
EMG-Based Teleoperation and Manipulation with the DLR LWR-III

Jörn Vogel, Claudio Castellini and Patrick van der Smagt

Abstract— In this paper we describe and practically demon-
strate a robotic arm/hand system that is controlled in real-
time in 6D Cartesian space through measured human mus-
cular activity. The soft-robotics control architecture of the
robotic system ensures safe physical human robot interaction
as well as stable behaviour while operating in an unstruc-
tured environment. Muscular control is realised via surface
electromyography, a non-invasive and simple way to gather
human muscular activity from the skin. A standard supervised
machine learning system is used to create a map from muscle
activity to hand position, orientation and grasping force which
then can be evaluated in real time—the existence of such a
map is guaranteed by gravity compensation and low-speed
movement. No kinematic or dynamic model of the human arm
is necessary, which makes the system quickly adaptable to
anyone. Numerical validation shows that the system achieves
good movement precision. Live evaluation and demonstration of
the system during a robotic trade fair is reported and confirms
the validity of the approach, which has potential applications
in muscle-disorder rehabilitation or in teleoperation where a
close-range, safe master/slave interaction is required, and/or
when optical/magnetic position tracking cannot be enforced.

I. INTRODUCTION

Surface electromyography (sEMG) for prosthetic hand
control has since a long time been used, even in the com-
mercial setting, for the control of prosthetic hands, albeit the
control is mostly limited to one or two degrees of freedom
and predefined hand postures. sEMG is a totally non-invasive
and relatively cheap technique to measure muscular activity.
The obtained signal is strongly and stably related to the force
exerted by the measured muscle(s) thanks to the electrical
activity of ensembles of motor units. The signal is noisy, but
the fact that many hundreds of motor units combine together
makes it is relatively insensitive to small influences, to the
point that sEMG is widely demostrated in literature [1], [2],
[3], [4], [5] as an excellent means to control dexterous hand
prostheses.

The use of EMG for copying arm movement however
is a totally different problem: in this case, the human
skeletomuscular system does not exert a certain force to
hold or grasp an object; rather, muscles are activated to
move an arm to or track a desired Cartesian position. In
most finger movement settings, the precise finger position is
secondary to the exerted force; in arm movement, it is rather
the other way around. The nature of the sEMG signal may
therefore indicate its inapplicability for this task; nonetheless,
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Fig. 1. The system during a live demonstration at the Automatica 2010
trade fair (www.automatica-munich.com).

interesting results have already been obtained by Artemiadis
and Kyriakopoulos [6], [7], [8].

In this work we follow the approach outlined in that work,
at the same time lifting some of its limitations. In particular,
we address the low number of controlled degrees-of-freedom
(3), the low generalisability (a detailed model of the arm of
the human subject is required) and the use of an industrial
robotic setup, which makes the whole system unsuitable
for close cooperation with human beings. In particular we
introduce a method which matches a 9-dimensional sEMG
signal to a 6-DoF end-effector position plus 1-DoF grasp
force. The system, which has been demonstrated online,
requires a short training period and can then be used for
a prolonged period of time to grasp and move objects
using the sEMG signal as user interface only. No precise
positioning of the sEMG electrodes, nor any model of the
human arm is required; the adaptivity of the machine learning
approach used also automatically incorporates compensation
for muscle fatigue, an issue which usually requires non-trivial
handling [7].

Even though the use of the system for precise position tele-
operation is limited, the system can be used for rehabilitation
purposes as well as for impedance-controlled, stiffness-based
teleoperation. Furthermore, the current system allows, where
necessary, for increased accuracy by optimisation of the data
acquisition methods.

II. APPROACH

The system, as described here, was demonstrated at the
Automatica 2010 trade fair in Munich, Germany (see www.
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Fig. 2. An abstract block-diagram representation of the system.

automatica-munich.com). All data presented in this paper
was collected live during the fair.

A picture of the setup in action is visible in Figure 1. The
robot is mounted on a pedestal in a right-arm like posture.
A table is placed within the workspace of the robot, to allow
the user to pick up and put down objects; a soft ball is used
to this end. Figure 2 depicts a simplified schematic overview
of the core elements of the system, which consists of two
independent parts: (1) an EMG-decoder which calculates
Cartesian wrist position and orientation as well as grasp
force from measured muscle activity, and (2) the DLR Light-
Weight Robot III equipped with the DLR-HIT Hand II, which
performs the decoded motion and grasps. Additionally, a
visual tracking system is integrated in the setup in order
to gather the human arm position for training the machine
learning algorithm. As is customary in (supervised) machine
learning, the system operation consists of two phases: the
training phase, during which an EMG-to-(arm/hand/force)
map is built; and the prediction phase, when the map is em-
ployed to predict new, previously unseen arm/hand/grasping
configurations. Before entering the training phase, the subject
is equipped with EMG electrodes to record the muscular
activity.

To build the map, EMG data needs to be acquired, as well
as the real position, orientation and grasp force of the user’s
hand. Therefore a tracking marker is fixed to the upper side
of the subjects wrist and a rubber ball equipped with force
sensitive resistor is given to the subject (see Figure 3). Once
the mapping is created, the EMG signals can be used to
directly control the robotic system.

A. Data acquisition

Muscular activity is gathered using nine OttoBock My-
oBock 13E200 surface EMG electrodes (www.ottobock.
com). The electrodes already provide an amplified, bandpass-
filtered and rectified signal, eliminating the need of further
processing onboard the card and/or the computer (their
usefulness was already demonstrated at least in [5], [9]).
They are connected to a wireless DAQ card sampling the
EMG signals at 100 Hz.

There are three sets of three electrodes. Each set is tied
to a velcro elastic band and roughly uniform spacing of the

Fig. 3. Schematic view of the subject’s arm equipped with the EMG
electrodes, the motion tracking marker and the ball with the FSR on top.

electrodes is visually enforced. The bands are placed on the
subject’s forearm about five centimeters below the elbow, on
the upper arm midway between elbow and shoulder, and on
the shoulder (see Figure 3). No precise positioning of the
electrodes is enforced — this is a great simplification of the
operations and has already been demonstrated effective, even
on amputees [9]. The exerted grasp force is measured with
an Interlink Standard 400 FSR force-sensing resistor (see
www.interlinkelectronics.com). The standard amplification
circuit connected to the FSR returns a voltage signal which
is univocally (logarithmically) related to the force applied to
its surface. The above wireless DAQ card is used to digitise
this signal, too, making the whole setup rather easy to wear
and take away. The FSR is mounted on a rigid rubber ball
and the subject is instructed to press it to teach a grasping
signal to the system.

Motion capture is enforced by a Vicon MX (www.
vicon.com) motion tracking system. A Vicon “rigid object”
consisting of 4 passive markers rigidly connected to one
another is fixed to the subject’s wrist, and six near-infrared
cameras use it to reconstruct the object’s position (x, y, z in
centimeters) and orientation (α, β, γ in radians) in real time.
The coordinates are relative to an inertial frame set up during
the Vicon calibration phase. The Vicon has a sampling rate
of 200 Hz and generates accordingly a UDP stream of data.

The resulting global data stream (from the Vicon and
acquisition card) is received by a standard desktop machine
equipped with Matlab and synchronously subsampled at
25 Hz, and its moving average over 400 milliseconds (10
samples) is evaluated.

B. Machine Learning

After the data acquisition is concluded in the training
phase, the data set is organised into samples (each sample
consisting of the 9 values of the EMG electrodes) and 7
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target values for each sample (the position/orientation of the
hand and the grasping force). The resulting (sample, target)
pairs are used to train a Support Vector Machine (SVM,
see [10]) with Gaussian kernel, with the purpose of building
a function mapping the EMG values to each target. One
of the most popular machine learning nowadays, SVMs
build an approximation of the underlying function as the
sum of a finite, and hopefully small, number of Gaussian
functions, centered on a subset of the training samples called
Support Vectors. Since in our case every training set would
consist of several thousands of samples, we subsampled
sequentially the training set in order to have always 750
and, later on, 1000 samples available. The training samples
are normalised by subtracting the means and dividing by the
standard deviations, dimension-wise; 10-fold cross-validation
and grid-search are conducted in order to find the best SVM
hyperparameters. Lastly, a regression model for each target
value is created using the 750 or 1000 training samples at
once. These 7 models are the map used in prediction.

C. Robotic Setup

The position and grasp decoding from the EMG signals
is used to control the DLR Light-Weight Robot III (LWR
III) with the DLR-HIT Hand II attached. The LWR III
[11] is a seven degree of freedom (7 DoF) robotic arm
weighing 14kg and able to lift payloads equal to its own
weight. The kinematics of the robotic arm allow to replicate
a reasonable large part of the workspace of a human arm.
The LWR III is equipped with joint torque sensing in each
joint, which makes it possible to realise special soft-robotic
features such as Cartesian Impedance Control and collision
detection and reaction [12], [13]. These features are essential
when operating in rather unknown environments and physical
contact with rigid objects needs to be established. The active
compliance of the robot provided by the impedance con-
troller copes with these uncertainties and thereby provides
stable behaviour of the system. In addition to that, the
integrated torque sensors allow detecting external forces that
appear whenever the robot establishes a physical contact.
Depending on the magnitude of the force, the robot can react
with different strategies and thereby provide safety to the
operator as well as to the robotic hardware (see [14], [15]).
All these soft-robotic features are embedded in a human-
friendly state-based control architecture [16].

A simplified schematic overview of the robot control
architecture is depicted in Figure 4. From the EMG signals
the humand hand position, orientation, and force is decoded
and send to the robot controller via UDP. The UDP stream
is received by the high-level task execution layer of the
robot controller. This layer operates at a rate of ≈ 100Hz
and allows defining complex tasks in a state-based manner
illustrated by the Hybrid task state machine in the block
diagram. The low-level robot controller runs on a VxWorks
realtime machine at a rate of 1kHz. Communication between
the two layers is realised via the ARDNet Interface [17]. The
core component of the Robot Control kernel is the Cartesian
Impedance Controller (CIC) which receives a desired Carte-

sian frame as input and calculates the desired joint torques
(further details on this control scheme can be found in
[12]). As Cartesian human wrist position and orientation are
directly decoded at a rate of 20Hz it is necessary to employ
an interpolation to fit the 1ms cycle of the robot controller
and generate a smooth robot motion. Within the interpolation
the maximum achievable translational and rotational velocity
is limited to ≤ 0.25m/s and ≤ 0.3rad/s, respectively. The
scaling between human motion and robot motion was kept
1:1 in this sets of experiments, though it would easily be
possible to up or downscale the motion when it is exerted
by the robotic system. To provide additional safety to the
operator as well as to the robotic hardware, known obstacles
in the workspace, such as the table the user operates on,
and the pedestal the robot is mounted on, are internally
represented in a virutal environment. This constist of virtual
planar walls which the robot is unable to pass. To achieve
this, the virtual walls create a repelling Cartesian force which
then is transformed via the Jacobian transposed in joint
torques. These are added to the desired joint torques of the
Cartesian impedance controller.

In addition to wrist position and orientation, the human
grasp force is also decoded from the EMG signals. This
then is commanded to the DLR-HIT Hand II. The DLR-
HIT Hand II is a five-finger robotic hand with three degrees
of freedom in each finger. Similar to the LWR III, the
hand is equipped with joint-torque sensors in each of its 15
joints, allowing it to be used with joint impedance control.
In our implementation, the hand performs a preprogrammed
grasp motion whenever the decoded grasp force exceeds a
certain threshold. Furthermore, the joint stiffness of each
finger is increased proportional to the decoded grasp force
and thereby enabling the operator to increase or decrease
the force excerted on a grasped object. Dropping below the
predefined force threshold causes the hand to release the
grasp again.

D. Experimental protocol

Three male, healthy subjects (age 28, 38 and 44) joined
the experiment and controlled the system over a time span
of 4 days. (Actually, a fourth subject, namely a TV reporter,
joined the demonstration, but her training set was very
simple, limited to arm positioning, due to the lack of time.
See the attached video and Section III-A for more details). A
particularly interesting point is that of task-oriented training,
which was enforced via direct teleoperation between the
motion capture system and the robotic system during the
training phase.

In particular, in the non-task-oriented (NTA) modality, the
subject would be equipped with the electrodes, FSR-ball and
Vicon object. He would then be placed within the reach of
the Vicon cameras (about 8 cubic meters) and asked to relax
his arm for a few seconds, during which the initial position
and orientation of the rigid object on the wrist would be
gathered—this enables mapping muscle activity to a body-
solidal frame rather than to the Vicon’s absolute frame. The

674



EM
G

 - 
D

ec
o

d
in

g

Collision Handling

Task Execution

Move A
rd

n
et

A
rd

n
et

U
D

P

U
D

P
xd(t)

x(t) Тd(t) CIC + LWR

Collision
detection

Virtual
Environment

Hand
grasp desired

grasp status

θ,τ,θ,τ• •

τd-ve

T(q)

p

h

τext

lwr status

grasp desired xd(t)

20Hz

100Hz 1kHz

Initialization

Hybrid task state machine Robot control kernel

τd

Fig. 4. Schematic overview of the system and it’s core components

subject performed then random arm movements and grasps
all over the reach space.

The allowed hand movement speed was willfully kept
relatively low, topping a maximum of about 0.5 m/s. Ac-
tually, the whole idea of EMG-to-position mapping relies on
gravity compensation: one end-effector position is charac-
terised by one (or more) isometric/isotonic configuration(s)
of the arm muscles, and this in turn corresponds to a single,
quasi-stationary muscular activity (and EMG signal) pattern.
Therefore low end-effector speeds are required in order
for the muscular activity to be only negligibly affected by
acceleration. The data acquisition usually lasted until about
5000 to 7000 samples were gathered (3.5 to 4.5 minutes).
No subject reported fatigue or cramps during the acquisition
phase.

On the other hand in the task-oriented (TA) modality, the
subject was in sight of the robot’s workspace, including the
robot itself, the table and the objects to manipulate. The
hand’s position, orientation and grasp force as detected by
the Vicon and FSR was directly transmitted to the robotic
system, so that the subject could teleoperate. Meanwhile,
the subject’s muscular activity was gathered by the EMG
setup. In this modality the subject would actively try and
grasp the ball from its pedestal, move it around (such as,
e.g., stretching the arm along the coronal plane with the ball
in hand) and put it back on it, or release it somewhere else
or in someone else’s hands.

Figure 5 shows the 3D motion capture plots of two typical
training sessions in the NTA/TA modalities. The difference
in the sample distribution is apparent.

Once the map is built and validated, the subject enters
the loop again and now without use of the tracking system
and FSR data the EMG readings are directly mapped onto
hand positions, orientations and grasp forces. Decoded posi-
tion/orientation/force commands are then sent to the robotic
system. The sEMG gathering setup (electrodes, velcro bands
and the digital acquisition card) is light and can easily be
carried around by the user, for instance in a small bag (check
Figure 1 again). Since the muscular activity of the shoulder /

arm / hand is largely independent of that required by walking
the subject is allowed to move freely and as the robotic
system is operated in a human friendly control architecture,
the user may as well interact with it while being in control,
as seen in the attached video.

III. EXPERIMENTAL RESULTS

The system was practically demonstrated during the Au-
tomatica 2010 robot trade fair in Munich, Germany, over a
period of 4 days (see also http://www.automatica-munich.
com). The subjects trained and tested the system several
times each day, generating a total number of 38 data sets and
corresponding models. The TA phase was activated during
the last day (10 datasets and models).

A. System demonstration

The video attached to this paper shows an exemplar
prediction phase (NTA phase): one of the subjects controls
the robot system and uses it to grasp/release a soft ball,
remove it from the pedestal, carry it around and place
it back. Although a noticeable delay is seen between the
subject’s operation and the robot response, and the overall
position of the arm does not always reflect the subject’s
one, the whole qualitative appearance of the coordinated
human/robotic motion is good, and after a few failed attempts
the subject succeeds in grasping the ball and placing it back
on the pedestal.

All subjects reported the same subjective impression of
motion accuracy and ease of operation; this is due to the
adaptability of the supervised machine learning approach.
Additionally, a reporter from the n-tv Germany Broadcasting
company (http://www.n-tv.de) trained the system in a
quicker fashion, limited to a few simple arm movements.
In the end she reported the same feeling of easiness and
compliance by the robot. A short clip of the demonstration
is available, at the time of writing, on the tv-station’s
website itself (http://www.n-tv.de/mediathek/videos/technik/
Automatica-zeigt-Roboter-fuer-zu-Hause-article916558.
html, starting approximately at second 40 of the clip).
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Fig. 5. 3D plots of non-task-oriented (left) and task-oriented (right) motion capture data sets. The densely-sampled zone in the right panel corresponds
to the position of the object to be grasped in the robot’s workspace. The red/green/blue axes indicate the reference frame (x,y,z axes).

Better robot response and ease of use was reported by
the subjects in the TA modality, with respect to the NTA.
Especially, the lack of an input space sampling strategy
was particularly frustrating in the NTA modality, since the
subjects needed to wave randomly with little relation with
what they would do later on. This resulted in frequent
unexpected decrease in the decoding quality when getting
close to the grasping zone. This drawback disappeared in
the TA modality, as one would expect.

B. Numerical evaluation

In this section the performance of the models obtained
during the demonstration is evaluated. The evaluation is
accomplished by testing the SVM model on the samples not
included in the training set (normalised using the statistics
of the training set), and reporting the Mean-Squared-Error
normalised over the testing samples variance (NMSE). It
must be noted that this is an approximation of the perfor-
mance actually obtained during the demonstration—the latter
cannot be numerically evaluated any longer, since no ground
truth is available (the subjects would step outside the Vicon
detection zone during the demonstration). We expect the
real performance to be numerically slightly worse than what
we show here; nevertheless, notice that evaluating the real
performance would also require a subjective success metric,
such as, e.g., the number of successful grasp/release trials,
the time needed to grasp, etc.

Figure 6 reports the results for each target value and for
each model, in chronological order. Consider the Figure. For
the position coordinates (upper panel) the overall NMSE
values are 0.0982± 0.0591, 0.0789± 0.0455 and 0.0674±
0.0510 (mean / standard deviation); for the orientation,
0.1689± 0.1518, 0.0989± 0.0864 and 0.1249± 0.1208 and
for the grasping force 0.0321±0.0341. Models 29 to 38, built
during the TA phase, show an apparent better performance; in
fact for these models only, the NMSE values are remarkably
better than those obtained for NTA models (see Table I).

TABLE I
PREDICTION MEAN-SQUARE-ERROR NORMALISED W.R.T. THE

TARGETS’ VARIANCE, MEAN VALUES ± ONE STANDARD DEVIATION,
FOR NTA AND TA PHASES.

NTA TA
x 0.1101± 0.0615 0.0647± 0.0364
y 0.0885± 0.0482 0.0519± 0.0214
z 0.0741± 0.0573 0.0485± 0.0178
α 0.1817± 0.1644 0.1330± 0.1081
β 0.1130± 0.0961 0.0593± 0.0242
γ 0.1362± 0.1292 0.0934± 0.0921

force 0.0357± 0.0386 0.0223± 0.0128

In general, these values denote a remarkably low error also
in physical terms; for instance, in the TA phase, the non-
normalised squared MSE for x, y, z is in turn 3.12 ± 0.54,
3.14±0.95 and 3.54±0.72cm. These values are comparable
with those reported in [6].

Further on, it is interesting to consider the effect of task-
orientedness on the distribution of the error in the input
space. Figure 7 shows two typical cases. Model 20 (NTA,
NMSE 0.2953, 0.1582, 0.0799 for x, y, z) has a uniformly
distributed error, while for model 38 (TA, 0.1418, 0.0807,
0.0576) the error is mostly seen outside the zone where the
object to be grasped was located, which appears as a darker,
almost black cloud of well-predicted points. Lighter, and
therefore less accurately predicted ”clouds” are clearly seen
around the path the arm followed from the resting position
to the fully stretched (right-hand side) and on the left of the
zone where the ball was. Figure 8 shows an example of real
and predicted position, namely the x coordinate for these
models, i.e., 20 and 38.

IV. CONCLUSIONS

In this paper we reported about a robotic arm/hand system
controlled through sEMG-mesured human muscular activity.
The control has such a level of accuracy that a small object
can be repeatedly grasped, carried around, and released.
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Fig. 6. Prediction Mean-Square-Error normalised w.r.t. the targets’ variance, for each dataset and target dimension. Models from 1 to 28 have been
obtained in the NTA modality, 29 to 38 with the TA modality.

Fig. 7. 3D plots of non-task-oriented (left) and task-oriented (right) squared Root-Mean-Error, model 20 (NTA, left) and 38 (TA, right). Larger and lighter
markers denote higher error.

Fig. 8. Real and predicted x coordinates for models 20 (upper panel) and 38 (lower panel).
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The system was practically demonstrated during a robotic
trade fair in 2010. Muscle activity is gathered using nine
surface electromyography electrodes. No precise placement
of the electrodes is required, and no model of the hu-
man arm/hand is employed, making the system essentially
subject-independent — in fact, three subjects demonstrated
the system without noticeable performance differences. A
fourth subject did a simpler demonstration without any
previous knowledge about the system.

A standard machine learning method (namely, a Support
Vector Machine) is used to build a point-to-point map be-
tween muscle activity and hand position/orientation/grasping
force. The map relies on gravity compensation and rather low
movement speed, which enforces a many-to-one relationship
between sEMG signals and position. Numerical (offline)
evaluation indicates in a few centimeters the precision that
can be obtained by the system; orientation and force guessing
have similar, although slightly worse, precisions.

It was noted that the performance of the system is consid-
erably higher when a task-oriented training modality is used.
This is due to finer sampling of the input space in the zone of
interest (namely, where the grasping mostly happens) which
leads to smaller error rates where it is required.

In [7] a detailed report is given about how to avoid the
well-known time variance of the sEMG signal, in particular
as far as muscle fatigue is concerned — a problem that we
did not notice. The reasons of this improvement could lie
in the choice of the sEMG features, in the reliability of the
electrodes or even in the reciprocal adaptation of the human
subjects to the system. In fact, all subjects reported a feeling
of ”learning to control the arm” as the testing phase would
proceed. Task-orientedness seems to be essential from this
point of view, too.

The DLR Light-weight Robot III we used in this paper is
operated in impedance control, which is essential in applica-
tions in which the environment is unknown. Furthermore the
human-friendly control architecture used in combination with
the robot enables the operator to be within the workspace
of the robot and interact with it. This feature makes the
system suitable for a variety of applications in which physical
interaction between humans and robots occurs.

Future work

Further investigation into the sEMG signal is envisioned,
in particular as the end-effector reaches the grasping zone.
In that case the muscular system is expected to stiffen up.
This could be used to estimate 3D stiffness using sEMG,
a problem which is still largely open and whose solution
would have applications in a number of fields of robotic
(e.g., remote surgery or high-accuracy teleoperation).

The assumption of slow movement can probably be loos-
ened if a more sophisticated form of robotic control is
enforced, namely, considering estimating the end-effector
velocity as well as the position, and then using a hybrid
position/velocity robot controller. This is also subject to
further research.

Lastly, the system as described and demonstrated in this
paper is probably not directly optimally usable for generic
teleoperation—indeed, more accurate ways of estimating the
end-effector position rather than sEMG can be found; how-
ever this setup might be of great use when magnetic tracking
cannot be used for training. An even more interesting future
application is rehabilitation of muscular-disorder patients, in
which a weak or distorted sEMG signal could be used to
train the system and let the patient see the arm move as
desired. Such procedures are well known to dramatically
shorten rehabilitation effort.
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G. Hirzinger. The DLR lightweight robot: design and control concepts
for robots in human environments. Industrial Robot: An International
Journal, 34(5):376–385, 2007.
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[17] Bäuml B. and G. Hirzinger. When hard realtime matters: Software
for complex mechatronic systems Robotics and Autonomous Systems.
Robotics and Autonomous Systems, 56, 2008.

678


