VIRTUAL TESTDRIVE
PROVISION OF A CONSISTENT TOOL -SET
FOR [D,H,S,V]-IN-THE-LOOP

Kilian von Neumann-Coset?, Marius Dupuis®, Christian Weis<

1) INL.TUM, 85055 Ingolstadt, Germany
neumannc@ini.tum.de

2) AUDI AG, 85045 Ingolstadt, Germany
christian.weiss@audi.de

3) VIRES Simulationstechnologie GmbH, 83026 Rosenh&ermany
marius@vires.com

DSC 2009 Europe — Monaco — 4 — 6 February 2009

Abstract

This paper focuses on the concepts behind a toaleseloped for the provision of a (virtual)
test environment which has been specified and dpeel by the authors and which is being
used for the development of active safety and drassistance systems in the automotive
industry. The key aspect behind the tool-set isigewange of applications which shall be
covered consistently throughout the entire devekgrprocess.

Résumé

DSC 2009 Europe — Monaco — 4 — 6 February 2009

The Task

Driving simulators tend to be specialized packagkesoftware and hardware. They either
concentrate on soft real-time issues with a higgree of interactivity, on hard real-time
conditions or on non real-time data generation.

In the automotive industry, and especially in tise gases described in this paper, various
types of simulators are increasingly used for tbgetbpment of active safety and driver

assistance systems. These systems have becomeodpeyties of the resulting product, and

are, therefore, involved in the development of & nehicle from early concept stages up to

prototype and series testing.

Figure 1 illustrates the development stages vstetstetools used during the stages:

>
>

test complexity

development stage -
Figure 1: Development stages vs. test tools

e Software-in-the-loop (SiL) systems may be usecetoty testing of algorithms and for
the verification of test data at a later stage. &hkting will be performed with
automated software setups using driver and velmacdels for both the own ship (i.e.
the vehicle under investigation) and the surrougdienvironment (vehicles,
pedestrians, objects etc.). With SiL systems, gelaumber of tests may be run.

e Driver-in-the-loop (DiL) systems may be used fotenmactive testing of algorithms
within test scenarios that have been identifiediateresting” during the earlier SiL
stage. They, typically, consist of a full-size moplwith virtual environment but may
also be reduced to some kind of single-computeuti®ol with only a joystick or a
game-wheel connected as input device. Due to thetiree constraints of the human
being, the maximum number of interactive test®asonable costs is limited.

e Vehicle-in-the-loop (ViL) systems will be used &t @ven later stage when the focus is
shifting to the limits of vehicle dynamics or sgfeind assistance systems. Also, data
may be broadcast into the vehicle's bus systemalfeady attached devices which are
under investigation. Another key aspect of the $tihge is the complete realism of the
vehicle behavior which helps reducing simulatokisess considerarbly.

e Hardware-in-the-loop (HIL) systems will be from tla@ailability of prototypes of
“black-boxes” up to the testing of systems which @sed as series standard.

The common property of the above configurationthias “test drives” are performed on more
or less virtual levels. Therefore, the effort oistpaper's authors to standardize and increase

DSC 2009 Europe — Monaco — 4 — 6 February 2009

portability of test scenarios and resulting dataveen the simulators and, hence, throughout
the development stages, is called the “Virtual Taste” (VTD).

Harmonizing Data Flows

The functionality of active safety and assistangsesns is based on data collected by various
kinds of sensors. The data collected by the sensangically processed by some kind of
algorithms or “functions” and the resulting acticare introduced into the system by various
kinds of actuators (see figure 2)

Simulation Environment

Sensar Interface (OUT)
Feedback (IN]

Sensor Framework Actuator Framework
Sensor 1 — Function — Actuator
Sensor 2 — Function — Actuator
Sensor n — Function — Actuator

Figure 2: Data flow between simulation environment, sensfors;tions and actuators

In the simulation, most items which are to be seémgenhich influence the sensing have to be
made available as simulated data sets. For putevaef solutions, vehicle data may be
provided by a large range of commercial vehicle aiyits software packages of varying

complexity. Environment data may be provided byrtual environment simulation package

generating data of the road network, of other pigdnts, i.e. vehicles, pedestrians and
obstacles, and ancillary data, e.g. weather camditilt may be required as sets of “perfectly
sensed” digital data and/or as image data (for @pagcessing sensors).

All data must be available throughout all stageshef development either as run-time data
(i.e. computed on demand) or as playback data domputed once and fed back into the
system on demand).

The system whose development and actual use isiloedan this paper tries to harmonize
the data generation, distribution, storage andhaely means while adapting them to the
actual simulator setup.

DSC 2009 Europe — Monaco — 4 — 6 February 2009

Figure 3 illustrates the data flows that are tylyceequired between the various simulator
setups:

e I p— [e
| ! — . i
| 1

| HIL : Record Data i s :
:'.'.’_'I.’_'_'.’_'_'.’I_'.‘l B —_— 3 :‘:J:::::::::::;
: VIL s ————— = ! VIL |
ettt iatateleletel G ° |:> Scenarios |:> ° ot Ialeieieletetutetetet
| : —_— T
| DIL ' B S — ai DIL :
\IoIoIzooiizn 2 Configuration > \IaoIIIzIiiiiz;
i siL —_— 5 siL
______________ b oo cmcmmm oo
Data Generation Data Consumption

Figure 3: Data flow between simulator setups

Within a simulator setup, a high degree of flexipiconcerning the components involved is
required. As mentioned above, various vehicle dyoampackages or driver models may be
used. Therefore, not only the data flows between lihsic simulator types have to be
harmonized, but also the data flows within a sinaulaNew components of any kind must be
provided with an easy means to attach, adapt @achict with the simulator (see figure 4).

VTD Task Control

' 3

- -

—> Driver Model & Vehicle Dynamics —>

—> 3rd party Components —>

v

Figure 4: Harmonized 1/O between VTD and other components

The Tool-Set

Corresponding to the data flows identified abote, design of the “Virtual Test Drive” tool-
set is based on a distinction between core compsneh the simulation, extended
components and target components.

DSC 2009 Europe — Monaco — 4 — 6 February 2009

Core componentsmake up the actual simulation framework which hesmdhe data flow
within the simulator and comprises basic functigpdike record, playback, data collection,
and data distributionExtended componentsare the vehicle and environment simulation
(dynamics, driver, traffic, 1G)Target componentsare the ones which will actually be
contributed and/or modified by the user in his rake developer of an active safety or
assistance system (sensors, functions and actuaders also figure 5.

Scenario OpenDRIVE confi Visual
Description Database 9 Database

IR .

Traffic Driver Model & Image
Simulation Vehicle Dynamics Generator

VTD Task Control m
L’

Playback

Sensors|—> Function I—'Actuators|—> SYbee

— video

Operator
Station

extended

target

Figure 5: The categories of VTD components

As one can see from the figure, it makes sensgtoduce a high degree of modularity within
each class of components, so that adaptationeteatious use-cases (see title of this paper)
and user-specific components can be performeddassistent and with minimum impact on
the system architecture.

In this context, consistency is the primary keycsiit shall be possible to use all test setups,
use cases etc. throughout the entire range ofcapipins with seamless adaptation to the
actual target configuration.

The tool-set consists of a core application, stedallaskControl, and a set of attached
components. The TaskControl controls, conditiond aandles all data flows within the
simulator setup. In addition, the simulator's siateeing controlled.

Internally, the TaskControl is further modularizthat software modules exist for single or
various instances of:
e communication interfaces
players (all participants)
environment
cameras
output devices
data sets

DSC 2009 Europe — Monaco — 4 — 6 February 2009

The virtual environment of the simulation consisds, usual, of some static database and
dynamic elements. Key environment elements fovadafety and assistance systems are the
own vehicle and the other participants, all ref@t@hereafter as “players”.

The players may be realized as a mixture of extemnd internal players with the latter being
generated by a traffic simulation and the formeandeontrolled by external sources. These
external players provide the main distinction betwgD, H, S, V]-in-the-loop. They are
equipped with a so-called “mock-up module” whichthie physical interface between player
input, player dynamics and player output.

So, once again emphasizing the players, the difftaree cases are realized as follows:

software-in-the-loog driver-in-the-loop hardware-in-the-loop vehicle-in-the-loop
(SIL) (DIL) (HIL) (VIL)

driver model software human software human

vehicle dynamics software software software real

mock-up none various various real
(game wheel, (real-car I/O devices)
joystick, full-scale
simulator)

Pedestrians, who make up another large fractioplafers, are in all cases assumed to be
pure software models.

With the actual distinction between the applicasidaking place at the I/O level of the
players, the influence of additional setup-speatficnponents on the data flows within and
outside the simulator can be neglected. Data samkk source just need to comply with a
narrow set of harmonized communication and dattopots.

Communication and Data Protocols

The data flows in the Virtual Test Drive are basedhree harmonized definitions:
1) OpenDRIVE, an industry standard for the descriptbroad networks
2) “Generic Simulation Interface” (GSI) for run-timata
3) “Simulation Control Protocol” (SCP) for control dat

All definitions are well documented and open to heagser (for OpenDRIVE, see
www.opendrive.org).

In the tool-set described heregntrol data has been defined as an ASCIl data stream
containing an XML-formatted set of commands. Timstiuction set and its network format
have been named “Simulation Control Protocol”. dinains genuine simulation control
commands (like start, stop), configuration commafelg. ports, data flows), environment
control commands (e.g, maneuvers for traffic vedsland target control commands (e.g.
actions for a safety system). So, it basically corag a language for traffic and experiment
control.

DSC 2009 Europe — Monaco — 4 — 6 February 2009

With the syntax being XML, commands can easily ¢rgpted and understood even by casual
users of the system. Tools allowing the direct trgfuyplain-text command sequences into the
system facilitate further the interaction with tegstem. The hierarchy of XML provides a
comfortable means to make commands only availabberttain components of the tool-set by
having them interpret only the XML tags they knomdaskip any unknown tags and their
respective children. So, users only have to leeencommands actually affecting their use
cases.

For therun-time data binary data flows are preferred due to higheughput. The tool-set
described here consists of some internal data floetsveen components which already
existed when the project started, and an “outsrde’ld which was designed according to the
different use-cases and which could be providet wiharmonized data interface.

The data protocol arising from this harmonizatienthe so-called “Generic Simulation
Interface” (GSI) which is an abstract super-satlbfiata that may be required by outside data
consumers (like sensors) from the virtual environthemock-ups etc. This GSI is
complemented by a GSI-I which describes the data from outside components into the
tool-set (with the -1 meaning “in”).

Data Recording

As stated at the beginning of this paper, a meangquired to port test data from one
application to another (e.g. from DIL to HIL). Thizay be done on two levels:

e Scenario Definition

e Data Recording

Using harmonized scenario definitions, as is beloge in the tool-set, guarantees that test
scenarios may be run on all test setups. Howewash setup may use different components
(e.g. different vehicle dynamics packages), so thatresulting run-time data may differ
considerably.

This problem is overcome by a data recording fumetiity within the TaskControl which
records all data of the virtual environment thayyroange during the simulation of a scenario
(players, objects, environment data etc.).

In order to keep data volumes at a minimum, all daa be derived from this data within the
core components of the tool-set is not being remdrd\t the playback stage which may be
run at any of the foreseen setups, the full dataerd will be re-created from recorded and
derived data and all interfaces, basically reduoetie SCP and GSI, will be fed with data as
if they were running in a live simulation.

So, coming back to the original intention of theltset and the work performed during its
creation, it will be possible to run one of thelg&IL tests that have been used for the
definition of e.g. an active safety system, “sortiefe later on the actual hardware in a HIL
and verify the algorithms put into hardware.

DSC 2009 Europe — Monaco — 4 — 6 February 2009

Usability

Usability of the tool-set has been one of the kgyeats during its design. Users vary from the
ones who just want to run pre-defined scenariaxder to generate, e.g. some video data, to
the ones who want to interface with the tool-sedrtter to control simulations and manipulate

run-time data.

The control and run-time data interfaces have lscribed above. On top of this, the tool-
set is complemented by an API which allows the ueewrite his own components (e.g.
sensors) and attach them as libraries to variousgea processes (e.g. sensor manager). The
sometimes painful task of dealing with data flopstts, network etc. on a low level is hidden
from the user and he may concentrate on using atstt data interfaces and extending
methods provided by the libraries.

Running Installations

The Virtual Test Drive started at the end of 208@ s meanwhile being used in all types of
applications referred to in this paper. Separaegaat DSC 2009 will be giving a deeper
insight into the actual use of VTD.

References

[1] OpenDRIVE — An Open Standard for the Descriptod Roads in Driving Simulations, M.
Dupuis, VIRES Simulationstechnologie GmbH, H. Gikexvski, Daimler AG, Proceedings
of the DSC 2006.

[2] Evaluation of an Active Safety Light - Using ial Test Drive within a Vehicle in the
Loop Simulator, von Neumann-Cosel e.a., INI-TUMUdAAG, Germany, Proceedings of the
DSC 2009

[3] Virtual Testing of an Image Processing ECU -irgs Virtual Test Drive within a
Hardware in the Loop Simulator, von Neumann-Cosal, éNI-TUM / Audi AG, Germany,
Proceedings of the DSC 2009

