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Abstract. The continuous demand of producing low cost multi-core
hardware for safety critical hard real time applications has driven at-
tempts of using Commercial Off The Shelf (COTS) components. Prior to
the industrial deployment, Worst Case Execution Time (WCET) of these
applications must be estimated on underlying hardware. However, even
simple COTS components exhibit unpredictability at very low level which
render them not suitable for conservative timing analysis. These low level
unpredictability, implied from hardware specifications, are mostly invisi-
ble to MPSoC integrator and WCET tool manufacturers due to abstrac-
tion. Additionally, predictable hardware designers propose advance tech-
niques for predictable and high performance multi-core systems ignoring
abstraction that tool manufactures use. The combination of such advance
hardware and abstraction enforces investigation of all paths through ap-
plication execution.

As contribution, this paper identifies two low level unpredictability de-
duced from COTS interconnect specifications which render them unsuit-
able for WCET analysis in multi-core environment. Moreover, the paper
also shows that the advance arbitration scheme, budget based arbitra-
tion, invented for better predictability and performance prevents WCET
tool to apply state space reduction and enforces analysis of all paths.

1 Introduction

In state-of-the-art premium automobiles about 100 Electronic Control Units
(ECUs) are used to control the vehicles’ functionality ranging from passenger
comfort (e.g. climate control, infotainment) to safety-critical tasks (e.g. ABS,
ESP, airbag) each of which has their own distinct requirements. The complexity
of the implemented functionality can be expected to even grow in the future.
The traditional approach to satisfy requirements of such functionalities is to
build dedicated ECUs and group them according to their class by dedicated
networks e.g. CAN, LIN, MOST, FlexRay etc. It is estimated that about 4 km
of cables are used in today’s premium cars weighing about 60 kg. This incurs a
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tremendous fuel consumption. Moreover, this approach has increased complexity
and vehicle cost by 30 - 40% [26].

A more centralized Information and Communication Technology (ICT) archi-
tecture would therefore exhibit tremendous advantages, such as: reduced weight
(due to reduction in number of components and cabling), reduced cost (due to
simplified architecture), and increased configurability and reduced maintenance
cost of the overall ICT structure (due to replacement of hardware functionality
by software components).

For such a centralized ICT architecture high performance ECUs capable of
executing multiple demanding applications concurrently are required. Multi-core
architectures are seen as a potential candidate for providing the performance
needs at low energy consumption due to their high performance-per-watt ratio.
Custom multi-core chip production tailored to safety critical systems is very
cost intensive. Therefore, it is very tempting to apply multicore chips from other
domains in order to reduce cost.

To this end we evaluated various technologies with respect to their applicabil-
ity in the field. Since it is practically infeasible to evaluate each and every part of
each and every chip with respect to every relevant property we needed to focus,
in this paper we concentrate on the shared-memory communication subsystem,
which we identified as a major source of potential problems. Certifying highly
integrated systems to the applying safety standards (IEC 61509 and its auto-
motive derivative ISO 26262) require safety-critical hard-real-time functionality
to prove that they adhere to their time bounds. For example, a brake needs to
react within 50ms after the braking pedal is hit by the driver. Therefore, we also
focused on problems related to boundedness of memory response time (memory
latency), which contributes to a major part to the worst-case-execution-time
predictability of the overall platform and the quality of the achievable bound.

Neither is our goal to identify a single applicable existing chip, nor to provide
a complete overview of the market. Instead we report on the problems we came
across while we tried to compose a predictable multicore system from IP com-
ponents. This included Commercial-Off-the-Shelf (COTS) components for parts
that are usually not questioned. Here, we analyzed multiple common commu-
nication protocols e.g. AMBA, Avalon, PLB with respect to their applicability
and identified problems on multiple levels. Foremost, we identified specification
compliant behavior that will lead to unbounded or increased delays. Most of the
research on COTS for predictability focus on either shared resource itself e.g
SDRAM or predictable arbitration schemes, however, none focus on such spec-
ification compliant misbehavior of bus masters and arbiters. We also evaluate
solutions such as budget based arbitration (Credit Controlled Static Priority [16],
Priority Based Budget Scheduler [17] and Dynamic Priority Queue [11]) that are
not yet wide spread in practice, but are propagated by research groups. Here, we
also identified unsolved challenges in conjunction with WCET analysis methods.
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2 Related Work

There has been a number of attempts to provide multicore hardware that is tai-
lored to WCET analyzability (e.g., PRET [14], MERASA [12], CoMPSoC [13]).
However, due to the tremendous costs of silicon implementation for small volume
productions, tailored architectures are an expensive option for industry.

Therefore, a number of approaches propose techniques of providing WCET
for COTS based components to enable their utilization in safety-critical, hard-
real-time (HRT) applications. Pellizzonni et al [10], [6] analyze effects of memory
traffic generated by I/O peripherals on WCET of the application under analysis
in single core architecture. They extend their approach to multi-core architec-
tures in [7]. Their approach can be summarized as follows. 1) Limit peripheral
traffic to a certain amount per unit time. 2) Calculate the upper bound on
memory traffic generated by co-existing applications 3) Estimate maximum pos-
sible interference considering those bounds. The advantage of this technique is
that the worst case interference does not have to be considered which reduces
the WCET of the task under analysis. The drawback is that the task cannot be
analyzed in isolation, hence, a small bug fix in co-existing application enforces
WCET re-analysis making it an iterative and time consuming process. Another
drawback in mixed-critical system is that the safety standards [25] require all
co-existing applications to be certified to the level of the most critical application
integrated if temporal and spatial separation is not provided. In the worst case
that might mean certifying an MP3 decoder application to the criticality level
of a brake.

To simplify the certification and integration process Shah et al [8], [11], [15]
and Paolieri et al [5] analyze applications in isolation and always assume worst
case interference from co-existing applications. Their techniques provide WCET
of application executing from highly unpredictable and inexpensive shared SDRAM.
Although [5] is built for MERASA platform, we believe that their approach is
applicable to any multi-core architecture with shared resources provided that
the issues mentioned in this paper are taken care of. [8], [11] and [15] propose
to use budget based arbitration and provide timing models of the arbitration
scheme for worst case interference analysis. At first, these approaches demand
change in arbiter which may be expensive. Moreover, we explain in this paper
how their timing model when integrated in WCET analyzer, enforces analysis of
all paths.

Recently, there have been approaches of measuring the WCET of applications
on multi-core architectures by aggressively accessing the shared resource using
artificial co-existing applications from Fernandez et al [22], Radojkovic et al [23]
and Nowotsch et al [24]. However, we argue that such approaches cannot produce
the theoretical worst case interference. Instead of proving it in this paper, we
refer readers to [5]. Here, at first WCET is estimated (AMC) considering the
theoretical worst case interference and compared to the Maximum Observed
Execution Time (MOET) in the presence of always interfering applications. For
a three master system the AMC to MOET ratio is ≈ 0.4 and it grows with
number of masters.
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Moreover, none of the above mentioned approaches analyze communication
protocols to investigate suitability of their specifications for WCET analysis.
Unpredictable behavior of COTS components are identified by Wilhelm et al [9]
and Gebhard et al [4]. But, the main focus has always been the caches, pipelines,
shared resource and arbiters. In this paper we extend the list especially consid-
ering temporally specification-compliant unpredictable behavior of bus masters
in popular communication protocols, and the abstraction gap between hardware
designers, system integrators and tool vendors.

3 Background

Fig. 1 is a basic predictable multi-core architecture with predictable cache and
bounded off-chip memory access latencies. The off-chip memory is shared among
all cores under predictable arbitration scheme. For static WCET analysis (aIT,
OTAWA), abstract timing models of each of these components are created and
worst case behavior is considered. Measurement based WCET analysis and its
applied state space reduction are explained latter in Sec. 3.3. We now focus on
points that we have identified causing issues while ignoring low level details.

CPU1

cache

CPU2

cache

CPUn

cache

Communication under 

Predictable Arbiter

Off-Chip Memory

Fig. 1: Basic Predictable Multi-core Architecture

3.1 SDRAM - Off-chip Memory

SDRAM is a popular, inexpensive memory that provides large storage and high
data rate. However, its timing unpredictability has restricted its use to non-
realtime systems only. Recently, there have been some approaches in academia
that predicts worst case latencies of SDRAMs and allows its use in safety critical,
HRT systems [8], [11], [5], [18], [19]. All of them advocate to use bank interleaving
(close page policy) while accessing SDRAM to reduce latency dependence on
previous access. For more details on Bank Interleaving (BI), readers are referred
to [8]. However, we briefly explain the concept in the following paragraph.

In BI, instead of mapping a single cacheline on a single row of an SDRAM
bank (Fig. 2a), all cachelines are split and their chunks are mapped to all SDRAM
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Fig. 2: Bank Interleaving

banks (Fig. 2b). When a cache miss occurs, starting from Bank0, corresponding
row is activated (copied to row buffer), cacheline data chunk is accessed from row
buffer and the row is precharged (written back to its corresponding bank). When
one row is being activated or precharged, data from other row can be supplied
providing seamless data transfer. Using BI for accessing shared SDRAM results
in more predictable latencies since unpredictability related to the presence of
unintended row in the row buffer is eliminated. Otherwise, at first the unintended
row must be precharged and the intended row must be activated which increases
latency significantly (i.e. in open page policy - Fig. 2a). Activate and precharge
operations are graphically represented in Fig. 2a.

Fig. 2c depicts “Precharge to Activate delay” (tRP) which dictates mini-
mum time by which the next activation of the same bank is delayed after being
precharged, hence, restricts SDRAM bandwidth. Moreover, as explained in [8],
switching between read/write accesses produce worst latencies for SDRAM.
Hence, for worst case estimation, when analyzing a write access we will assume it
is interfered by a read access. Variable W is the worst case write latency in case
of only one possible interfering master. Similarly, R is derived for read latency.
Variables W and R are then used to estimate WCET of application.

3.2 Budget Based Arbitration: DPQ

Time Division Multiple Access (TDMA) arbitration scheme for accessing a shared
resource is termed as the most predictable arbitration scheme [21]. In TDMA,
each master is assigned a unique time slot in bus cycle. Each master is the ex-
clusive owner of its time slot and no other master is allowed even if the slot is
unused. These hard restrictions generates very predictable behavior at the cost
of shared resource utilization. To provide better utilization, researchers have
proposed budget based arbitration scheme in which masters are assigned fixed
budget of allowed transfers in a bus cycle (replenishment period). At the begin-
ning of replenishment period, each master is replenished with its initial budget
and on every access its budget is reduced by one. When master uses its entire
budget it is termed ineligible for that replenishment period and cannot access
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Fig. 3: DPQ Arbitration. Budget[m3,m2,m1] = [2,3,5]

the shared resource until it is replenished again at the beginning of next replen-
ishment period. Due to the budget based assignments, masters do not have to
wait until their slot arrives which increases resource utilization. Conflicts among
masters in case of simultaneous accesses are resolved using priorities.

In this paper we will take Dynamic Priority Queue (DPQ) [11] as a case study
which is fairer than other budget based arbitration schemes. In DPQ, as shown
in Fig. 3, priority of a master depends on its position in the queue. At point A,
master m3 has the highest priority since it is at the left end of the queue. However,
it has consumed its entire budget (BudgetLeft = 0), hence, it is ineligible in
current replenishment period. Master m2 is the next eligible master in the queue
and has a request pending. Hence, m2 is scheduled, its budget is reduced by one
and it is enqueued at the end of the queue (lowest priority). However, priority
of m3 does not change. Only masters who had lower priority than m2 (m1 in this
case) are shifted left to achieve next higher priority level. At point B, m1 is the
only eligible master with a pending request. Hence, m1 is scheduled, its budget is
reduced by one and it is enqueued at the end. At point C, a new replenishment
period starts and all masters get their initial budget back making all of them
eligible.

3.3 Measurement Based WCET

In this section we briefly explain the measurement based WCET analysis tech-
nique. As a case study we take an example of hybrid approach employed by
Rapitime tool developed by Rapita systems [20]. Rapitime analyzes application
code statically and inserts instrumentation points (I - Points) at the beginning
of each basic block (Fig. 4(a)). By definition, a basic block is a block of code
that has a single entry and a single exit points. Hence, branch instruction itself
is one basic block. The i - point simply writes down the time when it was visited
during execution in a trace. The generated trace is then analyzed to determine
the highest time spent in each basic block. Hence, the test pattern must drive
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execution through all i - points at least once. However, testing all paths can
be omitted. For example, in Fig. 4(b), the test patterns test paths ABDF and
ACEF which cover all instrumentation points. After executing the test patterns,
execution time of each basic block is determined (shown as big/small circles pro-
portional to their execution time). The tool statically notices that there exists a
path ACDF which is not tested. However, the path ACDF is the longest execu-
tion path. Hence, ACDF is the worst case path and total time consumed while
executing basic blocks A, C, D and F is the WCET of the application.

4 Bus Locking

In this section, we investigate communication protocol required in the basic pre-
dictable architecture of Fig. 1. We present issues related to predictability in
popular communication protocols, such as AMBA - AHB [1], Avalon [2] and
PLB [3], which are invisible while WCET analysis due to abstraction. Over-
whelming number of researchers use multi-core platforms built on these com-
munication protocols and abstracts off-chip memory access time as a constant
(typically 70 ns) for calculating cache miss penalty. Certainly, they take into
account worst case interference and ideal memory controller, however, it is not
enough as we will show.

n+1n21

Arbiter

Lock d1 locked d2

(a) Explicit Bus Lock

n21

HTRANS

d1 locked d2

SEQ BUSY SEQ

(b) Implicit Bus Lock

Fig. 5: Shared Bus Locking
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4.1 Explicit Bus Lock

All above mentioned communication protocols offer a dedicated signal called Ar-

biterLock which can be used to inform the arbiter that once granted, the shared
resource must remain granted to the master until the ArbiterLock signal is re-
leased as depicted in Fig. 5a. ArbiterLock signal is provided to improve average
case performance by significantly reducing shared resource access latencies for
masters which transfer large amount of data in a burst fashion.

It is clear that in all HRT systems, arbiter must not provide such explicit
locking mechanism since one master can lock the bus indefinitely starving all
other masters leading to deadline misses for applications being executed on them.
In mixed critical systems with only one HRT application, the processor which
executes HRT can have ArbiterLock signal. However, the shared resource can
also be locked implicitly as we will show next.

4.2 Implicit Bus Lock

Each of the above mentioned communication protocol supports burst transfers.
In a burst transfer, a master requests ownership of the bus for a certain amount
of consecutive accesses (BurstLength). The arbiter gives the guarantee that
the bus ownership will not be terminated until the BurstLength transfers are
done. Burst transfers are almost always used for filling up a cacheline and hence
present in all modern processors with caches. During write burst transfers, if
master itself cannot transfer data due to unavailability or wrap around in internal
buffer, it can insert wait states (we have observed this using onchip debugger
on an FPGA). In AMBA - AHB such wait states can be inserted by giving
BUSY response (Fig. 5b), and in Avalon and PLB, by releasing WRITE signal. In
this case, the master implicitly locks the bus until it completes BurstLength

transfers.

4.3 Early Burst Termination
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To avoid one master monopolizing the bus ownership, (ONLY) AMBA - AHB
employs EarlyBurstTermination mechanism. Here, the ownership of a master
can be terminated before BurstLength transfers are done if it takes longer than
specified time to complete its burst transfer. However, this mechanism can in-
crease latencies of co-existing applications when Bank Interleaving (Sec. 3.1) is
used for accessing shared SDRAM. As shown in Fig. 6a, after writing first chunk
of its burst on Bank0, the interfering master inserts two wait states. Afterwards,
it writes the second chunk on Bank1. At this point, the arbiter intervenes and
terminates its burst since it already took the specified time for a write transfer
and the master under investigation is granted an access. The master under in-
vestigation reads first element from Bank0, however, reading the second element
is delayed because of the tRP requirement (Sec. 3.1) as shown in Fig. 6a. Thus,
the the worst case read latency is increased, depicted by eR, invalidating pre-
viously analyzed theoretical worst case read latency R. Although, master under
investigation did not insert any wait state and the predictable arbiter enforces
time by employing EarlyBurstTermination, the above mentioned “side-effect”
invalidates theoretically analyzed WCET of application under investigation.

Wrap Around Burst: The similar problem exists for Wrap Around Burst
(WAB). WAB is employed mainly in instruction caches and typically occurs
when branch targets are not aligned to cache line boundaries. Here, instead of
issuing sequential burst starting from the first element of the cacheline, burst
is issued from the element where the branch target instruction is mapped to
receive the blocking data (target instruction) first, which reduces processor stall
time. However, as shown in Fig. 6b, wrap around burst issued by an interfering
access extends latency of the master under investigation when bank interleaving
is used.

4.4 Discussion

Above mentioned issues arise when system integrator integrates components
from different vendors which are compliant to the same communication protocol.
The system integrator focuses on compliance to the protocol and may not have
information about inner functionalities of connected components. Moreover, the
tool builder assumes theoretical worst case shared memory latency. Hence, these
issues go completely unnoticed leading to invalid (bus locking) or underestimated
(Early burst termination and Wrap around burst) WCET bound.

Issues related to bus locking can be fixed by publishing a subset of commu-
nication protocol (e.g. AHBR - Realtime capable AHB) which does not allow
explicit or implicit bus locking. All Intellectual Property (IP) vendors then have
to adhere to this subset. If not, a delay buffer must be inserted at the output port
of each master which at first receives all data from the master and then issues
a sequential burst transfer without any wait state. The issue of wrap around
burst can also be fixed at application code level by aligning all branch target in-
structions to cacheline boundary using compiler directives and thus, completely
eliminating possibility of wrap around burst.
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5 DPQ - Timing Model
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Fig. 7: DPQ - Worst Case Latency Analysis. Budget[m3,m2,m1] = [2,3,5]

The Fig. 7 depicts analysis view of a replenishment period under DPQ ar-
bitration scheme [11]. During worst case interference analysis, the master under
investigation is always assumed to be at the end of the queue when it requests
an access to the share resource. For example, in the figure m1 under investiga-
tion, cache miss occurs on m1 at the beginning of the replenishment period. The
co-masters (m2 and m3) are assumed to experience a cache miss also at the same
time. Since m1 is assumed to be at the end of the queue, m2 and m3 are scheduled
before m1 is scheduled. The same is assumed for the second cache miss in the
replenishment period. However, for a third cache miss of m1 in the same replen-
ishment period, m3 is considered ineligible since it has already used its budget in
current replenishment period. Here, only interference from m2 is assumed. Thus
in analysis, the worst case interference is assumed for early accesses in a replen-
ishment period. However, in real execution, worst case interference can occur to
any access provided that other masters have budget to do so.

The above mentioned technique eliminates requirement of assuming worst
case interference always. However, that makes access latency dependent on the
accesses done in near past. For example, consider a burst of accesses arriving in
relatively short period. The early accesses of the burst are assumed to have high
interference (high latency) provided that master under investigation has budget.
Intermediate accesses are assumed to have less interference (low latency) since
other masters have consumed their entire budget during high interference phase.
Latter accesses of the burst are assumed to have high latency since the master
does not have budget left in the current replenishment period and has to wait
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till the beginning of next replenishment period. Such dependence on accesses
done in near past prevents application of deduced WCET paths as explained in
Sec. 3.3 since the current access latency depends on accesses done in near past on
that path, hence, that path must be tested. Thus, this technique makes WCET
estimation an exhaustive process by enforcing analysis of all paths.

6 Conclusion

This paper has revealed issues related to WCET estimation in COTS commu-
nication protocol and advance arbitration schemes in multi-core architectures.
The first two issues are related to implicit and explicit bus locking, and invalida-
tion of theoretically analyzed worst case shared resource access latencies. These
issues arise from specification of communication protocol. A subset of COTS
specification with trivial fixes for real time capability (e.g. AHBR) is required
to mitigate the issues or delay buffers in hardware must be employed by an MP-
SoC integrator leading to an increase in latencies and WCET. These issues are
mostly invisible to WCET analyzer due to the abstraction. However, they must
be addressed before WCET estimation of application. The last issue is related to
budget based arbitration. Here, researchers have proposed an advance arbitra-
tion algorithm and its timing model for worst case latency analysis. However, the
technique prevents the WCET analyzer from applying path reduction leading to
exhaustive analysis.

Above mentioned issues may go unnoticed due to the different levels of ab-
stractions at which hardware designers, MPSoC integrators and WCET tool
manufacturers operate. We believe for a safe WCET estimation, especially on
multi-core architectures, unified efforts must be put from low level hardware
designers to tool manufacturers for every component in the architecture.
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