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Abstract

The number of objects that can be maintained in visual working memory without interference is
limited. We present simulations of a model of visual working memory in ventral prefrontal cortex
that has this constraint as well. One layer in ventral PFC represents all objects in memory. These
representations are used to bind the features of the objects. If there are too many objects, their
representations interfere and therefore the quality of the representations degrades. Consequently,
it becomes harder to bind the shape to location for an object that is maintained.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Investigations [5] have shown that humans have the ability to maintain a number of
visual objects in visual working memory. A remarkable characteristic of this 9nding
is that the number of objects that can be maintained in working memory without
interference (i.e., loss of information) is limited (to about four), but the number of
object features (e.g., shape, color, location, motion, etc.) is unlimited for each of the
objects. We presented a model of visual working memory in prefrontal cortex (PFC)
that theoretically can explain this characteristic [1]. A basic characteristic of this model
is a ‘blackboard’ that links di=erent ‘processors’ to one another [2]. Objects in working
memory are represented in the blackboard. One layer in ventral PFC functions as the

∗ Corresponding author. Tel./fax: +31-71-52-73-783.
E-mail address: gvdvoort@fsw.leidenuniv.nl (G.T. van der Voort van der Kleij).

0925-2312/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2004.01.101

mailto:gvdvoort@fsw.leidenuniv.nl


600 G.T. van der Voort van der Kleij et al. / Neurocomputing 58–60 (2004) 599–605

blackboard, containing representations that consist of conjunctions of (partial) ‘identity’
information and location information. This blackboard serves to bind the information
processed in each of the specialized processors. The processors in this case are networks
for feature identi9cation. When too many objects are put in working memory, their
representations in the blackboard interfere. Consequently, an object’s representation in
the blackboard muddles and the blackboard’s performance to bind the features of an
object degrades.

After getting deeper into this model of visual working memory, we present simula-
tions in which information about the location of an object is used to bind its shape. In
line with previous simulations, which explored the opposite binding route from shape
to location [3], the results reFect our expectations that the model is limited in the
number of visual objects that it can maintain without interference complicating correct
binding.

2. Blackboard architecture of visual working memory in PFC

Our model of visual working memory in PFC is based on a neural blackboard
architecture that is used in a simulation of object-based attention in the visual cortex [4].
We assume that the neural blackboard architecture is located in the ventral prefrontal
cortex (V-PFC) [1]. This is in line with human neuroimaging studies and recent monkey
studies [6]. Activation in V-PFC is sustained (reverberating) activation, characteristic
of working memory activation in the cortex.

In the model (Fig. 1, left), the V-PFC has a layered structure with representa-
tions similar to the representations in the visual (temporal) cortex. First, the posterior
infero-temporal cortex (PIT) connects to the blackboard. As in PIT itself, the represen-
tations in this layer of V-PFC consist of conjunctions of location and (partial) identity
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Fig. 1. (Left) A blackboard architecture in prefrontal cortex (PFC). PIT = posterior infero-temporal cortex;
AIT = anterior infero-temporal cortex; V-PFC = ventral prefrontal cortex. (Right) Interference between
object representations in the blackboard. For explanation see text.
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(object-feature) representations (shape, color). In turn, the bottom layer of V-PFC is
connected to higher-level areas in the visual cortex like the anterior infero-temporal
cortex (AIT) and the posterior parietal cortex (PPC), which process, respectively, the
shape and location information of an object.

The connections from these higher-level areas to the bottom layer of V-PFC are
similar to the connections in the feedback network of the visual cortex [4]. They
associate all possible representations that are selective for an activated feature (e.g.,
shape, location). For example, if one shape is selected in AIT, then all representations
in the bottom layer of V-PFC that are consistent with that shape (on every possible
position) are activated. Note that these connections have a fan-out structure. Likewise,
an attended location in PPC activates all possible representations (e.g., for any shape)
in the bottom layer of V-PFC on that location in (visual) space. The bottom layer
of V-PFC thus represents the current focus of attention, whether this is based on
location or (location-invariant) feature information. Consequently, interaction between
the bottom layer of V-PFC and the blackboard can select the object representation that
is consistent with the current attentional focus. The resulting activation in the select
layer can be used to bind the features of this object [1].

The interaction between the bottom layer and the blackboard requires some discus-
sion. As the nature of attentional modulation is being debated, the model does not
include a clear perspective on this part. Instead, we have taken a more pragmatic stand
to simulate, approximately, two competing hypotheses. Attention may either increase
the sensitivity for attended features by providing an extra input to neurons representing
those, or may boost the response strength for attended features without changing the
sensitivity to them. We will refer to the former mechanism as additive and to the latter
as multiplicative. Logically, though this is not simulated here, attention may involve a
combination of both mechanisms as well.

3. Feature binding in working memory

The nature of the representations in V-PFC and the connections with the higher-level
areas in the visual cortex produces the behavioral e=ects described before. The black-
board architecture of V-PFC results in a binding of the feature representations of the
objects maintained in memory. Therefore, the features of an object can be retrieved
(selected) in working memory as long as the representations of the objects stored in
V-PFC do not interfere. However, when too many objects are present in a display, their
representations in V-PFC will interfere, which results in loss of information (Fig. 1,
right). As more objects are present in a display, the amount of interference increases,
and it can be expected that the quality of the representation of an object in V-PFC
becomes less. As a consequence, it becomes harder to correctly bind the feature repre-
sentations of the objects that are maintained in memory. V-PFC might end up binding
wrong feature representations for an object that is attended to. Following simulations
tested whether our model of the visual working memory shows this behavior.
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4. Simulations

For the simulations, we linked the V-PFC model with a (trained) neural network
model of the ventral pathway in the visual cortex that is used in the simulation
of object-based attention in the visual cortex [4]. This model consists of a feed-
forward network that includes the areas V1, V2, V4, PIT and AIT, and a feed-
back network that carries information about the identity of the objects to the lower
areas in the visual cortex (V1-PIT). The model shares the basic architecture and
characteristics (i.e., the nature of the representations) of the visual cortex. The feed-
forward neural network was trained to identify 9 di=erent objects on 9 possible
positions (using backpropagation). This was done successfully 9ve times, each time
resulting in slightly di=erent connection weights between the layers. The simulations
explored the selection process in the V-PFC model that involves location informa-
tion. We expected that information about the location of an object becomes less
adequate to bind the object’s shape as the number of objects stored in memory
increases.

During simulations, displays consisting of N (di=erent shaped) objects, with N
ranging from 2 to 9, are presented to V1. The objects, presented in separate, non-
overlapping, positions, are processed in the visual cortex, and their PIT representa-
tions also activate the representations in the blackboard in V-PFC. The location of
one of the objects is selected (attended) in PPC (e.g., due to a competition be-
tween all object locations). The activation coding for this location in PPC activates
its corresponding location in the bottom layer of V-PFC. As a result, the interac-
tion between the bottom layer and the blackboard modulates the object represen-
tation in the select layer that is selective for the attended location. The activation
in the select layer is processed further by AIT to identify the object’s
shape.

For simplicity, the activity in PPC that represents a certain location after compe-
tition between all object locations, its one-to-one connections to the bottom layer of
V-PFC, and the interaction between the blackboard and the bottom layer are simu-
lated altogether in one step by modulating the object representation in the blackboard
at the attended location. To implement the last step regarding the binding of the ob-
ject’s shape, the blackboard layer served as input to area AIT, which is trained to
identify shape information. A winner-takes-all mechanism in AIT selects the identi9ed
shape.

Location information modulated the representation in the blackboard in two qual-
itatively di=erent ways during separate runs. In multiplicative runs, the activity of
neurons representing the attended location in the blackboard was multiplied by a cer-
tain factor. Alternatively, in additive runs, these neurons were given extra input, and
new activation values were accordingly computed. To ensure results that are suL-
ciently robust, multiplicative and additive runs were done with varying modulation
strength from, respectively, 1 to 2 and 0 to 0.5, with a similar step size of 0.05.
In additive runs, the range of extra input was chosen to balance apparent levels of
sensory input. For each N , 90 random displays are presented to each instance of the
model.
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5. Results

Fig. 2 shows the probability of successful binding over the number of objects in
visual working memory and modulation strength, for both additive and multiplicative
runs. For each number of objects in working memory, data of all 5 instances of the
neural network model are averaged over all relevant trials. Note that a modulation
strength of 0 in the additive runs and of 1 in the multiplicative runs actually means
that there is no selection by location information at all. Hence, the proportion of cor-
rect binding for each N should equal chance level. The 9gure indeed reFects this fact.
Interestingly, we see that a slight increase in modulation strength immediately improves
binding. Nevertheless, there appears to be a limit in the bene9t of increasing the mod-
ulation strength. This makes sense as modulated neurons reach their maximum 9ring
rate at some point. Moreover, modulation strength also a=ects unattended, overlapping
object representations. Both for additive and multiplicative runs, binding is better when
the number of objects held in working memory is low, even for quite high values of
modulation strength. In other words, as the number of objects increases, it becomes less
reliable to select an object’s shape based on its location information. Hence, the binding
process starts breaking down. Comparing the additive and multiplicative runs, we see
that the latter shows slightly better binding (i.e., boosting the output of neurons enables
better binding than increasing the input). This makes sense as multiplication ampli9es
the representation in the blackboard without a=ecting its structure, while adding does
modify the structure of the representation to some extent.

So far we have assumed that the representation in the blackboard is identical to the
one in PIT. However, this is not likely to be true. It is possible that the representation
in the blackboard is reduced compared to PIT. New simulations explored the binding
power of the model given a sparse and reduced representation in the blackboard.
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Fig. 2. Proportion of correct binding over number of objects in visual working memory and modulation
strength. For explanation see text.
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Fig. 3. Proportion of correct binding over number of objects in visual working memory and modulation
strength, given a sparse and reduced representation in the blackboard. For explanation see text.

Before the location information of one object modulated the activity in the blackboard,
a competition mechanism in the blackboard reduced its representation and made it
sparse. Subtracting an inhibitory input from each neuron’s input, which allows 30%
of the neurons to be active, and computing new activation values, implemented this.
In additive runs, the modulation strength now ranged from 0 to 0.3 to balance lower
sensory input.

Fig. 3 shows the probability of successful binding over the number of objects in
visual working memory and modulation strength, for these runs. We see that even
when the representation in the blackboard is sparse and reduced compared to the one
in PIT, it can still bind the shape to the location of an object considerably when the
number of objects in memory is low. As expected, for higher number of objects the
binding impairment already seen in former runs is ampli9ed, as a higher number of
objects leads to more competition and thus to a more reduced and sparse representation
in the blackboard.

6. Discussion

The simulations point out that the model of visual working memory that we pre-
sented is limited in the number of objects that it can maintain in memory without
interference (i.e., loss of information). Our model cannot successfully bind the fea-
ture(s) of the attended object anymore as it gets loaded with more objects. This is
in accordance with 9ndings about visual working memory and previous simulations.
Naturally our simulations are of a qualitative nature. The fact that there is a lim-
ited number of visual objects that people can maintain in visual working memory
is (probably) inherent to its architecture. The model that we presented shares this
characteristic.
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Our model predicts that this limit is also partly dependent on the distance between
objects in a display [3]. Another prediction from our model is that the resolution of
spatial attention is comparably limited in other tasks than visual working memory.
Selection by location information is dependent on the amount of interference between
object representations in the ventral pathway of the visual cortex. Note that it does not
matter whether spatial attention (also) acts upon areas with a higher spatial resolution
(e.g., V1 or V2), when areas like V4 and PIT, due to their conjunction representations,
are still used to bind object’s features. Selecting an object by a more centered focus
(e.g., a Gaussian) of its location may overcome some interference between object
representations. However, it also risks ignoring important information.
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