided by all means. Hence, the state of practice is to test
control programs in advance which implies high effort and comes with
high costs. To increase the confidence into the control systems and to
reduce the necessary effort, this paper proposes to use model checking
to verify certain properties. It presents a compiler that can transform
industrial robot programs into PROMELA models. Since the statements
of the robot programming language can not be mapped directly into
PROMELA statements, we apply compiler optimization techniques to
close the semantic gap. In case of a specification violation the trace is
mapped to the original context so that the robot programmer can re-
construct the problem. As a case study we applied the tool to verify the
absence of collisions and deadlocks. We were able to detect one deadlock
in a car-body welding station with 9 robots, correct the program and
verify the correctness of the resulting system.

Keywords: model checking, abstract interpretation, industrial robots,
distributed systems

1 Introduction

Modern production plants are highly automated, complex systems. They use in-
dustrial robots for lifting, welding, bonding and other tasks for which the robots
may have to work in the same area. Design errors resulting e. g. in collisions
or deadlocks can lead to downtime of the plant which are extremely expensive.
This is especially true for modern production plants that use just in time pro-
duction; in these systems each industrial robot system easily becomes a single
point of failure the outage of which can quickly result in an outage of the whole
production line.

2

To address this problem upfront, the control programs are tried to be kept
as simple as possible. This approach is counteracted upon by the necessity for
more and more dynamic production processes. For example car body production
plants are used to produce different variants of cars, e. g. a fastback and station
wagon, different numbers of doors, etc. This flexibility has to be provided by the
control programs.

Virtual commissioning is an approach to find problems in the programming
upfront, before the plant is built. Most commonly it is carried out as a computer
simulation of the industrial robot system. Different levels of detail on the physical
part of the plant are used, reaching from a plain emulation of the programs to
3D simulations with a hardware-in-the-loop setup of the controllers. Using this
simulation the programs can be tested. However this approach implies great
testing effort and does not guarantee the correctness of the system.

To target this issue, this paper proposes the use of model checking techniques
to verify the correctness of the system with respect to certain properties. This
approach has the advantage that it can prove the absence of errors – in contrast
to tests. To apply model checking on the control programs, they must first be
transformed into a formal model. Since engineers without a background in for-
mal verification should be able to apply this method, too, a manual creation of
this formal model is not feasible. An automated translation solves this problem
and also the need to keep the formal model and the original robot programs
synchronized.

This paper presents a compiler that can transform industrial robot programs
into PROMELA models as input for the SPIN model checker [12]. Since the
statements of the robot programming language can not be mapped directly into
PROMELA statements, we apply compiler optimization techniques to close the
semantic gap. To verify certain properties our tool extends the PROMELA code
with assertions. The engineer can add further properties in form of linear tem-
poral logic (LTL) formulas. To simplify the formulation of these LTL formulas,
LTL patterns for each property to verify are provided.

If SPIN detects a violation of one property, it generates an error trace leading
to the violation in the PROMELA model. To help a robot programmer under-
stand the result of the analysis, the presented tool-chain provides a projection
of the error-trace in the model back to the original robot programs.

As a case study we applied the tool to verify the absence of collisions and
deadlocks. We were able to detect one deadlock in a car-body welding station
with 9 robots, correct the robot control programs and verify the correctness of
the resulting system.

The structure of the paper is as follows: Section 2 contains preliminaries
on the problem and gives an overview of previous work; Section 3 discusses
the problem details; our solution is presented in section 4. The results of our
analysis of two industrial robot systems can be found in section 5. We conclude
in section 6.

3

2 Background

An industrial robot system typically consists of a programmable logic controller
(PLC) and several robots. The PLC and the robots are running the control
programs. They control further devices like welding guns and riveting systems,
which are not programmable devices; they are either controlled by the PLC or a
robot. The PLC controls the system as a whole; it tells the robots which control
program to use for the current process. The PLC is also the master hub of the
industrial robot system: All up-stream communication from the system devices
is routed through the PLC; hence the network topology of the system is a tree.

To reduce costs, increase reliability and to shorten product cycles, manufac-
turers want to have a high quality control software before starting the commis-
sioning process. The current approach is to model the industrial robot system
in a hardware-in-the-loop (HIL) simulation, the so-called virtual commissioning.
This method allows testing up-front, but finding bugs is still a tedious task and
the absence of bugs can not be shown. To address this problem, we want to
introduce formal verification to analyze the control software.

Several approaches to formal verification for embedded systems [7] and more
specifically industrial control systems using PLCs [19] are available. A common
solution is to use model checking, e. g. with the SPIN model checker; other
approaches include abstract interpretation [17] or manually created, computer
based proofs [18].

A basic solution for making use of a model checker is to manually create a
model of the PLC program, then use a model checker to verify it [14]. As our
goal includes providing a system for non-experts in verification, manually cre-
ated proofs are not a suitable option. More advanced approaches use automatic
translation from PLC programs in Instruction List (IL) [4, 15] or in Sequential
Function Charts (SFC) [1]. This method is suitable not only for PLC program-
ming languages: The Java PathFinder can be used to verify Java programs [11]
by compiling them to PROMELA, the modeling language of SPIN. Bandera fol-
lows a similar approach and can analyze Java programs; it uses an optimizing
compiler to translate them to either a Spin or NuSMV model [5]. This has also
been done with programs written in C with a mixed-mode translation; the pro-
grams are compiled and combined with manually written system calls [8]. Care
has to be taken that the extraction provides a faithful model of the system [10].

A remaining problem of the automatic model extraction [13] is that there is
still the need for an expert to interpret the resulting trace in case of an error.
This problem can be solved by creating highly specialized model checkers that
can use the original program as model, e. g. in C [2] and in PLC/IL language
[16].

Abstract interpretation has been used on modeling languages [9] and also on
PLC/IL programs to perform range analysis [3].

Our approach uses model extraction on the robot programs, while the PLC
task is generated. The resulting model consisting of multiple processes can then
be verified. In case an error is found in the model, the resulting error-trace is

4

projected back to the original context. Example properties that can be checked
are deadlocks, collisions and kill-switch violations.

3 Problem Statement

In this section we provide an overview of the system we want to verify. We will
discuss the robot programming language and the interlock algorithm provided
by the PLC.

An industrial robot system typically consists of up to 10 robots and a PLC
which communicate over field bus. This distributed system shares common re-
sources in the form of physical space that can be occupied by a single robot
only. If more than one robot tries to use the same area at the same time, this
behavior leads to a collision of the robots. To avoid this behavior the robots use
a software locking mechanism with the PLC as central arbiter.

Before an industrial robot system’s start of production (SOP) its behavior is
tested to assure it is working correctly, e. g. it is free of collisions. This testing is
tedious, expensive and can not guarantee the absence of errors.

Our goal is to provide a system that:

– does not require much effort to set up for a concrete industrial robot system
– can quickly verify the absence of certain programming errors
– is easy to use for a robot programmer, i. e. does not require expertise in

formal verification

3.1 Robot Programming Language

The robot control language (VKRC) is an imperative, sequential language. Our
compiler handles the core language, which is sufficient to detect the faults we
want to find. This core language includes assignments, control flow commands
and movement commands for the robotic arm. For simplicity we will refer to
this subset as VKRC.

Variables The language only has boolean expressions. Depending on their type,
variables can either store a boolean value or a boolean expression. Variables need
not be declared, the set of variables is fixed. There are local variables, outgo-
ing, incoming and symbolic variables; variables have a one-character prefix that
determines their type followed by a natural number (see table 1). The outgoing
and incoming variables are for communication with the PLC: Their contents are
sent to the PLC by the robots runtime system, received from it respectively. This
communication is completely transparent to the robot programmer. The sym-
bolic variables can store an expression which gets evaluated when the symbolic
variable is read. The kill-switch condition variable is a special purpose symbolic
variable: When moving, the robot continuously checks this variable and triggers
an emergency stop if the stored expression evaluates to false.

5

Variable Semantics

Fn Local variable
An Outgoing variable
En Incoming variable (read-only)
Mn Symbolic variable (local)
FB SPS Kill-switch condition (only on left-hand side)

Table 1. Types of variables in VKRC (n ∈ N+)

Statements The assignment statement is the predominant command of VKRC
programs. If the variable on the left-hand side is of type local or outgoing, the
expression on the right-hand side gets evaluated and the result is stored in the
target variable. If the target variable is a symbolic variable, the expression itself
is stored without binding any values of the variables used in the expression.

For moving the robotic arm, VKRC has several movement commands that
will make the runtime system move the arm to the designated target coordinate.
The different commands are used for specifying the movement trajectory with
which the robotic arm is moved. The movement commands feature a plethora of
arguments with which the movement can be further specified. As we do not take
into account all available options that fine-tune the movement, the movement
commands presented here are simplified.

The VKRC language has subroutine calls. VKRC subroutines do not take
parameters nor do they return a value. The subroutine call is only available as a
conditional call for which the programmer must provide a condition expression.
Subroutines must not be called recursively.

Control flow statements provide a conditional jump similar to a C goto/label.
Furthermore the repeat statement lets the programmer call a subroutine several
times or unless a given condition is met. At last there is a blocking wait statement
that will block until the given expression evaluates to true.

Command Semantics

variable = expression Assignment of expression to variable
GOTO LABEL id = expression Conditional jump to label id
LABEL id Target of a jump
subroutine = expression Conditional subroutine call of subroutine
REPEAT subroutine = n STOP = expression Call subroutine n-times or unless condition is met
WARTE BIS expression Wait until expression is met
n PTP Move the robot arm to position n (point-to-point)
n LIN Move the robot arm to position n (linear)
n, m CIRC Move the robot arm to position m via n (circular)

Table 2. Statements of the VKRC language

6

Boolean Expression Semantics

expression & expression Logical and of two expressions
expression + expression Logical or of two expressions
! expression Logical inversion of expression
(expression) Brackets for changing order of precedence
variable See table 1
AUS false (literally off)
EIN true (literally on)

Table 3. Boolean functions in VKRC

Communication The robot uses the input and output variables to communi-
cate with the PLC; this communication is handled by a field bus. This commu-
nication is completely transparent to the robot programmer; to him the robot
appears to have a shared memory with the PLC.

The PLC can either handle the incoming and outgoing variables of the robot
with a PLC program, or just map the outgoing variables to incoming ones of
another robot.

3.2 Interlock algorithm

The robot programming language does not have lock/unlock primitives. The
robot programs rely on the PLC as an arbiter to guarantee that a lock can only
be taken by a single robot. The actual lock is between two robots only; the PLC
only manages the token which allows a robot to acquire a lock.

If a robot wants to lock a certain area, it first requests the corresponding
token from the PLC. The PLC will hand out this token only to one robot at a
time and will withdraw it only if the robot gives it back. A robot that has a token
is allowed to take the actual lock – if it is not already taken. After obtaining the
actual lock, the robot will give back the token. When it has left the corresponding
area, the robot must unlock the area (see figure 1). The corresponding program
code of the robot can be seen in figure 2.

Robot 1 PLC

Request Token

Robot 2

Lock Area

Release Token

Unlock Area

Grant Token

Fig. 1. Robot 1 successfully locks a shared working area

7

−− r eque s t token from the PLC
A81 = EIN
−− block u n t i l area i s f r e e and token i s granted
WARTE BIS E41 & E81
−− l o ck area
A41 = AUS
−− re turn token
A81 = AUS

−− may now operate in shared working area
. . .

−− unlock area
A41 = EIN

Fig. 2. Robot program code to lock area 41/81

4 Solution

Our tool chain (see Figure 3) allows a robot programmer to verify programs
without requiring any knowledge in model checking. The VKRC compiler trans-
lates the robot programs into PROMELA code. Together with the PLC logic
and the error description, this forms our model. This model is then verified with
SPIN. If an error is found, we transform the trace back into a VKRC trace.

4.1 VKRC to PROMELA compiler

The VKRC compiler translates one robot program into a PROMELA process
and a corresponding variable declaration list. The compiler is written in OCaml.
It uses a classic lexer/parser front-end that first generates an abstract syntax tree
(AST) from which a control flow graph (CFG) is built. The statements in the
CFG are then translated from VKRC to PROMELA. Eventually the PROMELA
CFG is used to generate PROMELA code.

The compiler is used to translate each robot program into a PROMELA pro-
cess. The generated processes and variable declaration lists can then be combined
with the process of the PLC to form a model of the industrial robot system.

Locations The lexer passes the location information about the origin of lexer
tokens to the parser. The parser embeds this information into each statement
of the AST, so that we know the corresponding file and line of each statement.
This information is kept for each statement during all compiler phases. When
the compiler backend generates PROMELA code, it not only creates PROMELA
statements for the corresponding logic, but also print-statements. They print a

8

Robot
Control
Program

Robot
Process

Spin

Robot
Control
Program

Robot
Process

VKRC Compiler

Promela
Trace

Spin

Inter-
mediate
Trace

Collision
Claims

Replay Renderer
System
Trace

PLC
Process

Interlock
Matrix

PLC Generator

Robot
Process

Guided Execution

Robot
Control
Program

Fig. 3. Architectural Overview

line containing the location information and additional information about the
values of the variables used in the statement (see table 4).

This allows the transformation of the SPIN trace into a VKRC trace by using
the guided execution capability of SPIN with the error trace. During guided
execution, SPIN executes the program in such a way that the fault is reached
in the formal model. The execution of the print statements along this path
generates a trace that can be directly mapped to the VKRC programs.

Loop unrolling, function inlining The VKRC language features a repeat-
statement that calls a subroutine a fixed number of times – or until an additional
condition is not met. To avoid introducing an additional integer for the loop
counter and to keep the control flow graph as simple as possible, these loops are
always unrolled. As the number of times the subroutine is called is a fixed integer
value, the loop unrolling always succeeds in completely removing the loop. The
unrolling is performed during the translation from the AST to the CFG.

PROMELA does not have functions or subroutines whereas VKRC has sub-
routines. To solve this mapping problem, the compiler inlines all subroutine
calls. This approach is feasible as recursion is not allowed in VKRC. The VKRC
subroutines do not take parameters which makes this inlining process straight
forward: The compiler replaces the calls to subroutines by their body until the
program is free of subroutine calls.

With all subroutine calls removed, the compiler also does not need to per-
form inter-function analysis during the next step. Inlining is performed with all
subroutines being available in the VKRC CFG form.

Abstract Interpretation VKRC has symbolic variables that can store a
boolean expression while PROMELA does not have a similar feature. The com-

9

piler uses abstract interpretation [6] to remove the need of the symbolic variables
from the source language. If this is successful, the mapping of the resulting VKRC
program to PROMELA is easy.

The abstract interpretation is performed on the VKRC CFG; The compiler
can perform constant evaluation, copy propagation and dead code elimination:
The goal is to remove the assignments to the symbolic variables. First the com-
piler performs constant evaluation to simplify the CFG. With this simplification
in place, the copy propagation optimization can determine the value of the sym-
bolic variables in the statements they are used in. After the copy propagation,
the symbolic variables occuring in right-hand side values are replaced by their
value. This step removes the usage of the symbolic variables in right-hand side
values.

This in turn makes the assignments to the symbolic variables unnecessary.
The dead code analysis can now determine which assignments are unnecessary
and remove them. After this step, no symbolic variables should appear on left-
hand side values anymore either.

The abstract interpretation allows us to get rid of the symbolic variables,
so that no PROMELA code needs to get generated for them. Unfortunately,
this method might not work for all VKRC programs. Examples are goto loops
including symbolic variables. However, the method worked for all robot control
programs we analyzed as such a construction contradicts typical programming
standards. If this method does not succeed, this could well be a programming
error.

The compiler can be told to only perform the optimizations on the symbolic
variables instead of all variables. This can lead to minor differences in the time
required to verify the model as can be seen in section 5.

Movement commands The robot control programs have movement com-
mands. These commands will make the robotic arm move to the given posi-
tion. The positions are given as integer numbers in the robot control program;
a lookup-table exists where the actual movement coordinates are stored. We
know from the CAD program the industrial robot system is planned in, which
combinations of robots in which positions can lead to collisions.

The VKRC compiler translates the movement commands to assignments to
a global position variable. The target points of the movements are enumerated
already, so we use these numbers as right-hand side value of the assignment.

During movement, the robot continuously checks the kill-switch variable.
This symbolic variable is evaluated and if returns false, will make the robot
perform an emergency stop. To map this behavior, the compiler inserts an assert
statement on the value of the kill-switch variable at the position of the movement
command. This way the model checker will find a violation of this property.

4.2 PLC generator

To verify the locking mechanism, a model of the PLC is required. We have written
a code generator that creates this model based on the interlock configuration.

10

VKRC PROMELA

A23 = F17 + E12 atomic{ A23=F17||E12; printf("UP1.vkrc::24") }
GOTO LABEL 4 = EIN via control flow graph
LABEL 4 via control flow graph
MAKRO20 = EIN inline contents of subroutine
REPEAT MAKRO20 = 5 STOP = E9 unroll loop (5x), then inline contents
WARTE BIS E78 atomic{ (E78); printf("MAKRO20.vkrc::25") }
7 PTP atomic{ location=7; printf("UP1.vkrc::23") }
19 LIN atomic{ location=19; printf("UP1.vkrc::34") }
20, 21 CIRC atomic{ location=21; printf("UP2.vkrc::72") }

Table 4. Translation of VKRC statements, examples

The PLC is modeled as a process that grants and removes locking-tokens
based on the truth table in table 5. For every available lock between two robots,
the PLC process features one set of entries. One lock is always exclusively be-
tween two robots. The PLC therefore has to take into account all possible states
of token-requested and token-granted for exactly two robots. We generate a PLC
process for the final model in PROMELA from this table.

The PLC process consists of an event loop and decides non-deterministically
which token to grant or withdraw; the two robots n and m can request their
tokens Tn and Tm by sending requests Rn and Rm. For every lock in the system,
we generate 8 lines for the PLC process: The truth table 5 has 17 rows; the row
with both robots requesting the locking token has a non-deterministic result and
for this reason appears twice. For the error-lines, where both robots have been
granted the locking token, no code needs to be generated as they are unreachable.
The lines for which the PLC process does not need to take any action, can also
be omitted.

The actual locking bits are exchanged directly between the robots. A robot
is only allowed to claim an area if it owns the locking token and the area is not
already locked. The locking token is not required to release an area.

The robots can not directly communicate with each other, but all commu-
nication is handled via the PLC. In the original system, the PLC performs a
mapping from the corresponding output variables of one robot to the input
variables of the partner robot. We model this mapping by renaming the input
variables to the output variables they are connected to.

4.3 Fault description

We are searching for three classes of faults:

– Deadlocks
– Collisions
– Kill-switch violations

Deadlocks are searched for by SPIN automatically. We only need to specify
that the PLC process does not have to terminate.

11

Rn Rm Tn Tm T′
n T′

m

0 0 0 0 - -
0 0 0 1 - 0 remove token from m
0 0 1 0 0 - remove token from n
0 0 1 1 error the token was granted to both robots
0 1 0 0 0 1 grant token to m
0 1 0 1 - -
0 1 1 0 0 1
0 1 1 1 error the token was granted to both robots
1 0 0 0 1 - grant token to n
1 0 0 1 1 0 grant token to n, remove from m
1 0 1 0 - -
1 0 1 1 error the token was granted to both robots
1 1 0 0 1 - grant token to n
1 1 0 0 - 1 grant token to m
1 1 0 1 - -
1 1 1 0 - -
1 1 1 1 error the token was granted to both robots

Table 5. Truth table of how the PLC grants and removes tokens T based on requests R

Collisions are found via the movement commands. We translate a movement
command to an assignment of the unique movement point number to the position
variable of the corresponding robot. The content of this variable specifies the co-
ordinate, where the robot arm is heading. From the 3D model of the industrial
robot system, we know which movement combinations of which robots can cause
collisions. We use this information to formulate a never claim: Combinations of
locations of two robots that would lead to a potential collision must not occur

The user has to supply a matrix of possible collisions based on the movement
points of the robot programs. From this matrix we generate claims in LTL; for
every possible collision between two robots – robot n at position i and robot m
at position k – we add the claim:

�¬((positionn = i) ∧ (positionm = k))

Kill-switch violations are directly generated by the compiler as assertions
in the PROMELA process. While in movement the robot continuously checks
the FB SPS variable for its contents. If this is false, the robot will trigger an
emergency stop. This kind of emergency situation must not occur during normal
operation; hence, it is considered as an error in the model.

During translation the compiler determines the value of the FB SPS variable
at each movement command. A movement command is then translated to the
assignment to the position and a preceding PROMELA-assert statement. This
assertion guarantees the expression in the kill-switch variable to be true during
movement.

12

4.4 Putting the model together

To create a model for the entire industrial robot system, we combine the gen-
erated files: We create a main PROMELA file that first includes the variable
declaration files of all robots. It then includes the files of the robot processes
and of the PLC process. The verification engineer then has to add a never claim
for the potential collision combinations. Finally we write a main process that
initializes certain variables and then starts all robot processes and the PLC
process.

As of now, we have several devices that are missing from our model, e. g.
welding devices. To allow the robot program to work as intended, we manually
set the variables that represent the feedback from those devices to their desired
value. This means these events always succeed and the behavior of the system
with these events failing is not taken into account.

4.5 Replay trace

If the model checker finds a counter-example, it generates a trace leading to this
error. This trace can be replayed in guided execution, executing the PROMELA
program in such a way, that it leads to the found violation.

When executed in this way, the model checker will also execute the printf

statements that were inserted by the compiler. The back-end of the compiler
generates an accompanying printf statement for every statement generated.
For a VKRC assignment, a PROMELA assignment is generated which is placed
together with a printf statement inside an atomic block. This block then out-
puts the original location of the VKRC statement and the values of the variables
used in the original statement.

This output is now a trace we can directly relate to the original robot control
programs. The replay renderer takes this VKRC trace and generates a replay
based on the robot programs. This replay shows the execution of the robot
programs according to our trace; it displays the programs in the same way as in
a teach panel, in a way the robot programmers are accustomed to. Variables in
the VKRC program get colored depending on their current value.

The current replay can display two robot programs side by side, the current
statement and the value of the variables. It consists of several HTML files so
that a robot programmer does not need to install additional software to view
the replay.

This replay allows a robot programmer to understand the way an error can
occur in the system and help him find and remove the source of the problem. A
screenshot of the current prototype can be seen in figure 4.

5 Evaluation

We conducted verification runs on a training station and on several recent car-
body stations. The training station has 2 robots, while the car-body stations
have 9.

13

Fig. 4. Trace replay at the final deadlock situation between two robots

We found a deadlock in the robot control programs of the training station. A
robot programmer was able to quickly track the error with our replay tool and
to remove the source of the error: A missing variable initialization. The results
of the benchmarks on the training station (see table 6) were as expected: With
the deadlock in place, the error was found with minimal amount of CPU-time.
Without the deadlock, the verification run still finished in under 1 second. The
activation of the optional compiler optimizations reduced the CPU-time required
by 5%.

After the training station, we tried to verify several recent car-body stations
with 9 robots each. We were able to find a deadlock in one of the welding stations.
The preparation time to set up the model of the system was about 3 man-hours.
With the deadlock in place, the verification run took well under one second.
After removing the source of the deadlock, the verification itself took about 2
minutes. For this setup the optional compiler optimizations made the verification
11% more expensive in terms of CPU-time.

The deadlock of the welding station was due to a protocol error in the request
of the locking tokens. The robot control programs requested two tokens before
waiting for the arrival of the first one. As can be seen in figure 5, this can lead
to a rare deadlock. The request for token A from robot 1 arrives first, which the
PLC grants. Then the requests for token A and B from robot 2 arrive. The PLC
has already handed out token A but token B is given to robot 2. As both robots
will block waiting for the arrival of both tokens, a classic deadlock situation
occurs (see figure 5). To resolve this problem, both robots need to first wait for
the arrival of token A before requesting token B.

14

of robots 2 9

of processes (robot/PLC) 3 (2/1) 10 (9/1)

of Variables (bit/byte) 214 (210/4) 936 (918/18)

Contains deadlock yes no yes no

Compiler optimizations off on off on off on off on

Number of transitions 179 179 45083 42742 2677 2677 24891214 30837984
CPU-time [sec] 0.030 0.061 0.077 0.140 0.061 0.108 119.640 132.718
Memory footprint [MByte] 2.501 2.501 3.184 2.989 4.161 3.868 909.786 909.883

Table 6. Benchmarks of analyzed industrial robot systems

PLC Robot 2
Request Token A

Request Token A

Robot 1

Grant Token A

Request Token B

Request Token B

Grant Token B

Fig. 5. Robot 1 and 2 deadlock each other trying to obtain two tokens concurrently

6 Conclusion and future work

This paper proposed the use of model checking techniques to verify the correct-
ness of industrial robot system with respect to certain properties. We presented
a compiler to transform robot programs into extended PROMELA models. Fur-
thermore the tool allows to map an error-trace created by SPIN back into the
original context.

Using the suggested approach we could validate original robot control pro-
grams from Audi car body welding stations. In this process we found a protocol
error in the robot programs that could eventually lead to a deadlock. Based on
the generated error-trace it was possible to find and remove the error. We could
show that model checking is a viable option for analyzing the control programs
of large industrial robot system even with 9 robots.

In contrast to the simulation-based approach which is currently state-of-
the-art in industry, the approach can guarantee the correctness with respect to
certain properties, such as freedom of deadlocks and absence of collisions. The
required effort to set up the modeling tool chain is also considerably smaller
than the effort currently spent in testing these properties.

We are planning several improvements for the current tools to increase their
applicability:

– Multi-language support; we want to analyze industrial robot system using
robots from other manufacturers that use different programming languages.

– Higher degree of automation in setup process; if the barrier to use model
checking can be lowered even further, the applicability will be higher.

15

– Replay-renderer for an arbitrary number of robots/processes
– Include support for more devices; we want to analyze if the robot programs

handle external errors correctly, e. g. a welding problem

The case study presented in this paper showed that for current industrial
robot system the performance scales well. However if further details are added
to the formal model state space explosion can get a problem. Hence future work
must also take into account techniques to limit the state space.

References

1. Nanette Bauer, Sebastian Engell, Ralf Huuck, Ben Lukoschus, and Olaf Stursberg,
Stursberg: Verification of PLC Programs given as Sequential Function Charts, In:
Integration of Software Specification Techniques for Applications in Eng., Springer,
LNCS, 2004, pp. 517–540.

2. Dirk Beyer, Thomas Henzinger, Ranjit Jhala, and Rupak Majumdar, The software
model checker BLAST, International Journal on Software Tools for Technology
Transfer (STTT) 9 (2007), 505–525, 10.1007/s10009-007-0044-z.

3. Sébastien Bornot, Ralf Huuck, Yassine Lakhnech, and Ben Lukoschus, Utilizing
static analysis for programmable logic controllers, ADPM 2000: The 4th Interna-
tional Conference on Automation of Mixed Processes: Hybrid Dynamic Systems,
2000, pp. 183–187.

4. G. Canet, S. Couffin, J. j. Lesage, A. Petit, and Ph. Schnoebelen, Towards the auto-
matic verification of PLC programs written in Instruction List, IEEE International
Conference on Systems, Man and Cybernetics, 2000, pp. 2449–2454.

5. James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Pasareanu, and Hongjun Zheng, Bandera: Extracting Finite-state Models from Java
Source Code, Proceedings of the 22nd international conference on Software engi-
neering, ACM Press, 2000, pp. 439–448.

6. Patrick Cousot and Radhia Cousot, Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints, Pro-
ceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages (New York, NY, USA), POPL ’77, ACM, 1977, pp. 238–252.

7. Patrick Cousot and Radhia Cousot, Verification of embedded software: Problems
and perspectives, Proceedings of the 1st International Workshop on Embedded
Software (EMSOFT), USA. LNCS 2211, Springer-Verlag, 2001, pp. 97–113.

8. Pedro de la Cámara, Mar̀ıa del Mar Gallardo, and Pedro Merino, Model extraction
for ARINC 653 based avionics software, Proceedings of the 14th international SPIN
conference on Model checking software (Berlin, Heidelberg), Springer-Verlag, 2007,
pp. 243–262.

9. Yifei Dong and C. R. Ramakrishnan, An optimizing compiler for efficient model
checking, Proceedings of the IFIP TC6 WG6.1 Joint International Conference on
Formal Description Techniques for Distributed Systems and Communication Pro-
tocols (FORTE XII) and Protocol Specification, Testing and Verification (PSTV
XIX) (Deventer, The Netherlands, The Netherlands), FORTE XII / PSTV XIX
’99, Kluwer, B.V., 1999, pp. 241–256.

10. Lucio Mauro Duarte, Jeff Kramer, and Sebastian Uchitel, Towards faithful model
extraction based on contexts, Proceedings of the Theory and practice of software,
11th international conference on Fundamental approaches to software engineering
(Berlin, Heidelberg), FASE’08/ETAPS’08, Springer-Verlag, 2008, pp. 101–115.

16

11. Klaus Havelund, Java PathFinder, A Translator from Java to Promela, Proceed-
ings of the 5th and 6th International SPIN Workshops on Theoretical and Practical
Aspects of SPIN Model Checking (London, UK), Springer-Verlag, 1999, pp. 152–.

12. Gerard J. Holzmann, The Model Checker SPIN, IEEE Transactions on Software
Engineering 23 (1997), 279–295.

13. Gerard J. Holzmann and Margaret H. Smith, An automated verification method
for distributed systems software based on model extraction, IEEE Transactions on
Software Engineering 28 (2002), 364–377.

14. Mauro Mazzolini, Alessandro Brusaferri, and Emanuele Carpanzano, Model-
checking based verification approach for advanced industrial automation solutions,
Emerging Technologies and Factory Automation (ETFA), 2010, pp. 1–8.

15. Olivera Pavlovic, Ralf Pinger, and Mail Kollmann, Automated formal verification
of PLC programs written in IL, Conference on Automated Deduction (CADE),
2007, pp. 152–163.

16. Bastian Schlich, Jörg Brauer, Jörg Wernerus, and Stefan Kowalewski, Direct model
checking of PLC programs in IL, 2nd IFAC Workshop on Dependable Control of
Discrete Systems (DCDS) (Bari, Italy), 2009.

17. Helmut Seidl and Vesal Vojdani, Region analysis for race detection, Proceedings
of the 16th International Symposium on Static Analysis (Berlin, Heidelberg), SAS
’09, Springer-Verlag, 2009, pp. 171–187.

18. Hai Wan, Gang Chen, Xiaoyu Song, and Ming Gu, Formalization and Verification
of PLC Timers in Coq, Proceedings of the 2009 33rd Annual IEEE International
Computer Software and Applications Conference - Volume 01 (Washington, DC,
USA), IEEE Computer Society, 2009, pp. 315–323.

19. Mohammed Bani Younis and Georg Frey, Formalization of existing PLC programs:
A survey, Proceedings of Computing Engineering in Systems Applications (CESA)
(Lille, France), July 2003.

