
ALP: A programming language for
reactive intelligent agents

Thomas Weiser
Fakultät für Informatik, TU München, 80290 München

weiser@informatik.tu-muenchen.de

Abstract

ALP is a logic-based language for modelling intelligent behaviour in a dynamic envi-
ronment. Originated in the tradition of production systemsboth the recognition and action
phases are substantially improved. An incremental bottom-up reasoning mechanism en-
ables the recognition of complex situations in a changing world. Situations are described
in a purely declarative manner by means of a Horn clause program. This logic-based com-
ponent is embedded in a concurrent procedural language, which serves to describe the
corresponding reactions of the agent.

1 Introduction

Production systems are widely used as tools to build expert systems, where they act as a decision
making system, mostly in a static domain. In the last few years they gained increasing attention
in distributed artificial intelligence as a basic cognitive model for intelligent agents [5]. Again
the rules are the basic building blocks for the decision making process: how should the agent
react in a certain situation.

An example for the use of a production system is the multi agent test-bed Magsy [2]. Each
agent is an OPS5 [3] interpreter extended with the capability of asynchronous message passing.
Every agent has its own autonomous control and local knowledge and communicates through
sending facts to one another. This system has been used for building a distributed planner for
flexible manufacturing plants, in which the each machine is modelled as an agent. (Another
application of Magsy can be found in [7].)

This is an example that shows the suitability of production systems for modelling reactive
behaviour. An agent is part of a dynamic environment. It continuously analysis its situation,
activates its own goals and acts according to them. Since the further development of the envi-
ronment is unpredictable in principle, the agent must be prepared for a variety of possible events
and has to be able to react with adequate behaviour patterns. The recognize-act cycle of pro-
duction systems make them well suited for event-driven programming, which isan important
basis for building reactive agents.

But production systems suffer from two substantial drawbacks, which restricttheir useful-
ness for the mentioned applications:

1. The rule selection process utilizes a very simple pattern matching concept with little ex-
pressive power. The condition parts of the rules are composed solely of fact patterns as
primitives. There is no concept to abstract condition expressions under a new name.So
one cannot compose complex expressions out of other expressions. Consequently one
cannot use recursive formulas to select a rule.

2. The action parts of the rules are simple sequences of actions without any control struc-
tures. Complex procedural operations have to be scattered to several rules,whereby the
user is forced to manage the execution context by her own.

In this view OPS5 is a completely unstructured language, regarding both the description of
conditions and the formulation of procedural actions. Therefore any larger program gets very
hard to manage, since it consists of one large flat rule set with no obvious inner structure. (The
early visions for production systems, that each rule is an independent source of knowledge,
that their interplay emerges without additional effort and that complex problems can be solved
without describing procedures, soon turned out to be not very realistic.)

The simple condition language has another disadvantage. The situations to be recognized by
the agent are in general too complex to be expressed in the condition part of a single rule. Thus
there is need for firing rules just to do the situation recognition. As a result complex situations
cannot be described declaratively. Since OPS5 has no built-in construct to undothe effects of
a rule firing, the user has to provide additional rules to monitor and maintain the recognized
situations. (Think about maintaining the transitive closure of a changing relation.)

With ALP (Agent Logic Programming) we propose a new architecture. It preserves the ad-
vantages of production systems (reactive, symbolic, event-driven computation)and introduces
new concepts to overcome the drawbacks mentioned.

An ALP process consists of two conceptual components (see figure 1). The first part handles
knowledge abstraction and situation recognition. They are described by means of a Horn clause
logic program. This program is evaluated by a bottom-up inference engine according to apurely
declarative semantics. This logic-oriented component of ALP (which we refer to as the ALP
knowledge base) infers continuously the set of deducible facts from a varying set of asserted
facts.

The second part is the procedural control component. It executes a concurrent impera-
tive program and describes the actions to take in the individual situations. Theseactions are
triggered by the recognition of corresponding situations and in turn modify the facts in the
knowledge base.

To be linked with the outside world the agent needs capabilities to perceive andto act. Per-
ceived information is stored as messages in the knowledge base. External actions are effected
through special primitives in the procedural part.

2 ALP Knowledge Base

The ALP knowledge base applies Horn clause logic with negation as failure and function sym-
bols in order to handle knowledge representation and abstraction, situation recognition and
decision making. It consists of a logic program, a fact base and a forward-chaining inference
machine.

The basic expressions of the logic language are predicates, which come in three flavors:
Extensional predicates are containers for those facts that may be asserted orretracted through
actions or perception. Intensional (or derived) predicates are defined by the clauses of the logic
program and are interpreted by the deduced facts. Built-in predicates provide for some basic
functions, e.g. arithmetic operations. Accordingly the fact base contains two sets of facts,
asserted and deduced ones.

external actionsperception

base

facts
monitored

requests
monitoring

Horn
clause

program

intensional

fact

base

assert / retract
updates:

concurrent

deduced facts

imperative

procedures

extensional

fact

knowledge base procedural control

Figure 1: Architecture of an ALP process

The inference machine continuously maintain the set of deduced facts in dependence of the
current set of asserted facts and in correspondence to the logic program. This isan incremental
and active reasoning process. All changes in the extensional part of the fact basewill cause
corresponding changes in the intensional predicates. This active bottom-up processing is an
essential property for obtaining reactive, event-driven agent behaviour. In contrary to produc-
tion rules, the clauses (or rules) of the knowledge base have a logical meaning. Theyhave
conclusions instead of actions and the conclusions are only valid as long as their premises are.

To bring things in relation to OPS5, the logic program corresponds to the set of all condition
parts of the production rules, the extensional fact base corresponds to the working memory and
the intensional fact base can be compared with the conflict set of OPS5.

The main difference to OPS5 is that derived predicates now have names and can be used in
the definition of other predicates. This has two effects: Firstly, predicates can be written in a
more structured fashion in the sense, that you can express complex situations interms of sim-
pler situations instead of being forced to express everything in terms of extensional predicates.
Secondly and even more important, this opens the ability to define recursive predicates, which
greatly improves the expressive power.

In the following example, it is assumed thathuman andpar are extensional predicates.
The two clauses define the same-generation relation based on the parent relation.

sgc(X,X) human(X).
sgc(X,Y) par(X,X1), sgc(X1,Y1), par(Y,Y1).

The knowledge base supports two types of queries: snapshot queries return the actual fact
set of a predicate; monitor queries are requests to inform the client about everychange of the
monitored predicate. The latter type enables reactive behaviour in the corresponding situations,
as the emergence of a fact of a monitored predicate may trigger suitable actionsto perform in
the recognized situation.

3 The Inference Process

Bottom-up evaluation is a current research topic in deductive databases [8].One difference is
that the ALP knowledge base operates in main memory instead of secondary storage. More-
over, the ALP inference process employs an active incremental algorithm whereas deductive
databases usually process queries on request, one after another and without saving intermediate
results. In spite of those differences we can make use of some results of the research in deduc-
tive databases: we adopt thewell-founded semanticsand we employmagic settransformations
to speed up the evaluation.

To define the meaning of a Horn clause logic program, several model-theoretic semantics
have been studied. The minimal Herbrand model is the most basic one. It applies only to
programs without negation. More general, if a program uses negation only outside of recursive
paths, the program is called stratifiable. In this case the perfect model semantics supplies the
program with a natural meaning.

These restrictions are overcome by the well-founded models semantics [4]. It allows arbi-
trary combinations of negation and recursion. In this sense it is the most universal one, though
this generality has its price. Some programs only have a partial model, meaning that some facts
may have an undefined truth value (e.g. in the programf p(a) : p(a). g the factp(a)
is regarded neither true nor false). We believe that this is no real restriction in practice, so we
choose this semantics for the ALP knowledge base evaluation process.

The evaluation process is realized basically as an extension of the well-known RETE algo-
rithm [3]. In a first step the logic program is translated into an equation system of relational
algebra. Then this system is mapped onto a directed graph, where the nodes are either algebraic
operations or places to store the corresponding relations. The graph can be seen as adirected
constraint network. As soon as one relation is modified, these changes are propagated through
the network until it is stable again, meaning that all equations are satisfied. This method realizes
the required activeness and incrementallity of the deduction process.

In the presence of recursive defined relations the algorithm has to be extended in two ways.
In the case of recursion without negation a mechanism has to ensure, that there do notre-
main facts supported solely by themselves without a valid derivation (thisis a typical reason
maintenance problem). Whereas recursion with negation needs to be handled according to the
definition of the well-founded semantics. We have developed a extended version of the RETE
algorithm that handles both cases. As this goes beyond the scope of this paper, we omit the
details here.

Another technique we adopt from deductive databases is the magic set transformation[1] –
with the following background. Compared to top-down evaluation the bottom-up approach has
one basic drawback mainly effecting its efficiency: it is not goal directed. A naive bottom-up
evaluation generates the complete model of the logic program with respect to a given extensional
fact base, regardless whether the generated facts are relevant for the current queries or not.

Nevertheless, bottom-up evaluation can be extended to behave in a goal directed manner. The
key idea is to distinguish between input and output arguments of a predicate. The intention is,
to generate only that part of the corresponding relation that matches a given set ofinput values.
These input values may be known from the query; or they may be obtained while evaluatingthe
body of a clause: after generating the answer sets for some subgoals this information is passed
sideways to constrain the input arguments of the remaining subgoals. This reduce the number
of generated facts dramatically without effecting the query result. Moreover, this enables us to
handle infinite relations, as long as they are finite for given input values. Lastly, predicates can
now be thought of and used as procedures or functions that map their input values to a set of
output values.

Evaluation of a predicate should take advantage of bound input arguments. For this the
constraints on the input arguments have to be pushed backward through the clauses as far as
possible in order to inhibit the generation of unnecessary facts. This idea can be realized by
program transformations during compile time. They are known as the family of magic set
transformations. There has been much research effort to develop transformations which work
even in the presence of recursion and negation [6]. We believe that the application of these
techniques will have a great impact on the efficiency and usability of our system.

4 Procedural Control

So far the ALP knowledge base serves as a powerful tool to recognize complex situations. It has
to be complemented with procedural concepts to describe the actions to take in those situations.

One possibility is to use the knowledge base as a library in a conventional imperative pro-
gramming language, e.g. C++. In general such languages are not very well suited forsymbolic,
event-driven programming.

Alternatively one can follow the traditionally production system approach by linking se-
quential action scripts to some of the intensional predicates. As mentioned before, this archi-
tecture lacks the concept of an execution context. So the user must manage this context by her
own to link the pieces of a complex procedural structure together.

According to this we propose to introduce a special procedural language into ALP. Until
now we have not defined this language in detail, so we list only some of the intended features
here.

The primitive actions available are modifications of the knowledge base, i.e. assertions
and retractions of extensional facts. Furthermore, external actions like sending a message or
effecting the physical world have to be included.

Control structures on the other hand make the further progress of the procedure dependent
on the result of knowledge base queries. In addition, the results of the queries can be boundto
variables, which in turn can be used in subsequent actions or control structures.

Control structures can have an immediate or a waiting semantics, depending on whether they
employ a snapshot query or a monitor query. The former correspond to constructs in sequential
programming languages, likeif–then–else, the latter are closer to the rule concept of production
systems.

Additionally, the language should provide for concurrency constructs, like thread genera-
tion, termination and prioritized scheduling.

Procedures containing these constructs can be translated into equivalent setsof production

rules. So these language constructs can be treated as abbreviations or macros that automatically
manage execution context and thread scheduling.

5 Conclusion

The ALP architecture combines a deductive knowledge base with a concurrent procedural con-
trol component. This structure reflects a basic model for intelligent agents. On the one side an
agent has to represent its current beliefs about the world and itself. This knowledge has to be
represented on different abstraction levels. Higher levels model the agent’s view of its situation
and current goals. The ALP knowledge base is a tool to describe such abstraction processes by
Horn clause logic in a purely declarative manner. On the other side an agent has to change the
world as well as its own beliefs and intentions. Procedures are a natural way to describe these
active aspects. We think that the presented combination of declarative and procedural concepts
results in a well suited programming model for reactive, intelligent agents.

References

[1] C. Beeri and R. Ramakrishnan. On the Power of Magic. InProceedings of the Sixth ACM
PODS Symposium on Principles of Database Systems. 1987.

[2] K. Fischer. The Rule-based Multi-Agent System MAGSY. InProceedings of the CKBS’92
Workshop. DAKE Centre, Keele University, 1993.

[3] C. L. Forgy. RETE: A Fast Algorithm for the Many Pattern / Many ObjectPattern Match
Problem.Artificial Intelligence19. 1982.

[4] A. Van Gelder, K. A. Ross and J. S. Schlipf. The Well-Founded Semantics for General
Logic Programs.Journal of the ACM38(3). 1991.

[5] T. Ishida. Parallel, Distributed and Multi-Agent Production Systems.In Proceedings of
the First International Conference on Multi-Agent Systems (ICMAS-95). San Francisco,
CA, 1995.

[6] D. B. Kemp, D. Srivastava and P. J. Stuckey. Bottom-Up Evaluation andQuery Optimiza-
tion of Well-Founded Models.Theoretical Computer Science146(1&2). 1995.

[7] J. P. Müller and M. Pischel. The Agent Architecture InteRRaP: Concept and Application.
Technical Report RR-93-26, DFKI Saarbrücken, 1993.

[8] R. Ramakrishnan and J. D. Ullman. A survey of deductive database systems.Journal of
Logic Programming23(2). 1995.

