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Abstract. An astronomical set of sentences can be produced in natural language by combining
relatively simple sentence structures with a human-size lexicon. These sentences are within the range
of human language performance. Here, we investigate the ability of simple recurrent networks
(SRNs) to handle such combinatorial productivity. We successfully trained SRNs to process
sentences formed by combining sentence structures with different groups of words. Then, we tested
the networks with test sentences in which words from different training sentences were combined.
The networks failed to process these sentences, even though the sentence structures remained the
same and all words appeared on the same syntactic positions as in the training sentences. In these
combination cases, the networks produced work—word associations, similar to the condition in which
words are presented in the context of a random word sequence. The results show that SRNs have
serious difficulties in handling the combinatorial productivity that underlies human language
performance. We discuss implications of this result for a potential neural architecture of human
language processing.

Keywords: combinatorial productivity, language performance, word associations, simple recurrent
networks.

1. Introduction

The study of natural language processing has been dominated by the rule-based approach
derived from the development of generative grammar (Chomsky 1957, 2000). In this
view, humans are capable of producing and understanding language because they possess
knowledge of a grammar that, in combination with a lexicon, allows them to generate
(and understand) a virtually unlimited set of sentences. A characteristic aspect of this
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approach is the distinction between competence and performance. In particular, the gen-
erative capacity of the grammar provides the language user with the competence to pro-
duce sentences with unlimited syntactic complexity. However, in actual performance, this
unlimited complexity will be restricted due to memory limitations and the like.

In an alternative to this approach, connectionist models have been proposed that relate
the limited capacity of performance with the restrictive ability to represent syntactic
structures in connectionist networks. In this approach, language processing does not
result from the generative use of an (innate) grammar in combination with a lexicon.
Instead, language processing results from learning syntactic structures based on the abil-
ity to represent (grammatical) sequences of words. To date, the most influential models
of this kind are based on so-called simple recurrent networks (SRNs) (Miikkulainen
1996, Christiansen and Chater 1999a, 2001, Palmer-Brown et al. 2002).

An SRN (Elma 1991) consists of a multilayer feedforward network, which can be
trained to identify correctly input patterns. In this case, however, the state of the hidden
layer of the network is conveyed back to part of the input layer of the network after each
training cycle or performance cycle. In this way, the network has information about its
prior state when it learns to classify a new input in the training phase or when it classifies
a new input in the performance phase. As a result, the network can learn to classify a
sequence of input representations.

Elman (1991) used an SRN to predict the next word that would follow at each point in
a sentence. For instance, with the sentence Boys who chase girls feed cats, the network
could reliably predict that after Boys who chase a noun would occur in the sentence, and
that after Boys who chase girls a plural verb would occur. To perform this task, the net-
work was first trained on a set of similar sentences. Each of the sentences used (in train-
ing and in the prediction task) was generated on the basis of a phrase structure grammar
and a lexicon of about 20 words.

The network could also handle grammatical structures such as centre-embedded rela-
tive clauses, but performance of the network began to deteriorate with multiple centre-
embeddings. Such a limitation in performance is very interesting because it matches
the performance limitation found in human sentence comprehension. Humans have
great difficulty in understanding double centre-embedded sentences, to the point that
these sentences can be rated as incomprehensible (see, e.g. Gibson 1998).

From the perspective of a generative grammar, syntactic structures such as centre-
embedding result from a recursive productivity. The rules of the grammar allow sen-
tences to be embedded in other sentences as relative clauses. By the repeated application
of these rules, arbitrary complex sentences can be produced in this way. Christiansen and
Chater (1999b) investigated the ability of SRNs to handle recursive structures. They
trained SRNs on artificial languages in which different forms of recursive structures
occur. In line with the preliminary observation of Elman (1991), they showed that
SRNs could be trained to process recursive structures with performance limitations
comparable with human language processing.

The fact that performance limitations observed with SRNs match human perfor-
mance limitations with similar sentence constructions provides a different view on the
distinction between competence and performance. In the rule-based approach, sentences
with, for instance, double centre-embeddings are grammatically correct and thus belong
to the competence of the language user (i.e. the domain of grammatical knowledge of the
language user). The performance limitation with these sentences then results from factors
outside the language domain, such as limitations in memory or attention span. In
contrast, the performance limitations with SRNs are a direct result of the way in
which grammatical structure is represented in the network. The network does not



Combinatorial productivity 23

represent a grammar separate from a lexicon. Instead, the network has formed a repre-
sentation of a statistical average of the set of sentences used to train the network. The
performance limitations with recursive structures observed with SRNs reflect the limited
way in which these structures can be represented in these networks. In a similar manner,
the performance limitations observed with human language processing could reflect the
limited representation of recursive structures in natural language. This would entail that
SRNs are more adequate models of human language processing than rule-based models
(e.g. Elman 1995, Churchland 1995, Christiansen and Chater 2001).

2. Combinatorial productivity

The performance limitations in human language processing provide important informa-
tion about the nature of human language processing. Any model of human language
processing should indeed account for these performance limitations (van der Velde
1995). However, to account for human language processing, it is not sufficient to
focus on performance limitations alone. Human language is a very powerful means of
communication, which would not have come about if language was intrinsically limited
in every aspect.

The communicative aspect of language can be described as the ability to provide specific
information about ‘who does what to whom’ (e.g. Pinker 1994, Calvin and Bickerton,
2000). Thus, the sentences John loves Mary and Bill loves Susan provide different
information, even though they have the same syntactic structure. The specific information
provided by these sentences can be derived from answering specific ‘who does what to
whom’ questions, such as “Whom does John love?’ and “Who loves Susan?’ The ability
to answer such questions is a crucial aspect of human language processing.

Human language processing is very productive in the ability to represent ‘who does
what to whom’ information. Consider, for instance, the sentence John loves dogs and
Mary loves cats (or John walks with dogs and Mary walks with cats in the case of intran-
sitive verbs). These sentences consist of six ‘open class” words (e.g. nouns, verbs, proper
names) in a particular grammatical structure. Using the same structure, and a ‘lexicon’ of
1000 alternatives for each noun, proper name or verb in this sentence, a set of 10'® dif-
ferent sentences can be created. The use of a lexicon of this size is not excessive, given
that the average English-speaking 17-year-old knows more than 60000 words (Bloom
2000). Anyone who understands the grammatical structure of these sentences and who
knows the words in the lexicon would be able to answer binding questions of the
form ‘who does what to whom’ for any of these sentences, even for sentences that are
false or that have no meaning. For instance, with the sentence cats love dogs and houses
eat furniture, one would be able to answer questions like “Who loves dogs?’ or ‘Who eats
furniture?’ Yet, the whole set of these sentences is of ‘astronomical’ magnitude (e.g. the
estimated lifetime of the universe, expressed in seconds, is of the same magnitude).
Moreover, it is clear that this set is only a subset of the set of sentences that can be
understood by any language user (i.e. the ‘performance set’ of natural language).
Pinker (1998) gives an estimate of 10°° for a ‘performance set’ in natural language,
which consists of sentences with 20 words or less; but even this set will probably be
an underestimate of the true ‘performance set’ of a natural language user.

The issue here is not the recursive productivity of language, which results in sentences
of ever increasing complexity. Instead, the issue here is the combinatorial productivity of
language. Combinatorial productivity results when even very simple sentence structures
are combined with a large but finite lexicon. As a result, and unlike recursive produc-
tivity, combinatorial productivity is not unlimited. Yet, as the examples discussed
above illustrate, combinatorial productivity results in sets of sentences of astronomical
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magnitude, which are nevertheless understandable because they result from combining a
finite lexicon with restricted sentence structures.

Combinatorial productivity raises the question of how sets of sentences of this magni-
tude can be learned with SRNs. To put this in perspective, we shall attempt to make a
comparison between the actual learning behaviour of an SRN and the learning behaviour
that would be required for natural language as a whole. Thus far, SRNs have been trained
and tested on toy grammars with small lexicons (Christiansen and Chater 2001). In the
case of Elman (1991), the lexicon contained about ten nouns and ten verbs. The network
was trained with a set of sentences in the order of 10*. The network was tested using
sentences with a mean length of about six words. Given the grammar used, these sen-
tences contained at most five nouns and verbs. Thus, the performance of the network
was tested using a set of sentences in the order of 10°. It should be noted that the per-
formance of the network was reasonable but not optimal, which entails that the training
set was not too large. Thus, it would seem that, with a training set of about 1-10% of the
set on which the performance was tested, the network had a ‘learning-to-performance’
ratio in between 1-to-100 and 1-to-10.

By comparison, the ‘performance set’ of natural language is in the order of 10%° sen-
tences or more, as argued above. It is obvious that learning about 1-10% of a set of this
magnitude is impossible. Therefore, to deal with a language of the size of natural lan-
guage a form of combinatorial productivity seems to be needed. This entails that
when new words are learned, say in a particular sentence context, these words can
also be recognized in other sentence contexts without learning. Thus, when one learns
that Dumbledore is headmaster of Hogwarts, one can also recognize a sentence like
The dog chases Dumbledore, even though this sentence was not specifically trained
(or the combination of the familiar words dog, chases and the new word Dumbledore
did not occur in any of the training sentences). Adult language users possess this form
of productivity (e.g. Pinker 1984), but even children seem to possess the ability to use
newly acquired words in new sentence contexts (e.g. Katz ef al. 1974, Ingram 1989).
Thus, with combinatorial productivity, new words would only have to be learned in a
few sentence contexts. They could then be used in other sentence contexts as well. In
this way, the need to train a significant number of sentences of the overall set of sentences
can be avoided.

2.1. Combinatorial productivity and systematicity

Productivity of language use with SRNs has been a topic of previous research. For
instance, Marcus (1998) trained SRNs on two sentence frames. The first one consisted
of sentences of the form the bee sniffs the X, where X could be a word like rose, lily,
tulip or lilac. The second sentence frame consisted of sentences of the form a Y is a
Y, in which Y could also be a word like rose, lily or tulip. However, the word lilac
appeared only in the first sentence frame. The network learned each of the sentences,
but it could not predict that /ilac was a plausible continuation of the sentence ‘a lilac
is a...’. Thus, it could not productively use the word /ilac from the learned sentence
a bee sniffs a lilac to the novel sentence a lilac is a lilac.

The simulation of Marcus (1998) concerned the ability to learn a word in a given sen-
tence frame and then to use it in a novel sentence frame. This form of productivity is
referred to as ‘strong systematicity’ (Hadley 1994, Phillips 1998). In general, strong sys-
tematicity refers to the ability to use familiar words in novel sentence contexts and/or
novel syntactic positions (e.g. as in the Dumbledore examples given above). For instance,
nouns will be trained in the object position, and then they will be tested in the subject
position. Hadley (1994) and Phillips (1998) demonstrated failures of strong systematicity
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in connectionist networks, like SRNs. However, one could argue that strong systemati-
city is too difficult for SRNs, precisely because SRNs have to learn the words and
their syntactic use at the same time (to avoid the distinction between lexicon and
rules). Furthermore, for combinatorial productivity as defined above, strong systemati-
city may not be needed. Instead, ‘weak systematicity’ (Hadley 1994) may suffice. In
this form of systematicity, each word is trained on all syntactic positions in which it
can appear in the (novel) test sentences. For instance, the sentences boy sees girl and
dog chases cat have been learned, and the network is tested with sentences like dog
sees cat and boy chases girl. Thus, the words sees and chases are transferred to new sen-
tence contexts, but on the same syntactic position on which they have been learned.

In this way, a substantial form of productivity can be achieved. For instance, assume
that the lexicon of 1000 nouns and 1000 verbs is partitioned into, say, 100 sets of 10
nouns and 10 verbs each. Each subset of words could then be used to form the sentences
of the type John loves dogs and Mary loves cats. This results in 100 sets of sentences of
this type, and each set consists of 10° sentences (given by six nouns/verbs for each sen-
tence, with ten alternatives for each noun and each verb). Each set of sentences could then
be learned in the manner of Elman (1991), with about 10° training sentences for each set
(10% for each set). As a result, only a set of 100 x 10° sentences would have to be used
to learn the overall set of 10'® sentences, which reduces the set of 10'°~10'7 training sen-
tences to a training set of about 10”. A set of 10 training sentences could be feasible for
a model of human language processing based on SRNs. In the simulations presented
hereafter, we investigated this form of productivity with SRNs.

3. Simulations

The type of network used in the simulations is shown in figure 1. The network received
an input of one word at a time and its task was to predict the next word that would come,
as in Elman (1991). The stimuli in this simulation were based on a lexicon of 18 items.
These included eight singular nouns, eight singular verbs, the relative pronoun ‘who’ and
an end-of-sentence indicator ‘.’. Figure 1 illustrates how the vectors representing the pro-
noun ‘who’, the end-of-sentence indicator ‘.’ and the verbs and nouns are organized in
the output layer of the network.

The items were represented as 20-bit binary vectors. Each item was assigned a unique
vector in which only one bit was turned on. As a result, all items are represented
orthogonal with respect to each other. Table 1 lists the 20-bit binary vectors representing
these words.

The lexicon was divided into four separate groups of two nouns and two verbs each.
The relative pronoun ‘who’ and the end-of-sentence indicator ‘.’ were part of each
lexicon group as well. The four lexicon groups are listed in table 2.

Sequences of words formed sentences. For each lexicon group, sentences were formed
using only words from that lexicon group (including ‘who’ and °.”). The training data
contained three different types of sentences. The three types are a simple three-word sen-
tence, a sentence with one right branching and a sentence with one centre-embedding.
The syntax for each of the three sentence types is given below, together with an example.

Simple: Noun Verb Noun .

Boy sees girl.

Right-branching: Noun Verb Noun who Verb Noun .
Boy sees girl who hears girl.

Centre-embedding: Noun who Noun Verb Verb Noun .
Boy who boy hears sees girl.
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Figure 1. Architecture of the simple recurrent neural networks used in the simulations (top

figure). The numbers indicate the number of neurons in a layer. Each circle in the output layer

corresponds to one neuron. As an example, for some neurons it is shown which lexical item
they refer to.

Since all chosen nouns and verbs were singular and all verbs allowed or required a direct
object, all nouns and verbs could fill any of its category places. Thus, all possible com-
binations of the nouns and verbs could be used to form sentences for each of the three
sentence types. The only restriction is that the nouns and the verbs appearing together in
one sentence all have to be out of the same group. The set of training sentences consisted
of all sentences formed in this way. Examples of the sentences in each group are
presented in the Appendix.

The use of three different sentence types is important. Suppose that the networks were
only trained and tested on ‘Noun Verb Noun’ sentences. In this case, there is a direct cor-
respondence between lexical category (Noun and Verb) and word position (first, second
and third) in the training and test sentences. This would allow the networks to learn the
association between lexical category and word position, which would eliminate the
difference between the training and test sentences.

It is important to note that all sentences of a given sentence type have a common con-
text by which they are related. For the simple (three-word) sentences, a common context
for the sentences from the different training groups is provided by the fact that SRNs
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Table 1. Coding of the words in vector of 20
bits presented to the input layer of the simple
recurrent neural network.

< 10000000000000000000
Who 01000000000000000000
Boy 00100000000000000000
Girl 00010000000000000000
Dog 00001000000000000000
Cat 00000100000000000000
Clarice 00000010000000000000
Anthony 00000001000000000000
Boss 00000000100000000000
Clerk 00000000010000000000
Sees 00000000001000000000
Hears 00000000000100000000
Chases 00000000000010000000
Kicks 00000000000001000000
Follows 00000000000000100000
Loves 00000000000000010000
Obeys 00000000000000001000
Dislikes 00000000000000000100

have the same kind of representation for dots (“.”) as for words, and that sentences are
presented in concatenated strings to the network (see later). Effectively, this means that
all three-word sentences share the same context, that is, they are all of the form ‘. Noun
Verb Noun .’. Thus, for instance, the sentences ‘.boy sees girl’ and ‘.dog chases cat’
have been learned, and the network is tested with sentences like ‘.dog sees cat.’ and
“.boy chases girl.’. To increase the common context between the sentences, one could
include sentences with combinations like ‘dog sees’, ‘sees cat’, ‘boy chases’ and ‘chases
girl’ in the training set. However, we wanted to avoid such combinations in the training
set, because the SRNs would then be tested on their ability to reproduce word-word
associations instead of sentence structure.

Likewise, all complex sentences of a given type share ‘. and ‘whe’, which provides a
common context for these sentences. Furthermore, the learning of word-word associa-
tions in the complex sentences is avoided as well.

3.1. Training scheme
In all, ten networks of the type presented in figure 1 were trained and tested with the four
lexicon groups presented above. The networks differed in the initial set of random
weights before training, so that each network could form a different representation
of the set of training sentences. The average performance of ten networks provides
a more robust measure of the behaviour of SRNs in this task compared with the perfor-
mance of a single network.

Each network was trained in four different phases, in line with Elman (1991). Each
phase had a different ratio between the number of simple sentences and the number of
complex sentences (i.e. right-branched and centre-embedded sentences) in the set of
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Table 2. Nouns and verbs appearing in the
sentences of each group; the relative pronoun
and the end-of-sentence indicator are used in

every group.

Group 1

N — boy, girl

V — sees, hears
end-of-sentence — .
relative pronoun — who

Group 2

N — dog, cat

V — chases, kicks
end-of-sentence — °.
relative pronoun — who

Group 3

N — Clarice, Anthony
V — follows, loves
end-of-sentence — °.
relative pronoun — who

Group 4

N — boss, clerk

V — obeys, dislikes
end-of-sentence — °.
relative pronoun — who

training sentences. From phase 1 to phase 4, this ratio changed in favour of the complex
sentences as follows.

Phase 1. The training corpus consisted exclusively of simple sentences. Taking all
simple sentences from the four groups, a corpus of 32 sentences with sentence length
of four items (each sentence includes the terminal °.”) was formed. Each network was
trained on 1000 passes through this corpus. A total of 32000 sentences were thus
presented in this phase.

Phase 2. The training corpus consisted of all simple sentences and all (256)
complex sentences. The ratio between the number of simple sentences and the number
of complex sentences was 3 : 1. To ensure a ratio of 3 : 1, the corpus contained a multiple
of all simple sentences. As a result, the training corpus consisted of 1024 sentences with
a mean sentence length of 4.75. Each network was trained on ten passes through this
corpus, giving a total of 10240 training sentences.

Phase 3. The ratio between the number of simple sentences and the number of
complex sentences in the training corpus was 1:1. The total number of sentences in
this corpus was 512 (all complex sentences and a multiple of all simple sentences)
with a mean sentence length of 5.5. Each network was trained on 100 passes through
this corpus (a total of 51200 sentences).

Phase 4. In this last phase, the ratio between the number of simple sentences and the
number of complex sentences in the training corpus was 1:4. Mean length of the 320
sentences (twice the number of simple sentences and all complex sentences) in this
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corpus was 6.4. Each network was trained on 200 passes through this corpus (a total of
64 000 sentences).

The training sentences in each phase were put in a random order. The sentences
were concatenated, so that a network received the first input word of a sentence after
the terminal ‘.’ of the previous sentence. During the whole training, each network
was presented a sum of 157440 sentences with a mean sentence length of 5.5
(867 840 items).

3.2. Performance

At the conclusion of the fourth phase of training, the weights were frozen at their final
values. The network performance was then tested on a set of test sentences, in which
nouns and verbs from N lexicon groups were combined, with N ranging from 1 to 3
for simple sentences (due to the sentence length of this type) and with N ranging
from 1 to 4 for right-branching and centre-embedded sentences. The sentences with
N=1 were sentences from the training set. In the sentences with N=2, the words
were chosen alternatively from two groups, thus the first word from one group, the sec-
ond word from another group and the third word again from the first group (etc.). The
sentences with N=3 and N =4 combined three and four lexicon groups in this way. For
each sentence type and for every N all possible sentences of this kind were formed, from
which 32 sentences were randomly selected. These were concatenated as before and used
as the testing set for the network.

It is important to notice that the sets of sentences with N=2, N=3 and N =4 provide
three different tests of combinatorial productivity, with increasing difficulty. Thus, it is
possible that the networks could handle sentences with N =2 but would fail on sentences
with N =3 and (or) N =4. In the case of N=2, the network is trained with sentences like
dog chases cat and boy sees girl, and it is then tested with sentences like dog sees cat and
boy chases girl. Thus, only one word (e.g. sees) is inserted into a trained sentence like
dog chases cat. Furthermore, the inserted word itself is trained in an N sees N context.
In the case of a trained sentence like dog chases dog who kicks cat, the network is tested
on a sentence like dog hears dog who sees cat. In this case, the inserted words hears and
sees are trained in a context like N hears N who sees N. Examples for N=3 and N=4
are given in the Appendix.

The networks were tested on the ability to predict the lexical category of the word that
would follow after a particular sentence context (the terminal symbol ‘.’ and ‘who’ are
lexical categories in this respect). Thus, in the case of the sentence dog hears dog who
sees cat the networks were tested on the ability to predict that, for instance, a noun would
follow after dog hears. Notice that with certain sentence contexts, more than one lexical
category can be correct (for the reason explained above). For instance, if the sentence
context is ‘Noun Verb Noun’, the next lexical category could be the terminal symbol
‘. (forming a simple sentence) or it could be the word ‘whe’ (forming a right-branching
sentence). This entails that, for each input word presented to the network, the set of out-
put units can be divided into a subset of lexically correct units and a subset of lexically
incorrect units. To produce a correct prediction of the lexical category of the next word
following a given input word, the network should activate one or more of the lexically
correct output units. In contrast, any activation of the lexically incorrect output units
represents an error made by the network in predicting the next lexical word category.
Thus, the sum of activation of the lexically correct units can be labelled as the correct
activation produced by the network, and the sum of activation of the lexically incorrect
units can be labelled as the incorrect activation produced by the network.
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In this way, the grammatical prediction error (GPE) was obtained as follows:

incorrect activation

GPE = — - — .
correct activation 4 incorrect activation

The GPE gives a measure of the inability of the networks to predict the next lexical cate-
gory, given a particular sentence context. GPE was based on the average of all sentences
of the same type and all ten simulated networks.

Next to this GPE, a network’s performance was also evaluated according to a winner-
takes-all principle. In this way, a network’s highest output is taken to be its prediction.
The lexical category of this unit is compared with the given sentence context to see
whether this prediction is grammatical or ungrammatical. The percentage of grammati-
cally incorrect predictions, averaged over all sentence types and all networks, gives the
grammatical prediction error according to this winner-takes-all principle, named GPEwta
here:

> ungrammatical predictions

GPEwta =
e > predictions

3.3. Results

Figure 2 shows the results of the ten trained networks on the test data, with the perfor-
mance measured by the GPE. Performance is shown as a function of the number (N) of
lexicon groups combined into one sentence, and of the position of the input word in a
sentence. The figure shows the results for the simple sentences (top panel), the right-
branching sentences (middle panel) and the centre-embedded sentences (bottom
panel). Notice that the graphs for N=1 represent the results on the trained sentences
(averaged over all four lexicon groups). Figure 3 shows the results of the ten trained
networks on the test data, with the performance measured by the GPEwta. The layout
is the same as in figure 2. The results depicted in figures 2 and 3 are very similar for
each sentence type. Apparently, evaluating the networks by taking only the highest
predicted lexical item into account reflects their total activation behaviour. It is clear
that the networks performed very well on the set of trained sentences, as reflected in
the low GPE and GPEwta for N=1 with all sentence types.

The mean GPE of the predictions by the networks for the N =1 sentences was 0.061.
This low value reflects the low percentage of network activation that corresponded to
ungrammatical predictions with the trained sentences. The mean GPE and mean
GPEwta were much higher for the N> 1 sentences, with 0.250 for N=2, 0.273 for
N=3, and 0.309 for N=4. Thus, the networks made substantially more ungrammatical
predictions on the sentences that combined words from more than one lexicon group. An
analysis of variance confirmed that the differences in GPE and in GPEwta for the differ-
ent values of N are significant (F=61.376, p <0.001 and F=65.471, p =0.001, respec-
tively). Post hoc Tukey tests revealed that these results should be attributed mainly to the
differences in performance between the N=1 condition and N > 1 conditions.

The results show that the use of combinatorial productivity has failed. The networks
perform very well on sentences that consist of words from one lexicon group (the trained
sentences); but when words from different groups are combined, the performance of the
networks deteriorates strongly, even though the grammatical structure of the sentences
has not changed, and even though all words appear in the same syntactic positions as
in the training sentences.
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3.4. Trend

A distinctive feature of the simulation results presented in figures 2 and 3 is the similar
trend for the N> 1 data within each of the three sentence types (simple, right-branching
and centre-embedded sentences). We shall discuss the trend for each of the three sentence
types in turn (given the similarity between the GPE and the GPEwta results, we shall
consider only the GPE results from now on).

With the simple sentences, the difference between N=1 and N> 1 begins with the
second word. This results from the fact that each noun has been used as the first noun
of one of the trained sentences. Thus, the networks will treat the first noun as the first
word of one of the trained sentences, which results in the same GPE for N=1 and
N>1. With N> 1, the second word will be from a different lexicon group than the
first word, which results in an increase of GPE at that position. When only two words
are combined, the conditions N=2 and N=3 are the same. A difference between
N=2 and N=3 can only occur when three words are presented, but the GPE is the
same for these two conditions. The GPE for N> 1 is higher for the third word position
compared with the second word position, which indicates that the networks increasingly
lose track of the sentence structure when three words are presented in the N> 1 condi-
tions. In the case of N=2, a three-word sentence results from taking the first and the
third word from one group, and the second word from another group. As illustrated in
figure 2, this gives a similar performance as with N=3, in which case all three words
come from different lexicon groups. Finally, when the terminator symbol ‘.’ is presented,
the difference between the N> 1 and the N=1 conditions disappears.

With the right-branching sentences, the trend in the data is again similar for the N > 1
conditions. As with the simple sentences (and for the same reason), the difference
between N> 1 and N=1 begins with the second input word. The first three words are
of the form ‘Noun Verb Noun’, as with the simple sentences. Thus, the GPE pattern is
the same in both cases (the network has no way of knowing whether it is dealing with a
simple sentence or with a right-branching sentence at this point). The fourth word is
‘who’ which gives about the same GPE as the third word. Notice that each ‘Noun
who’ combination belongs to one of the trained sentences, which might explain the
lack of increase in GPE at this point (nevertheless, GPE is still substantial at this
point). However, performance improves for the verb position after ‘who’, giving a sub-
stantially lower GPE at this point. Again, each ‘who Verb’ combination belongs to one of
the training sentences, but the decline in GPE is nevertheless remarkable. One would
expect that the GPE would increase or at least stay on the same level if the networks
lose track of the sentence structure. Yet, after this improvement, the GPE increases
again, until the terminal symbol is presented.

A similar pattern can be observed with the centre-embedded sentences. Here, a differ-
ence in GPE can only be observed after the second input word, because the first two
input words consist of the combination ‘Noun who’, which belongs to the training set
for all nouns. After the second input word, GPE increases with each word position,
until the position of the second verb is reached. The decline in GPE at this point is per-
haps even more remarkable because the combination ‘Verb Verb’ does not occur in the
training sentences (that is, with the words in the N> 1 conditions). After this decline,
however, GPE increases again until the terminal symbol is reached.

3.5. Word—word associations

As stated above, one would expect that the networks would lose their ability to predict
the structure of a sentence when sentence length increases in the N> 1 conditions,
because more words have been mixed when sentence length increases. As a result, the
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GPFE would increase or at least stay the same in this situation. Instead, however, a decline
in GPE occurs for one of the sentence positions in the complex sentences. Furthermore,
this decline occurs for each N> 1 condition, even though one might expect that the
networks will be more confused when more words from different lexicon groups are
combined.

The explanation of this trend may be found in the result for the terminal symbol *.’.
The terminal symbol produces a very low GPE for each sentence type and for all N con-
ditions. The prediction to be generated after the terminal symbol is the lexical category
‘Noun’; but the combination ‘. Noun’ is found in the training sentences for all nouns in
each of the lexicon groups. In fact, the combination ‘Noun . Noun’ occurs in the training
sentences for all nouns. Thus, the networks could have learned the association between
¢’ and each of the nouns. The prediction ‘Noun’ after .’ could result from these learned
associations, which would result in a low GPE regardless of the sentence context.

In a similar manner, the networks could predict all lexical categories on the basis of
such word—word associations for the N> 1 conditions. To test this prediction, we esti-
mated the GPE on the basis of word—word associations for each word position in
each of the three sentence types presented in figure 2. The calculation proceeded as fol-
lows. First, we looked at the transitions between lexical categories that occur in the set of
training sentences. Then, we looked at the frequency with which each transition occurs in
the training set, in particular in the set of complex sentences. (The word ‘whe’ does not
occur in the simple sentences, and the fourth training corpus is dominated by the
complex sentences.)

For instance, with ‘Noun’ as the input word, the lexical transitions that occur in the
training sentences are ‘Noun Verb’, ‘Noun who’ and ‘Noun .’. Furthermore, in each lex-
icon group, each input vector representing ‘Noun’ can be associated with two output vec-
tors representing ‘Verb’, one output vector representing ‘who’ and one output vector
representing “.’. Given that the lexical transitions ‘Noun Verb’, ‘Noun who’ and
‘Noun .” occur equally often in the complex sentences, one can assume that an input vec-
tor representing ‘Noun’ is associated equally with four output vectors during the training
of the networks.

On the basis of this assumption, an input vector representing ‘Noun’ will produce a
GPE of 0.5 when ‘Verb’ has to be predicted. When ‘who’ or .’ has to be predicted it
will produce a GPE of 0.75. The other associations can be calculated in a similar manner.
Because the transition “Verb . Noun’ occurs three times more often than the transition
“Verb . Verb’, the GPE for the prediction ‘Noun’ after ‘Verb’ is taken as 0.25, and the
GPE for the prediction “Verb’ after ‘Verb’ is taken as 0.75.

The GPE results for the word—word associations based on this assessment are pre-
sented in figure 4, together with the GPE results for the N=1 and the N > 1 conditions
(figure 2). The results are given for the second input word onwards in case of the simple
sentences and the right-branching sentences, and for the third input word onwards for the
centre-embedded sentences (for the reasons explained above).

Figure 4 shows that the trend observed in figure 2 can be explained in terms of word—
word associations. Thus, when words from different lexicon groups are mixed, the
networks do not predict the next word (lexical category) on the basis of the sentence con-
text, but primarily on the basis of the associations between the words learned during
training.

An exception is found with the third input word in the centre-embedded sentences (the
first input word presented in figure 4). Here, the GPE produced on the basis of word—
word associations is clearly higher than the GPE produced by the network for all
N > 1 conditions (which in turn is higher than the GPE produced in the N=1 condition).
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However, the combination ‘Noun who’ (the first two words in the centre-embedded sen-
tences) occurs in all trained sentences. The combination of these two words could result
in a partial prediction of the category “Verb’ for the input word on the fourth position,
thereby improving the result for the prediction generated with the third input word. A
similar effect was observed by Christiansen and Chater (1994). They found that when
a new word like ‘boy’ was used in the context ‘John and boy’, the prediction for the
next verb (e.g. ‘chase’) would still be plural, even though the combination ‘John and
boy’ was never used in the training set. It seems that the combination ‘John and’ can
produce the prediction that the word after the next word should be a plural verb, in
line with the prediction after the third input word in the centre-embedded sentences pre-
sented in figure 4. However, as illustrated in figure 4, when more words from different
lexicon groups are mixed, the GPE for the centre-embedded sentences increases and
approaches the trend given by the word—word associations.

3.6. Testing word—word associations

Instead of calculating the trend for word—word associations based on the assumptions
as described above, we also produced the trend for word—word association on the basis of
network simulations. If word—word associations dominate the response of the networks in
the N> 1 conditions, they will do so in particular when sentence context is not available.
This will occur in a “‘word-salad’ condition, in which the context of the test word consists
of a random sequence of words. We used a word-salad of seven words (equal to the length
of the complex sentences), which were chosen at random from the set of words presented
in table 1. After the word-salad was presented, the test word was presented as input and
the activations produced by the test word were used to calculate the GPE for each of
the lexical transitions that could occur in the set of training sentences. Thus, if the test
word was a noun, the GPE was calculated for the transitions ‘Noun Verb’, ‘Noun who’
and ‘Noun .’. Each word presented in table 1 was used as a test word, using 100 different
word-salads as sentence context. A few examples are given in the Appendix.

The GPE result for the word-salad condition is presented in figure 5, together with the
average GPE for the N> 1 conditions and the GPE for the N=1 condition. Again, the
results are presented for the second input word onwards in the case of the simple
sentences and the right-branching sentences and for the third input word onwards in
the case of the centre-embedded sentences.

Overall, it is clear that the trend produced by the word-salad condition is similar to the
trend produced by the N > 1 conditions. Thus, the N > 1 conditions behave as if the sen-
tence context consists of a random sequence of words (word-salad). In particular for the
second input word in the simple and right-branching sentences, and for the third input
word in the centre-embedded sentences, the GPE for the N> 1 conditions is lower
than the GPE for the word-salad condition. As discussed earlier, this could result from
word associations between words on the first and third (or second and fourth) position
in a sentence. The words in the N > 1 conditions are always presented in word positions
in which they appear in the set of training sentences. As a result, associations can be
formed not just between adjacent words in the learned sentences but also between
words that are separated by one word position. These associations could have resulted
in the slightly better GPE results for the average of the N> 1 conditions over the
word-salad condition in the case of the complex sentences.

3.7. Combinatorial productivity with mixed word relations in the training set
In constructing our set of training and test sentences we argued that all sentences of a
given type are embedded in the same context, such as ‘. Noun Verb Noun .” in the
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case of three-word sentences. Here, we used the fact that in SRNs a °.” has the same kind
of representation as a word. Thus, the ‘. at the beginning and the ‘.” at the end provide
the same context for each three-word sentence in each of the four groups.

Nevertheless, one could argue that the words from different groups are not related in
terms of grammatical relations in the set of training sentences. As a result, the SRNs
would not learn to relate these words in this way, and thus would fail when the words
are combined in the test sentences. To test this assumption, we created a new set of train-
ing sentences (see Appendix) in which words from the different groups were mixed, so
that grammatical relations between these words could be learned.

In the case of three-word sentences we again used test sentences like boy hears girl
and dog sees cat and training sentences like boy sees girl and dog hears cat. As before,
we wanted to avoid combinations like boy hears and hears girl in the training set. The
results presented thus far show that SRNs are indeed very good at learning these word—
word associations, thus they will strongly influence the results on the test sentences.
Therefore, to introduce (more) grammatical relations between the words in the test
and training sentences, we now included training sentences like boy follows cat and
dog loves girl.

To understand the effect, consider the test sentence boy hears girl. In this test sentence,
we introduce gir/ as the object of Aears; but in the training sentences we already have girl
as the object of a verb of which dog is a subject (dog loves girl), and we have dog as the
subject of hears (dog hears cat). Furthermore, we have girl as the object of a verb of
which boy is a subject (in boy sees girl).

Likewise, we introduce boy as the subject of fears in this test sentence; but in the
training sentences we already have boy as the subject of a verb of which cat is the object
(boy follows cat), and we have cat as the object of hears (dog hears cat). Furthermore,
we have boy as the subject of a verb of which gir/ is the object (boy sees girl).

In this way, we have introduced a chain of relations in the training sentences between
the verb hears and the arguments boy and gir/ in the test sentence boy hears girl (short of
the direct combinations boy hears and hears girl).

We used the same procedure with the right-branching sentences. For instance, we used
test sentences like boy kicks girl who dislikes clerk and dog chases cat who obeys boss,
and training sentences like boy chases girl who dislikes clerk, dog kicks cat who obeys
boss, boy obeys cat who loves Anthony and dog dislikes girl who follows Clarice.
With these sentences, a similar chain of relations is introduced as with the three-word
sentences. Furthermore, we interchanged only one word with these sentences. In this
way, the overall context between the test and training sentences is at a maximum (e.g.
boy V girl who dislikes clerk occurs in both the test and training sentences).

We used the centre-embedded sentences to strengthen further the relations between the
words in the test and training sentences for the cases presented above. Thus, we trained
sentences like boy who cat hears obeys Clarice and girl who dog hears obeys clerk.
These sentences directly introduce relations between the words boy, hears and
girl, (but not in the combinations boy hears and hears girl). Moreover, the sentence
girl who dog hears obeys clerk in fact introduces girl as the object of hears.

The results of the simulations are presented in figure 6. The figure shows that, again,
all training sentences were learned to near perfection. In contrast, the SRNs again failed
on the test sentences, both with the three-word sentences and with the right-branching
sentences. In the case of the right-branching sentences, only one word was changed in
the test sentences. From the word ‘who’ onwards, the test sentences were the same as
the training sentences. The behaviour of the SRNs from that word onwards is also similar
for the test and training sentences. This emphasizes the importance of word—word
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associations for the behaviour of SRNs, because it shows that the disruption before the
word ‘who’ in the test sentences has no effect once this word is presented to the
networks.

4. Discussion

The networks we simulated failed on the test of combinatorial productivity. The networks
performed very well on the set of training sentences. Thus, the networks were capable of
simultaneously learning sentences of three different grammatical sentence types; but the
networks failed when words from sentences of the same type were combined, even
though all words in these sentences appeared on the same syntactic positions as in the
training sentences. For instance, in the final simulations (figure 6), the SRNs were
able to process sentences like boy sees girl, dog hears cat, boy follows cat, dog loves
girl and even girl who dog hears obeys clerk, yet they failed with a sentence like boy
hears girl. This behaviour illustrates a failure on a very minimal form of combinatorial
productivity.

To assess the relevance of the simulations we presented, it is important to eliminate the
potential misunderstanding that we have just presented a negative result, which could
have been different if we had used a better learning (training) algorithm. This view is
not correct on two accounts. First of all, the learning algorithm we used worked perfectly.
All trained sentences were learned to near perfection. The best that another algorithm
could do was to learn these sentences to the same level of perfection. It is difficult to
see how this could have produced a different result on the test sentences. But even if
it did, it would be irrelevant. The crucial point is that our results are not about learning
at all, they are about behaviour. We have produced a kind of behaviour with SRNs that
you do not find with humans. The SRNs behave in a way that they understand boy sees
girl and dog hears cat, and still fail on boy hears girl. This behaviour is not found in
humans, regardless of the learning procedure used. It is not found in humans, because
the structure of the language system prohibits it. This is what the issue of systematicity
is all about: if you understand boy sees girl and dog hears cat, you cannot but understand
boy hears girl. Any failure to do so would be regarded as pathological. In fact, the failure
of the SRNs in the final simulations (figure 6) is not even comparable to pathological
human behaviour. Broca’s aphasics, for instance, often fail on sentences like girl who
dog hears obeys clerk but they can still understand sentences like boy hears girl
(Grodzinsky 2000). To the best of our knowledge, the reverse behaviour, as demonstrated
by the SRNs, has not been found in human pathological behaviour.

In other words, we have shown a contrast in behaviour with SRNs that cannot be found
in a productive language system. This is not a negative result at all. Instead, it is a clear
falsification of the assumption that SRNs can handle human language productivity.

In our paper we have focused on the issue of combinatorial productivity because of its
relevance for natural language processing (NLP). To understand why, it is important to
distinguish between the issues of combinatorial productivity and recursive productivity.
Combinatorial productivity concerns the ability to handle a very large lexicon, even in
the case of simple and limited syntactical structures. Recursive productivity, on the
other hand, deals with the issue of processing more and more complex syntactic struc-
tures, such as (deeper) centre-embeddings. We shall illustrate this difference with the
long short-term memory recurrent neural networks (LSTMs).

LSTMs outperform standard recurrent neural networks (including SRNs) on the issue
of recursive productivity (Gers and Schmidhuber 2001). SRNs are limited in terms of
recursive productivity (as humans are!), but LSTMs are not. For instance, they can
handle a context-free language like a”"b"B™A" for arbitrary n and m (Gers and
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Schmidhuber 2001). Note, however, that this is most likely beyond the capacity of
humans (so, we are again faced with the performance versus competence issue).

Furthermore, because of the way in which LSTMs process such languages, they can-
not handle any form of combinatorial productivity (unlike humans, who are very good at
that). An LSTM is basically an SRN in which a hidden unit is replaced with a ‘memory
block’ of units. During learning, the nodes in this memory block develop into counters.
In the case of the language a"b"B"A", the network develops two counters, one that
counts the number of ns and one that counts the number of ms. Thus, one counter counts
whether a” matches 4", and the other whether 5™ matches B™. In the context of this lan-
guage (and the other languages trained with LSTMs), this makes sense because all sen-
tences of this language have the same words, that is, they are all of the form a"b6™B™A".
The only aspect in which sentences differ is in the value of » and/or m, so the system can
learn from previous examples that it has to count the ns and ms. But this hardly, if at all,
makes any sense in the case of NLP. The most fundamental aspect of sentences in natural
language is that they convey a message, not that they differ on a given variable (e.g. the
number of nouns of verbs). So, the sentence mouse chases cat is fundamentally different
from the sentence cat chases mouse, even though they are both NVN sentences. How
could an LSTM capture this difference? The counters it develops are useless here.
What should be counted: the number of times mouse and cat appear in a sentence?
Just consider the number of possibilities that would have to be dealt with, given a lexicon
of 60000 words (the average lexicon of a 17-year-old), not just four words as in
a"b"B"A". Furthermore, how would such a model ever deal with novel sentences, like
Dumbledore chases mouse? How could it have developed counters for the match
between Dumbledore and mouse if it has never seen these words in one sentence before?

Networks such as LSTMs clearly demonstrate why the topic of combinatorial produc-
tivity is very important. The issue of combinatorial productivity is essential in NLP and
virtually non-existent in artificial languages. Thus, the fact that there are more powerful
systems like LSTMs that are capable of processing more complex artificial languages
than SRNs proves nothing about their ability to deal with combinatorial productivity.
Indeed, as the analysis given above shows, they could be further removed from that
ability than ever.

In our simulations, we used word representations that were totally uncorrelated (see
table 1). One could argue that this is not in line with the way in which words are repre-
sented in the brain. Words could be represented by means of cell assemblies
(Pulvermiiller 1999), distributed over the brain. Words of a similar category, like verbs
or nouns, would have a common part in their cell assemblies that reflects that they are
verbs or nouns. This would introduce a common representation for verbs or nouns to
which the SRNs could respond. We agree with this view about word representation in
the brain, but we did not use it for a specific reason.

To see why, it is important to understand that the work on SRNSs is a reaction to the
classical view about NLP. In this classical view, NLP consists of a rule system that oper-
ates on a database in the form of a lexicon. The rules themselves are represented in
abstract terms (e.g. about N V' N sequences). The subsymbolic approach, embodied
with SRNs, aims to eliminate this distinction. In the words of Miikkulainen (1996;
p 47), the subsymbolic approach to sentence parsing offers the promise that: ‘It is
possible to combine syntactic, semantic, and thematic constraints in the interpretation’.
This is why, in the case of NLP, SRNs operate on word-strings directly, not on abstract
strings such as N V' N strings.

The point about cell assemblies and correlated word representations in general is
that they basically reintroduce the distinction that SRNs wanted to avoid. If the cell
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assemblies were used as input, the SRNs would learn to react to this common part, that
is, they would process a sentence in terms of a sequence of Ns and Vs. But this would
reintroduce the distinction between rule-based operations and the lexicon. In particular, it
would eliminate all hope of combining syntactic and semantic aspects of sentence inter-
pretation in one approach.

Nevertheless, it is interesting to investigate this option a bit further. The lack of
combinatorial productivity observed here does raise the question of whether SRNs can
process a language of the size of natural language by directly processing word strings.
However, the SRNs produced very good results on the set of training sentences for
each of the sentence types. Thus, the SRNs were capable of recognizing the sentence
structures N VN, NV N who V N and N who N V' V N for each of the training sentences.
Since the sentence structures in the test sentences were the same as in the training sen-
tences, the SRNs would also recognize the sentence structures in the test sentences if the
same information about sentence structure was presented to the networks in both cases.
This will result when content words are first categorized as Noun or Verb before presenta-
tion to the networks, so that the networks would learn and recognize sentence structures
on the level of N VN, NV N who V N and N who N V' V' N sequences.

When used in this way, however, SRNs can only be a part of a model of human lan-
guage performance. Consider, for instance, the sentences cat chases mouse and mouse
chases cat. Both sentences are N V' N sentences and they are thus indistinguishable
for the SRNSs. Yet, these two sentences convey very different messages, and the purpose
of language is to represent these differences. In other words, the ‘who does what to
whom’ information in both sentences is very different, and humans can understand
these differences. In particular, they can produce the correct answers to the ‘who does
what to whom’ questions for each of these sentences (and the other sentences they under-
stand). Such questions cannot be answered on the level of the N V' N structure as repre-
sented by the SRNs.

This raises two important questions for the use of SRNs in models of this kind. First,
how (in neural terms) is the difference between cat chases mouse and mouse chases cat
represented in these models? This cannot be achieved with (another) SRN because of the
combinatorial productivity that is needed for this form of representation. Second, how is
the structural N V' N information represented with the SRNs related with the ‘content’
representation for cat chases mouse and mouse chases cat? Basically, this is a ‘binding’
problem because it requires that, for instance, the first Noun in N V' N is bound to cat in
cat chases mouse and to mouse in mouse chases cat. But even if these problems can be
solved, NLP on the basis of N and V sequences is faced with serious limitations.
Consider the following sentences:

The cat that the dog that the boy likes sees chases the mouse €))
The fact that the mouse that the cat chases roars surprised the boy. 2)

Both sentences have the same structure in terms of Ns and Vs: N that N that NV V V N. So,
they would be indistinguishable for an SRN that processes sentences in terms of N and V/
sequences. Yet, there is a strong difference in complexity between both sentences (Gibson
1998). Sentence (1) is a sentence with a double centre-embedding, which is very hard to
understand. Sentence (2) is a sentence with a complement clause, which can be under-
stood reasonably well. The difference in complexity results from the difference in memory
load during the processing of both sentences (Gibson 1998). In particular, in (1) the noun
cat is both the object of the second verb sees and the subject of the third verb chases. In (2),
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the noun fact is only the subject of the third verb surprised. These differences reflect the
structural relations, or dependencies, that exist between nouns and verbs in a sentence,
which cannot be represented in terms of N and J sequences.

In their review of the literature, Christiansen and Chater (2001) noted that (even after a
decade of research) SRNGs still use ‘toy’ fragments of grammar and small vocabularies.
They concluded that more research is required to decide whether the models can scale
up to the complexities of natural language. As we have argued here, a fundamental com-
plexity of NLP is its combinatorial productivity, which results directly from its huge
vocabulary, and which is not found in artificial languages. The results presented here
illustrate, in our view, that the issue of combinatorial productivity should be at the
forefront of NLP with connectionist systems.
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Appendix

Examples of sentences that were presented to a network during training

Below are printed the first ten sentences of the training corpus that was fed to a network
during the fourth phase of training. Note that sentences combine only nouns and verbs
belonging to the same group of words, as distinguished in table 1.

girl who boy sees hears girl.

Clarice follows Clarice.

Anthony loves Clarice.

boss dislikes clerk who obeys boss.

clerk who clerk obeys dislikes clerk.

girl who girl sees hears girl.

dog who cat chases chases cat.

Clarice follows Anthony who follows Anthony.
Clarice follows Anthony.

cat who cat kicks kicks cat.

SO XNAN R DD~

—_

Examples of sentences that were presented to a network during testing

Next to being tested on sentences combining only nouns and verbs belonging to the same
group (like the sentences printed above), networks were also tested on sentences that
combined, alternatively, nouns and verbs from more than one group. First, here are
some examples of test sentences combining words from rwo different groups.

clerk loves boss.

boy obeys girl.

clerk follows boss.

boy loves boy.

cat dislikes cat.

girl kicks boy.

dog hears dog who sees cat.

clerk hears boss who sees clerk.

girl loves girl who follows girl.

10.  boy dislikes girl who obeys boy.

11.  Anthony obeys Clarice who obeys Anthony.
12.  clerk who dog dislikes chases boss.

13.  Anthony who boss follows obeys Anthony.
14.  cat who Anthony chases loves cat.

15.  boy who Anthony sees loves girl.

e A bl

Examples of some test sentences that combine words from three different groups follow.

1. girl kicks boss.
2. boy dislikes Anthony.
3. cat hears boss.
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dog obeys boy.

boy obeys Clarice who hears boss.

cat dislikes Anthony who chases boss.
boss hears Anthony who dislikes girl.
Anthony sees clerk who loves girl.

boss who Clarice kicks dislikes Clarice.
dog who boy loves chases girl.

clerk who Anthony chases obeys Anthony.
girl who dog follows sees dog.

Clarice who clerk kicks follows clerk.

Below are some examples of sentences that combine nouns and verbs from all four
groups of words. Because simple sentences consist of only two nouns and one verb,
these structures naturally cannot combine words from all four groups in one sentence.
Therefore, only right-branching and centre-embedded sentences are found here.

PN RO =

boss kicks Clarice who sees clerk.
Anthony dislikes girl who kicks Clarice.
girl follows dog who obeys girl.

boss follows dog who sees clerk.

boss who girl kicks loves clerk.

girl who Clarice chases dislikes boy.
clerk who cat follows sees boss.

cat who girl dislikes loves cat.

Examples of sentences that were presented to a network as a word-salad

Finally, here are some examples of seven-word-salads, followed by a lexical item. These
sequences were presented to the networks to obtain the (average) activations produced by
each lexical item. These activations were used to determine the word—word associations
produced by each lexical item.

PN WD =

sees chases kicks dislikes follows boss Clarice who
loves Clarice boss Clarice hears Anthony Clarice who
dislikes boy dog clerk dog who dog who

chases clerk Anthony obeys obeys . kicks who

Clarice - dog girl dog clerk obeys boy

dislikes clerk hears girl boy hears Anthony boy

clerk girl dog boss obeys who dislikes boy

dislikes loves . . Clarice obeys sees boy

Examples of some sentences from the mixing group (figure 6)
Test sentences:

Ealb el e

boy hears girl

dog sees cat

boy kicks girl who dislikes clerk
dog chases cat who obeys boss

Training sentences.

1.
2.

boy sees girl
dog hears cat
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boy follows cat

dog loves girl

boy chases girl who dislikes clerk
dog kicks cat who loves Anthony
dog dislikes girl who follows Clarice
boy who cat hears obeys Clarice
girl who dog hears obeys clerk

boy who cat kicks loves Anthony
dog who girl chases follows Clarice



