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This  paper  focuses  on  parameter  search  for multi-agent  based  models  using  evolutionary  algorithms.
Large  numbers  and  variable  dimensions  of  parameters  require  an  optimization  method  which  can  effi-
ciently  handle  a high  dimensional  search  space.  We  are  proposing  the  use  of complexification  as  it
emulates  the  natural  way  of evolution  by  starting  with  a small  constrained  search  space and  expanding  it
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as  the  evolution  progresses.  To  further  improve  performance  we suggest  and  experiment  with  methods
of self-adaptation  to  enable  the  algorithm  to adjust  its  parameters  individually  to the  problem  at  hand.
We  examined  the  effects  of  these  methods  on  an  EA  by evolving  parameters  for  two  multi-agent  based
models.

©  2015  Elsevier  B.V.  All  rights  reserved.
rtificial life

. Introduction

Agent-based models (ABMs) are among the most impor-
ant tools for exploring emergent behavior, a phenomenon that
escribes the behavior of a system, which cannot be explained
lone by the sum of its parts. Understanding and harnessing
mergence is very important because it allows to create com-
lex behavior, based on the interaction between relatively simple
omponents. One way to discover and examine emergence in a
omputer simulation is to calibrate the model parameters accord-
ngly. Underlying models often encompass a wealth of parameters,

aking the search of the sheer size of multi-dimensional space a
roblem. Due to interdependence and interaction between agents,
light changes in the model configuration can amount to very dif-
erent simulation outcomes, indicating the high level of complexity.
ven though evolutionary algorithms (EAs) are often designed and
sed to efficiently explore large parameter spaces, traversing those
an still take a considerable amount of time. In this paper we pro-
ose the use of complexification to improve the performance of
As used for parameter estimation of multi-agent based models.
n an earlier work [12] we gave evidence that evolving parame-
ers is directly influenced by the model’s complexity. Therefore it is
Please cite this article in press as: M.  Wagner, et al., Evolving agent-b
(2015), http://dx.doi.org/10.1016/j.jocs.2015.03.005

ssential for EAs to be flexible enough to handle complex models.
raditional EAs are forced to make assumptions about the prob-
em. Properties like the length and structure of genomes have to

∗ Corresponding author. Tel.: +65 98393967.

ttp://dx.doi.org/10.1016/j.jocs.2015.03.005
877-7503/© 2015 Elsevier B.V. All rights reserved.
be determined a priori and cannot be changed during the EA run.
However, complex systems can have a variable number and struc-
ture of parameters. Rule-based ABMs face the same issues. Rules
can consist of an arbitrary number of components like conditions
and actions. This makes finding optimized solutions very difficult if
those require a large number of components or complex rule sets.
Natural evolution is far more than just a cycle of recombining and
mutating genes. In order to advance from basic single-cell lifeforms
to complex organisms, the genotype of species has to be extended
[3,4]. Complexification is a substantial part of this process as it
allows for an organism to increase its genome size and to become
more versatile. By incrementally adding new genes organisms can,
over time, adapt to their environment and develop further char-
acteristics or skills. In nature this happens by gain-of-function
mutation, a type of mutation that increases the genome size and
confers new properties and eventually new functionality to the
organism. The increase in size most commonly happens by a ran-
dom duplication of parts of the genome. By using complexification
repeatedly the evolutionary process can cover a wider variation
of potential traits and functions of the individuals subjected to it.
We believe that complexification, as a form of incremental evolu-
tion, is able to improve the estimation of model parameters. We
want to validate this by conducting experiments on two  multi-
agent based models where we  test an evolution strategy against
ased models using self-adaptive complexification, J. Comput. Sci.

a redesigned version of itself which incorporates complexification.
This allows for a direct comparison of the evolutionary techniques.
Extending the EA to make use of complexification comes at the cost
of introducing more parameters. To mitigate this we propose and

dx.doi.org/10.1016/j.jocs.2015.03.005
dx.doi.org/10.1016/j.jocs.2015.03.005
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
dx.doi.org/10.1016/j.jocs.2015.03.005
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fgathered(�x), which expresses the relationship between gathered food
and lost or spent food. Similarly to the boid model, f (�x) is to be
maximized.

gatheredFood(hive)
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xperiment on mechanisms for self-adaptation of the additional
arameter by the EA itself. In the following parts of our work we first
rovide a short overview on the evolution of model parameters for
BM and complexification. Secondly, in Section 3 the benchmark
odels for testing our complexifying EA are introduced, followed

y a description of the EA and its mechanics itself in Section 4.
inally in Section 5 our experiments are described and concluded
ith a discussion.

. Related work

Evolution of model parameters in multi-agent based models has
een pioneered in [6,13], among others. It is very useful as a tool to
onfigure and explore the real life systems, which the models are
ased on.

One of its major applications of it is to detect and explore emer-
ent behavior that may  arise. Emergent behavior is a phenomenon
hat requires and indicates the level of complexity of a natural
r artificial system. In connection with ABMs it has recently been
xperimented with by [11]. In [12] the evolution of boid model
arameters for discovering forms of emergence, in relationship to
n objective fitness measure, was described. Furthermore it was
iscussed how the model complexity influences this process and
hat challenges it holds. We  learned from this work that, while

eaving the fitness measure unchanged, extending the model detail
nd thus increasing the number of possible configurations may
ave negative effects on the parameter evolution.

Our work continues this train of thought and argues how the
pparent difficulties can be approached. Complexification with
egard to EAs has been applied almost exclusively in evolving
rtificial neural networks (ANNs) [9], benefiting from their eas-
ly modifiable graph-like structure. Other applications include the
volution of strategies for single 3D agents [10] successfully proved
he superiority of incremental evolution by evolving the weights
ather than structure of the ANN that is controlling the agents
ovement.

. Agent-based models for experimentation

We  chose two multi-agent based models to test our hypothe-
is: the boid model, introduced in [5] and its further development,
he bee swarm model. The models we use are able to represent

ultiple species of agents to study cooperative and competitive
ehavior, which are important factors in the creation of emergence.
he emphasis is put especially on their effect on the survival rate
f the boids.

.1. Boid model

Our customized boid model, as described in [12], contains a sim-
le predator-prey scenario. Additionally to the boids, which are
ow considered prey, it also involves predators and food sources

or the boids, thus creating a simple food chain. The goal for which
o optimize the model parameters, is to maximize the boid survival
hance by having them graze the food sources and evade the preda-
ors as efficiently as possible. To add more strategic depth, the boids
an be grouped in up to three different species where all mem-
ers of one species have identical parameters. However, different
pecies can have different parameters. This is a generalization of
ooperation between multiple species as it occurs in nature among
ertain kinds of birds [7], among others. These species ignore each
Please cite this article in press as: M.  Wagner, et al., Evolving agent-b
(2015), http://dx.doi.org/10.1016/j.jocs.2015.03.005

ther by default when it comes to flocking behavior, but there are
ags, called “alliances”, which can be set to enable collective flock-

ng. Boid species have two options: either cooperate or to try to
urvive on their own. For this model we define a fitness function
 PRESS
onal Science xxx (2015) xxx–xxx

fsurvived(�x) in Eq. (1) as the number of boids which are still alive after
the simulation terminates at simulation time tstop. The argument �x
hereby denotes the parameter vector that will be used to initialize
the simulation.

fsurvived(�x) = |b ∈ aliveBoidststop | (1)

The challenge now is to find the following parameters, contained
in vector �x,  so that f (�x) is optimized:

1. The number of different boid species (in this case ranging from
1 to 3).

2. The five parameters regarding movement and flocking behavior:
avoidance, convergence, cohesion, momentum and sensor range.

3. The alliance flags between the boid species.

3.2. Bee swarm model

We  transformed the boids to a swarming model and added
dependencies between them to make it more suitable for explor-
ing complexification. According to its name, the model attempts to
give a simplified presentation of how a bee swarm works. Firstly,
the bees all originate from a hive, centered in the simulated world.
In order to sustain their colony it is necessary to look for food,
forage it and return it to the hive. The bees are facing two  chal-
lenges here: food sources e.g., flowers, vary in the amount of food
they provide and there are competitors present, eager to steal food
from the hive. Similar to the boid model, bees can be also divided
into species. This emulates the natural division of labor into work-
ers and drones. In contrast to nature, the groups can choose their
specialization by distributing points into three different skills: for-
aging, scouting and defending. Each skill may  have between 0
and 10 points invested and has been artificially equipped with
artificial caveats and benefits to create trade-offs and avoid the gen-
eration of perfect boids. Foraging skill increases carrying capacity
but penalizes defense while the defending ability acts conversely.
Scouting ability benefits sensory range and movement speed, but
takes away from both, defense and foraging skills. These are the
most important evolvable parameters in our model as they strongly
influence the bees behavior. The number of bee groups as well
as their share in the total bee population are two more evolvable
parameters. Remaining parameters are the following five, similar to
the predator-prey boid model: avoidance, convergence, cohesion,
momentum and size of neighborhood. The challenge here is to find
the following parameters, so that a given fitness function fgathered(�x)
in Eq. (2) is optimized:

1. The number of different bee groups (in this case ranging from 1
to 3).

2. The share of bees per group.
3. The skill distribution per group.
4. The five parameters regarding grouping behavior, as mentioned

above.

In our experiments we use a relative food gathering fitness
ased models using self-adaptive complexification, J. Comput. Sci.

fgathered(�x) =
spentAndLostFood(hive)

(2)

Fitness function of bee swarm scenario, relation between gath-
ered and spent food.

dx.doi.org/10.1016/j.jocs.2015.03.005
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ig. 1. Scheme of evolutionary algorithm, entry point of complexification high-
ighted.

. Complexification in evolutionary algorithms

The essence of complexification is to improve the potential fit-
ess of individuals by gradually extending their genome size or
tructure to allow for more diversity and more possible directions
o evolve, including specialization or improvement of existing fea-
ures. Typically this will be achieved by increasing genotype size or
hanging the relationship between genotype and phenotype. The
rst option directly translates into adding more possible combina-
ions of genes. The latter option means to not have a one-to-one
elation between both, but rather a n-to-one relationship where
enes can be reused and influence more than one phenotypical trait
t the same time.

The minimum requirement for integrating complexification into
n EA is a mechanism to extend the genome (see Fig. 1) and to
nsure that crossover operations between EA individuals, which
ave been altered by complexification, are handled in a meaning-

ul way [9]. The latter is especially important since a crossover
Please cite this article in press as: M.  Wagner, et al., Evolving agent-b
(2015), http://dx.doi.org/10.1016/j.jocs.2015.03.005

ay  encounter individuals of different genome length, resulting
rom complexification. In that case there are different ways to
xecute the crossover, which include only matching genes com-
on  in both chromosomes or using a randomized method, among

Fig. 2. Complexification of an EA individual, consi
 PRESS
onal Science xxx (2015) xxx–xxx 3

others. The difficulty here is to make sure that the resulting chro-
mosome is valid. Another option would be to only allow crossover
between chromosomes of the same length. In the following we
briefly describe how complexification is supposed to work within
the EA and give details about our implementation.

To implement and integrate complexification into our existing
EA the following adjustments have to be made. Firstly, it has to be
determined whether the chromosomes of the EA individuals are
extendable and, if so, how the extension should be performed. As
mentioned earlier, both scenarios use a real-valued vector as chro-
mosome, which encodes the parameters for up to three groups of
boid or bee agents respectively. In this case we can immediately
define that a chromosome of minimal size has to have only one full
set of parameters to completely specify the behavior for a single
boid or bee species. As depicted in Fig. 2 the EA can then complexify
a chromosome by duplicating the array representation of its genes
and appending the copy to itself. The chromosome now has dou-
bled its size which means that it encodes two species with identical
parameters. This guarantees that the newly extended chromosome
has a positive fitness and a valid configuration. Under the contin-
ued influence of mutation and crossover both parameter sets will
slowly diverge in their values, leading to differing behavior of the
respective species. The perpetual extension of genomes implies, for
the GA, an increased coverage of the search space without chang-
ing the number of individuals or generations. Secondly, we have to
define how the extension of individuals is handled by the EA. Like in
nature, complexification will occur randomly, more precisely every
individual has a chance per generation to be extended. This chance
is equal for all individuals and set before the EA starts. In Section 5
we will experiment with complexification chances, in the follow-
ing referred to as Pcomp, of 1%, 5%, 10% and 30% per individual per
generation to compare the effects of different probabilities. Finally,
the crossover has to be altered as well, in order to be able to operate
on a population with varying chromosome lengths. In this work we
decide to modify the selection to allow an individual to be crossed
only with another individual that has a genome of equivalent
length. This way the difficulty of how to interbreed chromosomes
of unequal length can be ignored. Interbreeding would necessitate
a mechanism to decide how to treat genes of one parent without a
counterpart in the other parent, if both are of different chromosome
length. As in [12] for the boid model, we again use the Java-based
simulation framework MASON [1] to create the bee simulation.
ased models using self-adaptive complexification, J. Comput. Sci.

Likewise, the EA framework ECJ [2] is used again for evolving the
model parameters. A disadvantage is that the framework does
not actively support a variable length of real-valued vector indi-
viduals. To compensate for this shortcoming, we  supply all EA

sting of parameter vectors as chromosomes.

dx.doi.org/10.1016/j.jocs.2015.03.005
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Table 1
Survival scenario: average and best fitness results of random search.

Complexity level Average fitness Highest fitness

1 1.33 67.8
2  3.03 40.48
3  1.44 28.6

Table 2
Survival scenario: average and best fitness results of the EA without complexification
values averaged over 5 EA runs.

Fixed complexity level Highest fitness Avg. fitness

1 39.4 24.2
2  29.0 20.8
3  31.0 20.7

Table 3
Survival scenario: average and best fitness results of the complexification runs val-
ues averaged over 5 EA runs.

Pcomp (%) Highest fitness Complexity Avg. fitness

1 72.0 1 35.0
ARTICLEOCS-337; No. of Pages 9
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ndividuals with a full set of genomes, capable of encoding the max-
mum number of boid or bee groups. Depending on the complexity
evel, which is contained in one of the genes, only the necessary
arts of the genotype will actually be used and evaluated, as seen

n Fig. 2.

. Experiments and results

In the following we will discuss the three experiments that
ad been conducted in order to validate the hypothesis. For each
xperiment a Monte-Carlo search was also executed, by sampling
andomly generated solutions. This allows us to make assumptions
bout the distribution and fitness of the solutions in the search
pace. The first experiment concerns a model, that has already been
xplored by EA in [12], and will be explored now again with the aim
o show how complexification can improve the results. Meanwhile
he second experiment is supposed to illustrate the efficiency of
elf-adapting complexification over conducting multiple separate
A runs.

.1. Boid model

The survival scenario is, to a great extent, identical to the one
escribed in [12]. There the EA was unable to find solutions for the
wo- and three-species configuration that were of equal quality
s the ones found for the one-species configuration, even though
he solutions of the latter are contained within the search spaces
f all three configurations. In short: if every species in a multi-
pecies solution has the same parameters, they will act as one
pecies. Therefore parameter search for a multi-species solution
as the potential to reach a fitness of the same or better quality as a
ne-species solution. To summarize, the objective here is to show
he effectiveness of complexification, as it is supposed to be able
o explore the search space more effectively and produce multi-
pecies solutions with at least the same fitness as single species
olutions.

.1.1. Monte-Carlo search
Since there are 70 boids in the scenario, the best fitness achiev-

ble is 70, given all of them survive. Our random search, as depicted
n Fig. 3, with a sample size of 250,000 found solutions with fitness
Please cite this article in press as: M.  Wagner, et al., Evolving agent-b
(2015), http://dx.doi.org/10.1016/j.jocs.2015.03.005

esults of up to 67. This indicates that it is possible to find near per-
ect solutions. However, more than 90% of all samples do not exceed

 fitness of 20. Therefore the major part of the solution space con-
ains very weak solutions. This also becomes evident by the very

Fig. 3. Monte Carlo search on the survival scenario.
5  71.0 1 28.1
10  70.4 2 23.3
30  69.2 3 27.2

low average fitness, as seen in Table 1. Like the EA in [12], the best
individual is a one-species solution. But on average the two-species
solutions come out the strongest with three-species solutions as the
second best.

5.1.2. Evolutionary algorithms
In our experiments we are using four different complexification

probabilities. These indicate the chance for an individual to increase
its complexity every generation. The chances we  used for Pcomp

are: 1%, 5%, 10% and 30%. Higher values accelerate the complexi-
fication process and push the EA population faster toward higher
complexity. Lower values on the other hand allow for more thor-
ough exploration of low complexity levels by exerting less pressure
on increasing the complexity. Both ways have advantages and dis-
advantages. So, it is important to find a middle ground between too
high and too low of a complexification chance, which can maximize
the quality of their solutions (Fig. 4).

The comparison between the two  configurations, as seen in
Tables 2 and 3, shows that complexification is superior to the
default EA in both, average and maximum fitness values. One signif-
icant shortcoming of the EA described in [12] was the incapability
to find high quality solutions within the space of multi-species indi-
viduals, even though they existed. With added complexification the
EA is now able to find multi-species individuals that are qualita-
tively comparable to the one-species individuals. Another aspect
is the population dynamic, in Fig. 5 we can see how a high value
for Pcomp changes the composition of the population from entirely
one-species individuals gradually to a majority of three-species
individuals in the end.

5.2. Bee swarm model

The second series of experiments was  conducted with the bee
swarm model. In contrast to the boid model this one has been
designed to require multiple bee species for achieving high quality
solutions. What this means is that solutions with two  and three
species enable the bees to have more than just one forager or
ased models using self-adaptive complexification, J. Comput. Sci.

defender species and thus provide better strategies for the bees to
fulfill their tasks as stated in Section 3.2. As a result solutions with
two or three bee species should be preferred by the EA. The objec-
tive here is to show that complexification can deliver a solution,

dx.doi.org/10.1016/j.jocs.2015.03.005
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Table 4
Gathering food scenario: average and best fitness results of random search, values
averaged over 5 EA runs.

Complexity level Average fitness Highest fitness

1 4.01 8762

F
w

Fig. 4. Left: survival scenario without complexification, ri

ith the same quality and in shorter time as an EA without com-
lexification that is only searching on one specific complexity level
t a time. At the beginning of the simulation 25 bees are placed on
he two-dimensional field. The competitors spawn randomly, with

 chance of 1% for one competitor per simulation tick, for a total
uration of 3000 simulation steps. The fitter the bee skill sets are,
he more efficiently they can keep their competitor numbers small
nd away from their hive, where their food reserves are stored.

.2.1. Monte-Carlo search
Similar to the boid model we executed a random search to

et an idea of the shape and structure of the fitness landscape.
he result of 200,000 samples indicates that the fitness landscape
or the most part consists of very low-fitness individuals. The
arameter configurations of the samples suggest that the search
pace is symmetrical. That means many solutions result in equiv-
lent configurations where only the order is different in which
he parameters are encoded. As an example, a solution with the
onfiguration: 1st species – defender, 2nd species – forager corre-
Please cite this article in press as: M.  Wagner, et al., Evolving agent-b
(2015), http://dx.doi.org/10.1016/j.jocs.2015.03.005

ponds to the solution: 1st species – forager, 2nd species – defender
ecause they are the same. This indicates that the search space
ight have than one global optima. The random search shows how

ifficult it is to find individuals with above average fitness. Even

ig. 5. Survival scenario: Light colors – relationship between number of individuals with r
ith  respective complexity level.
2  64.27 135,856
3  26.81 125,523

though the best individual found has a fitness of 135,856 the aver-
age fitness of all samples is vanishingly small, as seen in Table 4.
This is a significant discrepancy, caused by the huge amount of sam-
ples with a low fitness as seen in Fig. 6. Note that in the inner graph
the x-axis starts with the fitness 2, because the number of indi-
viduals with fitness 0 and 1 are too large to be depicted on scale.
This is even more emphasized by the very low frequency of fitter
individuals found, as seen in those figures.

5.2.2. Experiments
For the following experiments the EA used a population of 50
ased models using self-adaptive complexification, J. Comput. Sci.

individuals and evolved them over a span of 100 generations. The
simulation to evaluate an individual’s fitness is repeated as often as
necessary for the standard error of the samples to fall below a pre-
defined value. Each EA run is repeated 5 times and the results show

espective complexity level. Dark colors – relationship between fitness of individuals

dx.doi.org/10.1016/j.jocs.2015.03.005
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Fig. 6. Random search on the gathering food scenario. The inner diagram starts at
x  = 2 and has a different scaling to show the huge difference in numbers between
individuals with fitness of 0 or 1 and individuals with higher fitness.

Table 5
Gathering food scenario: best fitness results of the EA without complexification,
values averaged over 5 EA runs.

Fixed EA complexity level Highest fitness Average fitness

1 6554 421
2  297,926 81,055

t
w
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w
c
l
t
f
l
f
l
t

Table 6
Gathering food scenario: best fitness results of the complexification runs, values
averaged over 5 EA runs.

Pcomp (%) Highest fitness Complexity Average fitness

1 305,547 2 28,116
5  245,079 2 17,551

10  261,772 3 42,588
30  291,573 3 48,197

fies two criteria. First, Pcomp has to be large enough to explore the
3  337,406 158,102

he average over the repetitions. Similar to the survival experiment,
e again use EAs with four different Pcomp. Here we can observe

nteresting behavior: even though the average fitness achieved
ith the complexification is lower than that with the EA without

omplexification (see Fig. 7), the highest fitnesses is on an equal
evel (see Tables 5 and 6). The advantage of complexification here is
hat its search covers the space of all complexity levels and there-
ore does not need to run separate EAs for different complexity
evels. This is even more important when the model incorporates
ar more than just three different complexity levels. The only chal-
Please cite this article in press as: M.  Wagner, et al., Evolving agent-b
(2015), http://dx.doi.org/10.1016/j.jocs.2015.03.005

enge here is to find a balanced values for Pcomp, high enough to drive
he EA population toward more complexity to expand the search

Fig. 7. Gathering food scenario: left – with sta
Fig. 8. Highest fitness results for a series of Pcomp values.

to more areas on one hand and low enough to allow for a thorough
exploration of low complexity configurations on the other hand.

The best solutions the EA with fixed complexity levels could find,
of two  and three species respectively, were nearly identical. They
basically divided the bees into a forager and a defender group with
a ratio of 1/3 being defenders and 2/3 foragers. Even within the
individuals that contained three species, the third one was limited
to one or none bees, which leaves it is influence negligible. In con-
trast, the complexification showed a wider variation in behavior.
The third species, while still a minority, were able to reach up to
10% of the populations share and had thereby more influence on the
behavior as a whole. Furthermore, defending bees were not only
wandering around the proximity of the hive to intercept possible
opponents, as they did in the fixed complexity EA runs, but could
also stay put at a certain position to act as sentinels rather than mov-
ing guards. Fig. 8 shows a range of values for Pcomp with the highest
fitness achieved using each of them. It exhibits close resemblance to
a Gaussian distribution, which indicates the existence of an optimal
complexification probability. This sweet spot has Pcomp that satis-
ased models using self-adaptive complexification, J. Comput. Sci.

search space within a give time limit, but still small enough to not
degenerate the evolution into a random search.

ndard EA, right – with complexification.

dx.doi.org/10.1016/j.jocs.2015.03.005
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ig. 9. Adaptive complexification experiments of gathering food scenario: left – wi

.3. Automatic adaptation of the complexification rate

Our previous experiments, the bee swarm model in particular,
ndicate that convergence and fitness results of the complexi-
cation EA are greatly influenced by the value of Pcomp. A low
robability provides ample time for optimization within the ini-
ial search space while higher rates benefit a faster expansion into

ore complex solutions. To avoid having to individually tailor Pcomp

o every new problem, we want to explore methods of automatic
daptation. One possibility is to add the rate of the chromosome as

 new parameter which is also evolved by EA. A side effect to this
s that now Pcomp is not identical for all individuals anymore, but
niquely fitted to each of them. It is not initially clear whether this

s beneficial or detrimental to the optimization process.

.3.1. Experiments
For the following experiments we use the bee swarm model

gain as it offers more room for improvement than the boid model
ptimization. The latter already achieves results close to the global
ptimum, given that no more boids can survive than there are ini-
ially in the scenario whereas bee swarm model has no predefined

aximum value of gathered food. The first experiment is designed
Please cite this article in press as: M.  Wagner, et al., Evolving agent-b
(2015), http://dx.doi.org/10.1016/j.jocs.2015.03.005

o linearly increase Pcomp to obtain a benchmark that we can
ompare with the second experiment. The linear increase starts
ith Pcomp set to 0.01 and increases by 0.03 every five generations

or all individuals at the same time. At the end of running for 50

Fig. 10. Adaptive complexification experiments of gathering food scenario: left 
ar increase of Pcompl , right – with evolving Pcompl values averaged over 5 EA runs.

generations it will reach 0.28. All other parameters are assumed to
use the values we previously tested in separate runs in Section 5.2.
In the second experiment, Pcomp is included in the chromosomes
of the EA and evolved alongside all other parameters. At EA initial-
ization Pcomp is randomly set for each chromosome, it can assume
values between 0 and 1 and is subjected to Gaussian mutation
with a standard deviation of 0.05. All other simulation parameters
will remain the same as for the previous experiments.

In the following we compare the results of both methods. The
linear increase of Pcomp causes a gradual rise of EA chromosomes
with higher complexity, as seen in Fig. 9. Though Pcomp reaches val-
ues as high as 28% probability of complexification per individual per
generation, the EA finishes with populations that have, on average,
still 60% of individuals with complexity level of 1. The other chro-
mosomes add up to about 35% with complexity level 2 and 5% with
complexity level 3. As is visible in the Fig. 9, there are still a lot of low
complexity individuals because the high complexification proba-
bilities for Pcompl are only reached in the final generations of the
evolutionary algorithm. In contrast, the inclusion of Pcomp into the
evolution exhibited a very strong convergence toward a high com-
plexification pressure, and in consequence, causing a large number
of solutions of higher complexity as soon as after only five to six
ased models using self-adaptive complexification, J. Comput. Sci.

generations.
If we look at how the average fitness develops during the experi-

ments, as depicted in Fig. 10, we see that the linear increase method
achieves an average fitness of close to 225,000 units of gathered

– linear increase, right – evolution of Pcomp values averaged over 5 EA runs

dx.doi.org/10.1016/j.jocs.2015.03.005
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ig. 11. Simulation screenshots: left – one species configuration found by linear inc
ver  5 EA runs. (For interpretation of the references to color in the text, the reader 

ood. That amount considerably exceeds the results of each of the
revious experiments with fixed values for Pcomp of 1%, 5%, 10% and
0%. It furthermore suggests that dynamic complexification prob-
bilities are evidently more suitable for efficiently extending the
earch space, rather than fixed values, which do not change over
he course of the optimization, or no complexification at all. By
omparing linear increase with the results of the evolution of Pcomp

e find that the evolutionary method improves the optimization
esults even further, see Fig. 7. The amount of food gathered reaches
s high as 280,000 units on average. It is also interesting to note that
inear increase converges after about half of all generations passed.
t then only improves marginally whereas the evolutionary method
xhibits a more steady increase of the fitness until it converges in
he last ten generations.

The differences between the solutions found by linear increase
nd evolutionary method become apparent when we  take a look at
he resulting simulation configurations. One of the strongest con-
gurations found by linear increase consists of one bee species,
ntirely specialized on foraging. This strong focus on pure maxi-
ization of foraging gain allows the bees to compensate the losses

ncurred by the competitors, as seen in Fig. 11 on the left side. On
he other hand the solution by the evolutionary method does not
iffer very much from the ones found by the previous complexifica-
ion experiments with static values for Pcompl . However it manages
o yet optimize the parameters better. In Fig. 11 on the right side we
gain see three species where the largest group (shown in red) is
pecialized on foraging and scouting, to capitalize on the movement
peed which is proportional to scouting skill, while only having
xtremely rudimentary defending capabilities. The much smaller
Please cite this article in press as: M.  Wagner, et al., Evolving agent-b
(2015), http://dx.doi.org/10.1016/j.jocs.2015.03.005

econd group (green) with only a single bee entirely specializes on
oraging with no defending skills at all whereas the last group (blue)
urely serves as highly skilled defenders, with a weaker specializa-
ion in scouting benefit from the movement speed bonus again. One

able 7
athering food scenario: best fitness results of the complexification runs.

Method Highest fitness Complexity Average fitness

Linear increase 350,484 1 221,000
Evolving Pcompl 389,212 3 281,000
 right – three-species configuration found by evolutionary method values averaged
rred to the web version of this article.)

interesting observation is that the scouting skill was never used to
primarily specialize in but, if at all, only to enhance either foraging
or defending capabilities by making use of the increased movement
speed. This may  be caused by the world size which is evidently
small enough for the bees to not require any dedicated scouts for
finding food.

6. Discussion and future work

We  conducted experiments on two  multi-agent based models
to examine the effects of complexification. Both models benefited
from its use, either in the increase of fitness or a higher diver-
sity in the resulting emergent behavior. The experiments in our
work demonstrate that complexification improves evolutionary
algorithms when the use of genomes with variable length and
complexity is possible. Due to its adaptive nature it can explore
a search space more dynamically by starting off with simple chro-
mosomes, and then gradually increasing the chromosome size to
extend the search space and respond to the challenges of the prob-
lem at hand. Another finding in this work is that the value of the
complexification probability Pcomp can have a big impact on quality
of the optimization result. A probability that is too high may  discard
simple solutions too easily by pushing too fast toward increased
chromosome sizes. The inverse case happens when the probabil-
ity is too low, most chromosomes remain rather short in length
which renders the algorithm unable to find any global optima that
require more complex solutions and longer chromosomes to find.
We also showed that adaptive techniques are a sensible tool for let-
ting the evolutionary algorithm find the optimal complexification
rate automatically to remedy the disadvantages of fixed complex-
ification rates. Apart from evolving the value for Pcompl , another
possible way  for future research is to use a metric that uses a rela-
tionship between complexity of chromosomes and their fitness to
determine whether a higher or lower complexification chance is
needed to improve convergence toward the desired fitness values.
A third option is to use the pattern producing networks [8]. Rather
ased models using self-adaptive complexification, J. Comput. Sci.

than having each phenotype represented by one or more genes,
this approach favors a mapping between genotype and phenotype,
which is also more true to evolution in nature. Complexification
would work as an alteration of the network that represents the

dx.doi.org/10.1016/j.jocs.2015.03.005
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