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ABSTRACT stricted to some objects which are fully textured or digtirec

In this paper, we present an object recognition and pose eirough their shape. These disadvantages make above object
timation framework consisting of a novel global object de-descriptors to be restricted useful, since some objectsah r
scriptor, so calle¢/iewpoint oriented Color-Shape Histogram World are textureless and may have the same shape but dif-
(VCSH), which combines object’s color and shape informaferent visual information. An autonomous robot perception
tion. During the phase of object modeling and feature exsystem should be able to recognize the objects with afore-
traction, the whole object’s color point cloud model is buil Mentioned case and accurately estimate their poses.
by registration from multi-view color point clouds. VCSHis ~ With the massively increased usage of new-released
trained using partial-view object color point clouds geted ~RGB-D sensors, which can provide geometrical and visual
from different synthetic viewpoints. During the recogaiti  information about the real scene. Object descriptor cosél u
phase, the object is identified and the closest viewpointis e multi-dimensional color and geometrical features for obje
tracted using the built feature database and object’s festu recognition and pose estimation by using such a depth sensor
from real scene. The estimated closest viewpoint provides With the real scene data, the object needs to be recognized
good initialization for object pose estimation optimizatus- ~ With different poses, thus the viewpoint component could be
ing the iterative closest point strategy. Finally, objentseal  integrated into the object descriptor building. For thimai
scene are recognized and their accurate poses are retrieveda novel framework and object descriptor for object recogni-
set of experiments is realized where our proposed appreachtion and pose estimation are proposed in this paper, which
proven to outperform other existing methods by guarantgeinprovide the following main contributions: 1) A novel object
highly accurate object recognition, fast and accurate pese descriptorViewpoint oriented Color-Shape Histograzom-
timation as well as exhibiting the capability of dealinghvit bined with color and shape features, including object view-
environmental illumination changes. point component; 2) A framework which gives highly object
recognition rate and its accurate 6D pose estimation; 3) Ob-
ject pose accuracy evaluation and stability quantitiveyesis
with respect to the illumination changes; 4) Live demonstra
tions and comparisons with existing methods.
1. INTRODUCTION This remainder of the paper is organized as follows: Sec-

) . . tion[2 provides the proposed framework and the detailed de-
Object recognition and 6D pose estimation plays a crucial 1o gqyintion of proposed VCSH object descriptor. The experi-
in a wide range of robotic applications, such as object graspyenta| results including the pose accuracy evaluatiobilsta
ing and manipulator occlusion handling. More specnﬂcally,ity analysis with illumination and running time performanc

successful object recognition, highly accurate pose estim . presented in Sectigh 3. Finally, Secfidn 4 summarizes th
tion and near real time operation are necessary capaﬂ;)ilitiebaper and proposes future development roads
but also tough challenges for a robot perception system.

A variety of object descriptors using different features of
the objects have been proposed to solve the problems men- 2. PROPOSED APPROACH
tioned above. The most popular features are currently the
SIFT [1] and SURFI[]R], both are extracted based on object3he framework of our proposed object recognition and 6D
texture information. Fast Point Feature Histogram (FPEBH) [ pose estimation system is illustrated in Figure 1. In thimtra
and Viewpoint Feature Histogram (VFH)I [4] are geometry-ing phase, we first build the whole 3D object model by reg-
based shape descriptors. However, these descriptors-are igering all the object’'s data with different poses into @a-si

Index Terms— Object recognition, 6D pose estimation,
viewpoint oriented color-shape histogram
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Fig. 1. Framework of object recognition and pose estimationtions for neighbor regions i/ S space. Right: illustrate the
chromatic and achromatic areas$iv’ space.

gle coordinate frame. Follows with a large amount of objeccolor CAD models. Then, a global object descriptor is in need
patch data generated from the 3D object model, according @ describe eacli/; with its viewpointV P; for final object
synthetic viewpoint with known pose. The generated objectecognition and its pose recovery.
patch data includes potential object label and corresmandi
viewpoint pose. Subsequently VCSH can be computed as . . . .
global object descriptor from each object patch data, whicf?z' Viewpoint oriented Color-Shape Histogram
then is stored into our database. In the recognition and poger recognition and pose recovery for common objects, an
estimation phase, the object data is segmented and cldstergbject descriptor which consists both color and geométrica
from the real world scene, and we compute its correspondingformation is prerequisite. In particular, this desaviptould
VCSH. Thereafter the closest hypothesis is retrieved fram o differentiate these objects which have same shape but-diffe
generated descriptor database by nearest neighbor segrchient colors and also same color but different shapes. Foe thes
with outputting object label and its initial pose. Finaltile  requirements, a novel object descriptdewpoint oriented
highly accurate pose can be recovered through optimizatiogolor-shape histogransombines color and shape features is
and verification. proposed. During VCSH construction, firstly, the color of
each pointp; in object patch datd/; is smoothed ranged
and given distributions for different color ranges, where
{1---T}is the pointindex. Secondly, object’s shape features
The object model building platform consists of a rotatableare estimated, which describe each point's geometricat rel
plane and a stationary Kinect sensor. After segmentatiotionship with the viewpoint/P; and the centroid of A/;.
from the plane and Euclidean distance-based clustering, olfinally, these extracted color and shape feature are etece|
ject color point cloud datdS;} and its pose{PO,} are  as VCSH for each object patch dats;.
captured wher¢ is frame index. By registeringS;} with
{POy} into a single object coordinate, the whole_3D model, 5 1 smoothed Color Ranging
O then can be generated as a cluster of color point cloud. In
order to eliminate noises, the moving least squares (MLS) alTo represent the uniqueness of color feature for each object
gorithm is utilized to smooth the whole 3D model. patch datal/, its color need to be characterized and the dis-
For each object modé);, wherei = 1...I, we generate tributions for different color ranges need to be estimatgd b
J object patch datd/; with synthetic viewpoinl” P; where  their color values. To be more robust to illumination chasjge
j = 1...J. These generated synthetic viewpoints could behe point cloud’s RGB value is convert to HSV color space
taken as the sensor’s view direction to the object, which als(Hue, Saturation and Value) as shown in Figure 2. The Hue
illustrates the object’s rotation respect to the sensomidgy  componenfd is represented with 360 degrees angular dimen-
at the object full pose estimation, all the potential vievedi  sion for different color. The saturatighe [0, 1] indicates the
tions should be considered. For that, the synthetic viemtpoi colorfulness and valu¥ € [0, 1] describes the brightness.
are generated on a half sphere surface, with the center of the Compared with the work [5] which only using the Hue
object modeD’s centroid and a certain radius. The synthetichistogram for the color feature representation, in our psejpl
viewpoint position is generated on sphere surface in @fmvat VCSH, theH SV values are used for the points’ color ranging
and azimuth direction with certain angle step, and its direcnot only in true color space, but also in gray scale. As shown
tion is point to the object’s centroid. With these generatedn Figure[2, there are chromatic and achromatic area#/in
synthetic viewpointd/ P;, object patch datd/; is generated space, in which the chromatic area could be considered as
according toV P; using similar ray-casting method from the the true color space, achromatic area represents the gakey sc
whole 3D object modeD. The object modeD is not re- space. To this consider, eight histogram regi&#s with in-
stricted as the raw color point cloud model using our pro-dexu = {0---7} are divided for the whole VCSH building,
posed modeling platform, but also applicable for the ingdnt in which six are for true color space (chromatic) and the iothe

2.1. Synthetic Viewpoints Generation



are calculated for these two regions:Vif < 0.5, wg = wg
andw; = 0, otherwisewg = 0 andw; = wg. The final
distributionsw,, andw, 1 considering whole true color and
gray space then have to be updated as:

Wy = WH, X W, Wyl = WH, ;, X WC- 3)

Finally, each poinp with .SV color value is ranged into
) . ) three histogram regionRE,,, RE, 11, REs|RE7) with re-
Fig. 3. Pointp’s shape features extraction. spective contribution&w, , w1, we|wr).

two for grey scale space (achromatic).

To be more detailed, firstly, we consider the six true colo
histogram regions?E, to REs. The six histogram regions After the color contributions have been estimated for the sp
represent six typical color€’Ry to CRs. The pointp’s  cific histogram regions, we are now to extract each object
color’s Hue value then can be quantized into the certainrcolopatch datal’s shape feature$’ = {fo--- f,,} for the fi-
CR. However, the hard quantization can not represent thaal histogram building, where: is the point number in\/.
true color correctly. To overcome this issue, a smootheg-ran With object patch datad/ represents the partial data of the
ing method is proposed, which estimates two distributiongbject from viewpointl” P with directionv, each pointp’s
wy for two consecutive histogram regio® in true color  geometrical feature should be extracted in order to describ
space. The detailed steps are following: the object shape accurately and robustly. Partly inspised b

e Identify CR,,: red asCR, = 0, yellow asCR; = 60, [7], we extracted these features depends on the psine-

green asC’Ry = 120, cyan asCR3 = 180, blue as lationship with the centroid of/ and viewpointV P. As a
CRy = 240, purple asC R5 = 300. Consequently, six  global descriptor, the surface normagl of each poinp in M
histogram ranges are divided based on the color indexnd the centroid of M are computed at first. The relation-

I,2.2.2. Shape Feature Extraction

CR,asRE, — CR, whereu =n = {0---5}. ship of p andc represents the 3D shape of the object cluster.
e For color pointp, its hue value is ranged into two  The relationship op andV P indicates the rotation of the ob-
consecutive histogram regiofs¥”,, andRE,; asu =  ject cluster respect to the sensor direction. The and the
|H/60] , if u = 5, the next histogram regioRE, 1  centroidc could be transformed as the 6D pose of the object.
would be reset td? Ey. As shown in Figur€l3, the tangent planepdé defined as

e Estimate two color distributionguy, , wg, ] respect  a plane that is orthogonal tgs normalv. The centroid: is
to the neighbor histogram regiofBE.,,, RE,11] in  projected to this tangent plane as a paint A four dimen-
true color space, based on the Hue distanceS®,  sional geometrical featurgconsists of two distances and two
andCR,, 11 whereu = n: angles componentd,,, d., a, 3), which are calculated as:
wH, = (H - CRn+l)/601 WH 41 = 1- wg,, - (1) dp = ||p - CH 7dc = Hcp - C”
Secc_)ndly, we cor_lsiderthe achromatic area which consists , — arccos(n,, - (p — ¢)), 8 = arccos(v - (p — ¢)). )
of two histogram region® £ andR E-. When one of the sat-
uration S and value V is near 0 in HSV space, the point color In object partial data/ with a certain viewpoin¥’ P, ev-
will be represented in gray scale. In particula§'i= 0, color  ery pointp’s geometrical featur¢ is calculated. Therefore,
changes from black to white whén increases from 0 to 1, for single object modeD which contains/ view object patch
and if V' = 0, color changes from gray to the pure hue colordatalM/, the final geometry featur® = {fy- - - fi} with m
whenS increases from 0 to 1. Since the color in achromatigooints represent the certain object’s shape from the certai
space has high sensitive hue value with illumination changeviewpointV P;.
the previous estimated distributions;, andwy, ., in true
color space should be redesigned according to the influenge2 3. Color and Shape Feature Correlation
from .S andV. In order to capture the nature color, a soft de-
cision method([5] is employed and we update both chromati¢© describe an object patch daté with the viewpointV’ P
and achromatic components of the histogram. The weight discriminatively and comprehensively as a histogram, the
of chromatic anduc; of achromatic component are summed YCSH descriptor should be correlated with these two differ-
to be equal unity and determined ByandV’ as: ent features. In the smoothed color ranging phase, the whole
_ ar(i/vym L histogram is segmented into eight regions. Every component
wo =5 ywe =1-wg, @) in each point’s geometrical featugehas 30 bins, therefore
wherer,r; € [0,1]. For the best precision of the true color, eachRE contains 120 bins inside. Eagls two distance
r = 0.14 andr; = 0.9 are chosen empirically. In particu- componentsd,,d.) are indexed by the quantization using
lar, in the achromatic area which consists of two histograntheir values scaling fromi/’s minimum to maximum value.
regionsREs andRE7, V is quantized and these distributions Each p’s two angle componentéy, §) are indexed by the



Fig. 4. Left: object’s patch data from a certain viewpoint.
Right: generated viewpoint oriented color-shape histagra

a) Raw image of modeling platform  b) RGB_D data acquisition

guantization using their values with the range of 0 t6.98s

the correlation step, eagls color contributions for three his-
togram regionsRE,,, RE, 1, REs|RE7;) are added into the
geometrical certain bin Ny, INg,, INo, I Ng) in each of
these thredR E. The whole histogram has incremental value
corresponding to color contributions from all the pointgin
During final object recognition phase, the object’s degorip
should not change with varying distance at same view direc- ) ) o )
tion. However the histogram’s absolute value of each bih wil Fig- 5. Whole object 3D modeling building, final data repre-
change following with the object cluster point number. ToSeNts as the color point clouds.

overcome this problem, the values of histogram are normal- . }
ized with point number finally. The VCSH could correctly in- “or best matching based on kd-tres5 [4]. The best matched

dicates the certain view object’s color and shape featmes, object identification and the relative viewpoint page P)

matter with the distance from sensor to object. Thus, VCSI—?OUId be ?zt[gg:tida?s:min 2(Hist(C), Hist;;) (5)
could be viewed as a geometrical constrained color feature B Lg,phj X B
histogram. As shown in Figulld 4, the sampled object hagjaye to mention here, in VCSH definitiof, in <L:p> rep-
a blue rectangle region on the top surface. These points isents the rotation of the object respect to the sens@ve-vi
this region has significant large histogram value in the bins point. The centroid of the object cluster in real scene iatdis

RE,, because of the similar color and geometrical features. the current position, which is used to updd@eas the object
Consequently, the final correlated histogramtas2) x  jinjtial pose in the real scene.

(30x4) = 960 dimensions. The computational complexity of
VCSH isO(n), wheren is the point number of single view-
point object patch datad/. This dimension size and compu-
tational complexity makes VCSH feasible for real-time &ppl As the estimated poge is recovered as the best matched pose
cation. Furthermore, the final generated histogram coudd re from the built database, however, because of the sampliag ra
resent the object’s point color and shape with high accuracyf the synthetic viewpoints during the database buildihg, t
which gives the possibility for the highly successful objec P could be not the correct pose of object. Consequently, iter-
recognition and accurate pose estimation. ative closest point (ICP) method is employed for the aceurat
pose optimizatior{[8]. ICP’s accuracy and iteration speed a
strongly judged by the given initial guess. Our method could
estimate the general pose of object by extracting the dloses
With the built object VCSH descriptors database, we are nowiewpoint in the object database. The final pose of the object
going to get the real scene potential object cluster'sifleat  Prinai iS Optimized with the extracted initial pose from the
tion label L as recognition result and its general péseOur  recognition step and the ICP estimated transfékry, which
system first segments and clusters the object cl@stgom  is computed by the closed object patch data and real extracte
the background. The largest plane surface could be extract@bject cluster in real scene. After ICP, the final updateedij

by RANSAC [4], since all the objects are assumed that stand?0S€Pyina = P - Tic, is significant accurate and the iteration
ing on a table or a planar background. All the object clusterspeed is fast enough for the real-time recognition and pose
Cy, will be segmented from the plane surface and clustereg@stimation scenarios.

by Euclidean distance. Based 6h, the real scene objects’ The pose verification is necessary to guarantee the rec-
VCSH is calculated. The chi-squared distance between thegnized object with estimated po#®;,..; is the correct hy-
real scene object's VCSH valuéist(C) and eachHist;; in ~ pothesis in the object database. The patch object ata

the trained database is calculated for the best matchirteln is extracted by the estimaté¢};,,.; view. By the comparison
database, each object modikontains/ number VCSHs as  with the estimated nearest object patch datan the recog-

the object descriptors from different viewpoints. The fgst  nition step, the incorrect recognition or the error pose &l
proximate K-Nearest Neighbors (KNN) method is employedrejected when the distance beyonds a given threshold.

¢) Some samples of the built 3D object models

2.4. Object Pose Optimization and Verification

2.3. Object Recognition and Pose Retrieval
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Table 1. Running time performance of proposed method
Feature Pose
Single Object| Train | Extract | Recognize| Estimate

Angle XZ-plane [degree]  Angle YZ-plane [degree]
’

VCSH 5min| 20ms | 70ms 1.7s S am—— N
Tang 2012 | 7 min 5s 1ls 14s N
c) 6D pose ;rsatT;Sation in di%ferent frames (translatiol:a:ne; rotation)
3. EXPERIMENTAL RESULTS Fig. 7. Object pose accuracy evaluation in different frames

with different robot positions.

We perform experiments where the goal is to evaluate our
proposedviewpoint oriented color-shape histograsiescrip- combines object’s visual and geometrical features, soithat
tor and the system architecture. First, an object dataset cogives the maximum capability for object recognition and ac-
sisting more than 20 objects is built, where some objects hawurate pose estimation.
the same shape but different color information on the setfac To demonstrate our superior performance compared to
As shown in Figuréls, the platform could be rotated by differ-state-of-the-art, we design multiple challenging scersari
ent angles using a KUKA arm end-effector controller. With aSome special objects are chosen for the demonstrations to
stationary Kinect sensor mounted on the robot, the colartpoi show our VCSH's stability of recognition and also pose accu-
cloud of the object can be captured with respect to the differracy. There are some objects which have the same shape but
ent rotating angles. Furthermore, a calibration ball isluse the different visual information, some with texture or tee-
determine and optimize the final object model's coordimatio |ess surface. This challenge of common object recognition
In total, for each object, 25 frames of data wittfa8 an angle  and accurate pose estimation with high speed, could not be
step are captured at different poses. Some objects have teglved by existing techniques| [3,[4,[5/9, 8]. The recognized
same shape but different color information such as the colabjects’ 3D models are projected into the real scene witin the
and sprite tan and the different taste tea bags, see Hijjure 5estimated 6D poses as shown in Fighte 6. Notice that the
During object model building, note that, as we assumeellphone is not recognized since it has not been built in our
that the object is standing on the table, its bottom part datenodel database. All the trained objects could be correety r
is not in considered for the whole object model. During theognized and their estimated poses are highly accurate eThes
object patch data generation, the viewpoints are sampled omorks are partially based on Point Cloud LibrEry
the upper half sphere surface around the object with radius Our framework using VCSH can reach the correct recog-
of 0.8m. For everyl0° in elevation and ever®° in azimuth,  nition and pose as 92%, correct recognition but wrong pose
a synthetic viewpoint and the relative object patch data aras 6% and 2% for wrong recognition over 100 demonstra-
both generated. Thereforg,x 180 = 1260 synthetic views tions. For the running time performance evaluation, we com-
patch data for each object model are generated totally. in ogare with the result from [5] as shown in Table 1. Our testing
database, each viewpoint object patch data contains aroungsults run on AMD X6 3.0 GHz with 8GB of RAM, while
1000-2000 color points. Consequently, each object is reprg5] uses 6-core 3.2GHz i7 with 24GB of RAM.
sented as 1260 VCSH descriptors respect to different view-
points, which cover full potential poses of object. VCSH http: /7 wwu poi nt cl ouds. or g
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The proposed approach could be easily integrated into vari-
ous robotic perception system for common objects fast recog
nition and 6D pose estimation, where no matter these objects
are texture or textureless. A set of experiments is realized
where our proposed approach is proven to outperform recent
state-of-the-art methods by guaranteeing highly accutate
ject recognition, fast and accurate pose estimation asasell
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Fig. 8. Stability analysis with illumination change. 2

To further evaluate the pose accuracy using our proposed
approach, QUALISYS motion capture systEm; employed
to capture the ground truth of the sensor pose. The robot with
the Kinect senor moves around the stationary object and e 3]
timates the object’s pose. With these data transformed int
the world coordinate, we compare the estimated pose with
the ground truth to get the pose recovery accuracy, as shown
in Figure[T. The root mean square error during the whole 1(4]
frames are 23.4 mm in translation and 1.59 degrees in rota-
tion, while in work [5] are 50mm and 10 degrees respectively.

As color information is extracted for VCSH generation,
the stability with illumination changes is a crucial aspect
therefore needs to be analyzed. We utilize one light metdr]
DT1309 to estimate the object’s surrounding illumination i
tensity under an adjustable white LED array light. The $tabi
ity is evaluated by the differences between the estimated ob
jects’ VCSH under various illumination conditions and thei 6]
target VCSH (correct object and pose) in database. As illus-
trated from Figur€l8, when the illumination intensity exdee
50 lux, all the objects’ histogram differences remain under
220 and would be stable until 700 lux, which is the maximum
illumination intensity. Mention that, the object modeliag-  [7]
vironment is under around 230 lux, while most of the com-
mon indoor and outdoor light condition is from 150 to 400
lux. From the result of stability analysis, our recognitemmd
pose estimation framework, especially VCSH object descrip
tor is stable enough under varying illumination intensity.

(8]

4. CONCLUSION AND FUTURE WORK (0]
In this paper, we presented a novel framework consisting of a
global object descriptdviewpoint oriented Color-Shape His-
togram which combines color and shape information for both

Jhttp: /7 ww. qual 1 sys. cont

exhibiting the capability of dealing with environmentdu#
mination changes. Future work will focus on the pose opti-
mization and model building of wider-variety objects.
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