ALP: A programming language for
reactive intelligent agents

Thomas Weiser
Fakultat fur Informatik, TU Miinchen, 80290 Miinchen
weiser@informatik.tu-muenchen.de

Abstract

ALP is a logic-based language for modelling intelligent dgbur in a dynamic envi-
ronment. Originated in the tradition of production systdsogh the recognition and action
phases are substantially improved. An incremental botipnteasoning mechanism en-
ables the recognition of complex situations in a changingdvdSituations are described
in a purely declarative manner by means of a Horn clause anogirhis logic-based com-
ponent is embedded in a concurrent procedural languageshvdg@rves to describe the
corresponding reactions of the agent.

1 Introduction

Production systems are widely used as tools to build expert systems, wheaetlas a decision
making system, mostly in a static domain. In the last few years they gawmneshising attention
in distributed artificial intelligence as a basic cognitive model for ligeht agents [5]. Again
the rules are the basic building blocks for the decision making process: how shoulgktite a
react in a certain situation.

An example for the use of a production system is the multi agent test-bed Magsyaf2i. E
agentis an OPS5 [3] interpreter extended with the capability of asynchronousgegssssing.
Every agent has its own autonomous control and local knowledge and communicates through
sending facts to one another. This system has been used for building a distrilanedrgbr
flexible manufacturing plants, in which the each machine is modelled as an ggewther
application of Magsy can be found in [7].)

This is an example that shows the suitability of production systems for modedaggive
behaviour. An agent is part of a dynamic environment. It continuously analysis itS@ituat
activates its own goals and acts according to them. Since the furtheogewaht of the envi-
ronment is unpredictable in principle, the agent must be prepared for a variety dilp@s&nts
and has to be able to react with adequate behaviour patterns. The recognizdeof pyo-
duction systems make them well suited for event-driven programming, whigh isyportant
basis for building reactive agents.

But production systems suffer from two substantial drawbacks, which reftertuseful-
ness for the mentioned applications:

1. The rule selection process utilizes a very simple pattern matching gondé little ex-
pressive power. The condition parts of the rules are composed solely of faminsadis
primitives. There is no concept to abstract condition expressions under a new 8ame.
one cannot compose complex expressions out of other expressions. Consequently one
cannot use recursive formulas to select a rule.

2. The action parts of the rules are simple sequences of actions without any ctmicel s
tures. Complex procedural operations have to be scattered to severainiérsby the
user is forced to manage the execution context by her own.

In this view OPS5 is a completely unstructured language, regarding both theptiescof
conditions and the formulation of procedural actions. Therefore any larger programeggt
hard to manage, since it consists of one large flat rule set with no obvious inmetusgx. (The
early visions for production systems, that each rule is an independent source of #gewle
that their interplay emerges without additional effort and that complex problambe solved
without describing procedures, soon turned out to be not very realistic.)

The simple condition language has another disadvantage. The situations to be recognized by
the agent are in general too complex to be expressed in the condition part of a slaglEhus
there is need for firing rules just to do the situation recognition. As a resulpnsituations
cannot be described declaratively. Since OPS5 has no built-in construct tahendffects of
a rule firing, the user has to provide additional rules to monitor and maintain tbgnzed
situations. (Think about maintaining the transitive closure of a changing relation.)

With ALP (Agent Logic Programmingve propose a new architecture. It preserves the ad-
vantages of production systems (reactive, symbolic, event-driven computatidnjtroduces
new concepts to overcome the drawbacks mentioned.

An ALP process consists of two conceptual components (see figure 1). The first pagshandl|
knowledge abstraction and situation recognition. They are described by meansiof el&lise
logic program. This program is evaluated by a bottom-up inference engine accordipgreya
declarative semantics. This logic-oriented component of ALP (which we tefas the ALP
knowledge bageinfers continuously the set of deducible facts from a varying set of asserted
facts.

The second part is the procedural control component. It executes a concurrent impera-
tive program and describes the actions to take in the individual situations. &bgses are
triggered by the recognition of corresponding situations and in turn modify the fadtsei
knowledge base.

To be linked with the outside world the agent needs capabilities to perceive aatl Per-
ceived information is stored as messages in the knowledge base. Extaroas ace effected
through special primitives in the procedural part.

2 ALP Knowledge Base

The ALP knowledge base applies Horn clause logic with negation as failure antfuagin-
bols in order to handle knowledge representation and abstraction, situation remogmtl
decision making. It consists of a logic program, a fact base and a forward-chamf@ngrice
machine.

The basic expressions of the logic language are predicates, which come in thoes: flav
Extensional predicates are containers for those facts that may be assagtdaied through
actions or perception. Intensional (or derived) predicates are defined by thesatdidise logic
program and are interpreted by the deduced facts. Built-in predicates praviderhe basic
functions, e.g. arithmetic operations. Accordingly the fact base contains twaEécts,
asserted and deduced ones.

knowledge base procedural control

deduced facts
monitoring
Horn intensional | _ requests
clause fact N
program base monitored
facts | imperative
*— concurrent
procedures
extensional updates:
assert / retract
fact -
base
perception external actions

Figure 1: Architecture of an ALP process

The inference machine continuously maintain the set of deduced facts in dependédrece of t
current set of asserted facts and in correspondence to the logic program. dmisicsemental
and active reasoning process. All changes in the extensional part of the factibasise
corresponding changes in the intensional predicates. This active bottom-up prgdssain
essential property for obtaining reactive, event-driven agent behaviour. Iracptd produc-
tion rules, the clauses (or rules) of the knowledge base have a logical meaning.haesy
conclusions instead of actions and the conclusions are only valid as long as theggzrane.

To bring things in relation to OPS5, the logic program corresponds to the set of altioondi
parts of the production rules, the extensional fact base corresponds to the workingynagihor
the intensional fact base can be compared with the conflict set of OPS5.

The main difference to OPS5 is that derived predicates now have namearabd ased in
the definition of other predicates. This has two effects: Firstly, preelicean be written in a
more structured fashion in the sense, that you can express complex situatiermasrof sim-
pler situations instead of being forced to express everything in terms of extahpredicates.
Secondly and even more important, this opens the ability to define recursivegiesdiavhich
greatly improves the expressive power.

In the following example, it is assumed tHatiman and par are extensional predicates.
The two clauses define the same-generation relation based on the parésrt.relat

sgc(X, X) <« human(X).
sgc(X, Y) « par(X X1), sgc(X1, Y1), par(Y,Yl).

The knowledge base supports two types of queries: snapshot queries return the actual fac
set of a predicate; monitor queries are requests to inform the client aboutahaarge of the
monitored predicate. The latter type enables reactive behaviour in the corraspsitdations,
as the emergence of a fact of a monitored predicate may trigger suitable actjp@gorm in
the recognized situation.

3 Thelnference Process

Bottom-up evaluation is a current research topic in deductive database3ri8]difference is
that the ALP knowledge base operates in main memory instead of secondary std@ge
over, the ALP inference process employs an active incremental algoritmeneas deductive
databases usually process queries on request, one after another and without sawiregliate
results. In spite of those differences we can make use of some results esdaah in deduc-
tive databases: we adopt thell-founded semanti@nd we employnagic setransformations
to speed up the evaluation.

To define the meaning of a Horn clause logic program, several model-theoretnisesn
have been studied. The minimal Herbrand model is the most basic one. It applie®only t
programs without negation. More general, if a program uses negation only outside ofwecursi
paths, the program is called stratifiable. In this case the perfect madeinsies supplies the
program with a natural meaning.

These restrictions are overcome by the well-founded models semantics §ipws arbi-
trary combinations of negation and recursion. In this sense it is the most uhiwresahough
this generality has its price. Some programs only have a partial model, mehatrspine facts
may have an undefined truth value (e.g. inthe progfgrfa) « — p(a). }thefactp(a)
is regarded neither true nor false). We believe that this is no realatstriin practice, so we
choose this semantics for the ALP knowledge base evaluation process.

The evaluation process is realized basically as an extension of th&mneelln RETE algo-
rithm [3]. In a first step the logic program is translated into an equatioresysif relational
algebra. Then this system is mapped onto a directed graph, where the nodes asdgatiraic
operations or places to store the corresponding relations. The graph can be sakreced
constraint network. As soon as one relation is modified, these changes are proplagatgd t
the network until it is stable again, meaning that all equations are satisfiegimiEthod realizes
the required activeness and incrementallity of the deduction process.

In the presence of recursive defined relations the algorithm has to be extendediays.

In the case of recursion without negation a mechanism has to ensure, that thererde not
main facts supported solely by themselves without a valid derivation i@lastypical reason
maintenance problem). Whereas recursion with negation needs to be handledractmtte
definition of the well-founded semantics. We have developed a extended versienRETE
algorithm that handles both cases. As this goes beyond the scope of this paper, we omit the
details here.

Another technique we adopt from deductive databases is the magic set transfolfilation
with the following background. Compared to top-down evaluation the bottom-up approsich ha
one basic drawback mainly effecting its efficiency: it is not goal directed. idenaottom-up
evaluation generates the complete model of the logic program with respect tnaegiensional
fact base, regardless whether the generated facts are relevant for teet @ureries or not.

Nevertheless, bottom-up evaluation can be extended to behave in a goalddimecteer. The

key idea is to distinguish between input and output arguments of a predicate. Themisnt

to generate only that part of the corresponding relation that matches a givenrgaitofalues.

These input values may be known from the query; or they may be obtained while evathating
body of a clause: after generating the answer sets for some subgoals this indoriegassed
sideways to constrain the input arguments of the remaining subgoals. This reduce the numbe
of generated facts dramatically without effecting the query result. M@nethis enables us to
handle infinite relations, as long as they are finite for given input values.yl_pstidicates can

now be thought of and used as procedures or functions that map their input values to a set of
output values.

Evaluation of a predicate should take advantage of bound input arguments. For this the
constraints on the input arguments have to be pushed backward through the clauses as far a
possible in order to inhibit the generation of unnecessary facts. This idea caaltzed by
program transformations during compile time. They are known as the family ofcnszgi
transformations. There has been much research effort to develop traastmrsmwhich work
even in the presence of recursion and negation [6]. We believe that the applio&these
techniques will have a great impact on the efficiency and usability of our system.

4 Procedural Control

So far the ALP knowledge base serves as a powerful tool to recognize compkexasis. It has
to be complemented with procedural concepts to describe the actions to thkeersituations.

One possibility is to use the knowledge base as a library in a conventional itnpeyeo-
gramming language, e.g. C++. In general such languages are not very well suggchfmlic,
event-driven programming.

Alternatively one can follow the traditionally production system approach tking se-
guential action scripts to some of the intensional predicates. As mentionee@ bifisrarchi-
tecture lacks the concept of an execution context. So the user must manage thislmphty
own to link the pieces of a complex procedural structure together.

According to this we propose to introduce a special procedural language into ALP. Until
now we have not defined this language in detail, so we list only some of the intendeict$ea
here.

The primitive actions available are modifications of the knowledge base, isertass
and retractions of extensional facts. Furthermore, external actions kkBngea message or
effecting the physical world have to be included.

Control structures on the other hand make the further progress of the procedure dependent
on the result of knowledge base queries. In addition, the results of the queries can bedound
variables, which in turn can be used in subsequent actions or control structures.

Control structures can have an immediate or a waiting semantics, dependimgtirenthey
employ a snapshot query or a monitor query. The former correspond to constructs in E¢quent
programming languages, likie-then—elsgethe latter are closer to the rule concept of production
systems.

Additionally, the language should provide for concurrency constructs, like threadagener
tion, termination and prioritized scheduling.

Procedures containing these constructs can be translated into equivaleritmetuction

rules. So these language constructs can be treated as abbreviations or maauasthatically
manage execution context and thread scheduling.

5 Conclusion

The ALP architecture combines a deductive knowledge base with a concurrent précedura
trol component. This structure reflects a basic model for intelligent agentsheélome side an
agent has to represent its current beliefs about the world and itself. This éahgevhas to be
represented on different abstraction levels. Higher levels model the'sigent of its situation
and current goals. The ALP knowledge base is a tool to describe such abstractiesspoby
Horn clause logic in a purely declarative manner. On the other side an ageotdiamge the
world as well as its own beliefs and intentions. Procedures are a natudabwagscribe these
active aspects. We think that the presented combination of declarative@setipral concepts
results in a well suited programming model for reactive, intelligent agents

References

[1] C. Beeri and R. Ramakrishnan. On the Power of Magid®®ioceedings of the Sixth ACM
PODS Symposium on Principles of Database Systéaty.

[2] K. Fischer. The Rule-based Multi-Agent System MAGSYPlmceedings of the CKBS'92
Workshop DAKE Centre, Keele University, 1993.

[3] C. L. Forgy. RETE: A Fast Algorithm for the Many Pattern / Many ObjBettern Match
Problem.Artificial Intelligencel9. 1982.

[4] A. Van Gelder, K. A. Ross and J. S. Schlipf. The Well-Founded SemartdicGéneral
Logic ProgramsJournal of the ACMB8(3). 1991.

[5] T. Ishida. Parallel, Distributed and Multi-Agent Production SystemmsProceedings of
the First International Conference on Multi-Agent Systems (ICMAS-8an Francisco,
CA, 1995.

[6] D.B. Kemp, D. Srivastava and P. J. Stuckey. Bottom-Up Evaluatiortarety Optimiza-
tion of Well-Founded ModelsTheoretical Computer Sciendd6(1&2). 1995.

[7] J. P. Muller and M. Pischel. The Agent Architecture InteRRaP: Conaagpgpplication.
Technical Report RR-93-26, DFKI Saarbriicken, 1993.

[8] R. Ramakrishnan and J. D. Ullman. A survey of deductive database sysieorsal of
Logic Programming@3(2). 1995.

