

VIRTUAL TEST DRIVE
PROVISION OF A CONSISTENT TOOL -SET

FOR [D,H,S,V]-IN-THE-LOOP

Kilian von Neumann-Cosel1,2, Marius Dupuis3, Christian Weiss2

1) INI.TUM, 85055 Ingolstadt, Germany
neumannc@ini.tum.de

2) AUDI AG, 85045 Ingolstadt, Germany

christian.weiss@audi.de

3) VIRES Simulationstechnologie GmbH, 83026 Rosenheim, Germany
marius@vires.com

DSC 2009 Europe – Monaco – 4 – 6 February 2009

Abstract

This paper focuses on the concepts behind a tool-set developed for the provision of a (virtual)
test environment which has been specified and developed by the authors and which is being
used for the development of active safety and driver assistance systems in the automotive
industry. The key aspect behind the tool-set is a wide range of applications which shall be
covered consistently throughout the entire development process.

Résumé

DSC 2009 Europe – Monaco – 4 – 6 February 2009

The Task

Driving simulators tend to be specialized packages of software and hardware. They either
concentrate on soft real-time issues with a high degree of interactivity, on hard real-time
conditions or on non real-time data generation.

In the automotive industry, and especially in the use cases described in this paper, various
types of simulators are increasingly used for the development of active safety and driver
assistance systems. These systems have become key properties of the resulting product, and
are, therefore, involved in the development of a new vehicle from early concept stages up to
prototype and series testing.

Figure 1 illustrates the development stages vs. the test tools used during the stages:

Figure 1: Development stages vs. test tools

� Software-in-the-loop (SiL) systems may be used for early testing of algorithms and for

the verification of test data at a later stage. SiL testing will be performed with
automated software setups using driver and vehicle models for both the own ship (i.e.
the vehicle under investigation) and the surrounding environment (vehicles,
pedestrians, objects etc.). With SiL systems, a large number of tests may be run.

� Driver-in-the-loop (DiL) systems may be used for interactive testing of algorithms
within test scenarios that have been identified as “interesting” during the earlier SiL
stage. They, typically, consist of a full-size mockup with virtual environment but may
also be reduced to some kind of single-computer solution with only a joystick or a
game-wheel connected as input device. Due to the real-time constraints of the human
being, the maximum number of interactive tests at reasonable costs is limited.

� Vehicle-in-the-loop (ViL) systems will be used at an even later stage when the focus is
shifting to the limits of vehicle dynamics or safety and assistance systems. Also, data
may be broadcast into the vehicle's bus systems for already attached devices which are
under investigation. Another key aspect of the ViL stage is the complete realism of the
vehicle behavior which helps reducing simulator sickness considerarbly.

� Hardware-in-the-loop (HiL) systems will be from the availability of prototypes of
“black-boxes” up to the testing of systems which are used as series standard.

The common property of the above configurations is that “test drives” are performed on more
or less virtual levels. Therefore, the effort of this paper's authors to standardize and increase

DSC 2009 Europe – Monaco – 4 – 6 February 2009

portability of test scenarios and resulting data between the simulators and, hence, throughout
the development stages, is called the “Virtual Test Drive” (VTD).

Harmonizing Data Flows

The functionality of active safety and assistance systems is based on data collected by various
kinds of sensors. The data collected by the sensors is typically processed by some kind of
algorithms or “functions” and the resulting actions are introduced into the system by various
kinds of actuators (see figure 2)

Figure 2: Data flow between simulation environment, sensors, functions and actuators

In the simulation, most items which are to be sensed or which influence the sensing have to be
made available as simulated data sets. For pure software solutions, vehicle data may be
provided by a large range of commercial vehicle dynamics software packages of varying
complexity. Environment data may be provided by a virtual environment simulation package
generating data of the road network, of other participants, i.e. vehicles, pedestrians and
obstacles, and ancillary data, e.g. weather conditions. It may be required as sets of “perfectly
sensed” digital data and/or as image data (for image processing sensors).

All data must be available throughout all stages of the development either as run-time data
(i.e. computed on demand) or as playback data (i.e. computed once and fed back into the
system on demand).

The system whose development and actual use is described in this paper tries to harmonize
the data generation, distribution, storage and playback means while adapting them to the
actual simulator setup.

DSC 2009 Europe – Monaco – 4 – 6 February 2009

Figure 3 illustrates the data flows that are typically required between the various simulator
setups:

Figure 3: Data flow between simulator setups

Within a simulator setup, a high degree of flexibility concerning the components involved is
required. As mentioned above, various vehicle dynamics packages or driver models may be
used. Therefore, not only the data flows between the basic simulator types have to be
harmonized, but also the data flows within a simulator. New components of any kind must be
provided with an easy means to attach, adapt and interact with the simulator (see figure 4).

Figure 4: Harmonized I/O between VTD and other components

The Tool-Set

Corresponding to the data flows identified above, the design of the “Virtual Test Drive” tool-
set is based on a distinction between core components of the simulation, extended
components and target components.

DSC 2009 Europe – Monaco – 4 – 6 February 2009

Core components make up the actual simulation framework which handles the data flow
within the simulator and comprises basic functionality like record, playback, data collection,
and data distribution. Extended components are the vehicle and environment simulation
(dynamics, driver, traffic, IG). Target components are the ones which will actually be
contributed and/or modified by the user in his role as developer of an active safety or
assistance system (sensors, functions and actuators). See also figure 5.

Figure 5: The categories of VTD components

As one can see from the figure, it makes sense to introduce a high degree of modularity within
each class of components, so that adaptations to the various use-cases (see title of this paper)
and user-specific components can be performed fast, consistent and with minimum impact on
the system architecture.

In this context, consistency is the primary key since it shall be possible to use all test setups,
use cases etc. throughout the entire range of applications with seamless adaptation to the
actual target configuration.

The tool-set consists of a core application, so-called TaskControl, and a set of attached
components. The TaskControl controls, conditions and handles all data flows within the
simulator setup. In addition, the simulator's state is being controlled.

Internally, the TaskControl is further modularized so that software modules exist for single or
various instances of:

� communication interfaces
� players (all participants)
� environment
� cameras
� output devices
� data sets

DSC 2009 Europe – Monaco – 4 – 6 February 2009

The virtual environment of the simulation consists, as usual, of some static database and
dynamic elements. Key environment elements for active safety and assistance systems are the
own vehicle and the other participants, all referred to hereafter as “players”.

The players may be realized as a mixture of external and internal players with the latter being
generated by a traffic simulation and the former being controlled by external sources. These
external players provide the main distinction between [D, H, S, V]-in-the-loop. They are
equipped with a so-called “mock-up module” which is the physical interface between player
input, player dynamics and player output.

So, once again emphasizing the players, the different use cases are realized as follows:

 software-in-the-loop
(SIL)

driver-in-the-loop
(DIL)

hardware-in-the-loop
(HIL)

vehicle-in-the-loop
(VIL)

driver model software human software human

vehicle dynamics software software software real

mock-up none various
(game wheel,
joystick, full-scale
simulator)

various
(real-car I/O devices)

real

Pedestrians, who make up another large fraction of players, are in all cases assumed to be
pure software models.

With the actual distinction between the applications taking place at the I/O level of the
players, the influence of additional setup-specific components on the data flows within and
outside the simulator can be neglected. Data sinks and source just need to comply with a
narrow set of harmonized communication and data protocols.

Communication and Data Protocols

The data flows in the Virtual Test Drive are based on three harmonized definitions:
1) OpenDRIVE, an industry standard for the description of road networks
2) “Generic Simulation Interface” (GSI) for run-time data
3) “Simulation Control Protocol” (SCP) for control data

All definitions are well documented and open to each user (for OpenDRIVE, see
www.opendrive.org).

In the tool-set described here, control data has been defined as an ASCII data stream
containing an XML-formatted set of commands. This instruction set and its network format
have been named “Simulation Control Protocol”. It contains genuine simulation control
commands (like start, stop), configuration commands (e.g. ports, data flows), environment
control commands (e.g, maneuvers for traffic vehicles) and target control commands (e.g.
actions for a safety system). So, it basically comes as a language for traffic and experiment
control.

DSC 2009 Europe – Monaco – 4 – 6 February 2009

With the syntax being XML, commands can easily be scripted and understood even by casual
users of the system. Tools allowing the direct input of plain-text command sequences into the
system facilitate further the interaction with the system. The hierarchy of XML provides a
comfortable means to make commands only available to certain components of the tool-set by
having them interpret only the XML tags they know and skip any unknown tags and their
respective children. So, users only have to learn the commands actually affecting their use
cases.

For the run-time data binary data flows are preferred due to higher throughput. The tool-set
described here consists of some internal data flows between components which already
existed when the project started, and an “outside” world which was designed according to the
different use-cases and which could be provided with a harmonized data interface.

The data protocol arising from this harmonization is the so-called “Generic Simulation
Interface” (GSI) which is an abstract super-set of all data that may be required by outside data
consumers (like sensors) from the virtual environment, mock-ups etc. This GSI is
complemented by a GSI-I which describes the data flow from outside components into the
tool-set (with the -I meaning “in”).

Data Recording

As stated at the beginning of this paper, a means is required to port test data from one
application to another (e.g. from DIL to HIL). This may be done on two levels:

� Scenario Definition
� Data Recording

Using harmonized scenario definitions, as is being done in the tool-set, guarantees that test
scenarios may be run on all test setups. However, each setup may use different components
(e.g. different vehicle dynamics packages), so that the resulting run-time data may differ
considerably.

This problem is overcome by a data recording functionality within the TaskControl which
records all data of the virtual environment that may change during the simulation of a scenario
(players, objects, environment data etc.).

In order to keep data volumes at a minimum, all that can be derived from this data within the
core components of the tool-set is not being recorded. At the playback stage which may be
run at any of the foreseen setups, the full data content will be re-created from recorded and
derived data and all interfaces, basically reduced to the SCP and GSI, will be fed with data as
if they were running in a live simulation.

So, coming back to the original intention of the tool-set and the work performed during its
creation, it will be possible to run one of the early SIL tests that have been used for the
definition of e.g. an active safety system, “some” time later on the actual hardware in a HIL
and verify the algorithms put into hardware.

DSC 2009 Europe – Monaco – 4 – 6 February 2009

Usability

Usability of the tool-set has been one of the key aspects during its design. Users vary from the
ones who just want to run pre-defined scenarios in order to generate, e.g. some video data, to
the ones who want to interface with the tool-set in order to control simulations and manipulate
run-time data.

The control and run-time data interfaces have been described above. On top of this, the tool-
set is complemented by an API which allows the user to write his own components (e.g.
sensors) and attach them as libraries to various manager processes (e.g. sensor manager). The
sometimes painful task of dealing with data flows, ports, network etc. on a low level is hidden
from the user and he may concentrate on using abstracted data interfaces and extending
methods provided by the libraries.

Running Installations

The Virtual Test Drive started at the end of 2007 and is meanwhile being used in all types of
applications referred to in this paper. Separate papers at DSC 2009 will be giving a deeper
insight into the actual use of VTD.

References

[1] OpenDRIVE – An Open Standard for the Description of Roads in Driving Simulations, M.
Dupuis, VIRES Simulationstechnologie GmbH, H. Grezlikowski, Daimler AG, Proceedings
of the DSC 2006.

[2] Evaluation of an Active Safety Light - Using Virtual Test Drive within a Vehicle in the
Loop Simulator, von Neumann-Cosel e.a., INI-TUM / Audi AG, Germany, Proceedings of the
DSC 2009

[3] Virtual Testing of an Image Processing ECU - Using Virtual Test Drive within a
Hardware in the Loop Simulator, von Neumann-Cosel e.a., INI-TUM / Audi AG, Germany,
Proceedings of the DSC 2009

