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Abstract: This contribution reports on an approach to hardware/software codesign
based on on a state transition system design language MAD. MAD has been used
for software designs for some time, but is now being extended to hardware designs
by adding VHDL as one of its target languages. The experience of adding a new
dimension (i.e. hardware) to the design space and of dealing with some state-of-the-
art hardware development methods and tools is presented. The approach is illustrated
with an implementation of a control system for an elevator.
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1. INTRODUCTION

Hardware description languages (HDLs) are in-
creasingly used to describe behavior, structure,
data-flow, or logic gates structure of hardware.
Hardware in this context may mean programmable
logic devices (PLDs) or application specific ICs
(ASICs) in various forms or whole boards. From
the abstract hardware descriptions lower level de-
scriptions (down to the masks for programming
the PLDs or for manufacturing ASICs) are gen-
erated automatically by synthesis systems. This
has been established in practice for some time
down from the register transfer level. More re-
cently, high level synthesis systems, starting from
a purely behavioral description to automatically
synthesize register transfer level descriptions, have
started to make their way into practice.

Today’s hardware description languages are re-
markably similar to (software) programming lan-
guages. This is especially true, if one considers
real-time programming languages, because (only)

these contain concepts such as parallelism and
time. For the leading hardware description lan-
guage VHDL, the similarity to Ada has been an
explicit design principle (Menchini, 1993). A com-
parison of VHDL and Ada, showing the similari-
ties and differences between these languages can
be found in (Tempelmeier, 1994q).

The similarity of software and hardware descrip-
tion languages and the progress in high level syn-
thesis have made it possible, to put design ideas to
hardware or software, alike—at least theoretically.
This gives rise to the new discipline of hardware-
software codesign, the integrated design of hard-
ware and software. Hardware-software codesign
may start from a common system description in a
suitable language. Numerous languages have been
used for system descriptions, e.g. Ada, C, C%,
ESTEREL, LUSTRE, OOFS, Petrinets, PRAM,
Promela, SDL, State-charts, VHDL ( (Halbwachs,
1993), (Tempelmeier, 1994b)). From these system
descriptions hardware and software descriptions
(i.e. programs) can be generated in Ada, C, C++,



HardwareC, Verilog, VHDL (see figures la-b for
two examples).

Using the term hardware-software codesign in a
broader sense, it could also include hardware-
software re-partitioning without assuming a com-
mon system description (figure 1c¢). Various cri-
teria for the decision whether to use hardware
or software are in use, e.g. performance (includ-
ing hardware/software communication overhead),
cost, form factor (space, weight, power consump-
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tion), safety, architectural cleanness and simplic-
ity.

This contribution reports on an actual case study,
where hardware or software implementations have
been derived from an already implemented system
description for distributed real-time systems. It
is based on the concept of multi-agent systems
and allows for a uniform programming of complex
process control systems on a microprocessor field-
bus network. The specification of the agents is
done in an hardware independent language using
the notion of states and guarded commands. Till
now the system is used for PCs, PLCs and micro-
controllers. An already implemented code genera-
tor for a finite state machine is now extended to
generate VHDL-code.

The experience from this case study includes:

e A naive and simplistic approach like
“Write down any legal construct in a hard-
ware description language and let high
level synthesis tools synthesize some hard-
ware” does not work, of course. Thus,
what may seem easy or clear theoretically,
becomes very interesting in practice.

e The standard criteria for assigning func-
tionality to hardware or software are
helpful in some cases, e.g. when per-
formance or cost are critical factors. In
our case study, some of the standard
criteria. did not apply, and deciding on
hardware/software partitioning was based
partly on intuitive arguments.

o It works!

2. THE APPROACH
2.1 System Specification with MAD

The proposed multi-agent distributed real-time
system (MAD-RTS) is used to program complex
distributed heterogeneous real-time applications
(Schrott, 1995). It also highly supports structured
design and test- and maintainability of the re-
sulting system. Dedicated computers guarantee
the needed response times in time-critical appli-
cations; the complexity of control applications is
mastered. In MAD-RTS specification and cod-
ing of the control programs are closely related.
The MAD-language supports the definition of
small agents which communicate with each other
by sending contracts to start activities of other
agents. Agents are small autonomous units which
are able to perceive, to plan, to communicate with
each other, to decide and to act. If more than
one agent can perform the needed activity, bids
are sent and the ’'cheapest’ agent will get the
contract. Each agent has a set of defined states



and executes the guarded actions of this state.
It interacts via generic subagents with physical
input/output channels, timers and other specific
hardware. As in object oriented programming the
agent executes the contract like a method without
showing the real implementation.

A complete MAD program starts with the dec-
laration of the target microprocessors and is fol-
lowed by a number of agents. A syntactic defini-
tion of an agent written in MAD can be found in
(Schrott, 1995), its semantic structure is briefly
shown below. An example of an agent showing its
functionality is given in chapter 2.3.

e Declaration of the target microprocessor
The target processor chosen within the network
to execute the agent is defined after the key-
word host. More than one agent may of course
run on one processor.

¢ Instantiation of subagents

At lowest level generic subagents are defined
to realize the interface to the technical pro-
cess (e.g. digital and analog input/output,
timer, stepper motor, pid-controller). They
are instantiated in the decls definition of a
MAD-program with the actual i/o-address and
mnemonic identifiers to enhance self documen-
tation of the program.

e Declaration of contracts

The only interface between agents is the con-
tract protocol. In the contracts definition ev-
ery contract which can be called by other agents
is listed. A contract transfers parameters and
causes the execution of actions or in most cases
a state transition in the agents action part.
Included in the communication system is a con-
tract net bidding protocol.

e Action part

The action part is subdivided into a set of
states. Control tasks usually change between
different states of operation, e.g. at lowest level
on’ or ’off’; at higher level ’open’; ’closed’ or
’error’. One state is active and the actions com-
prising it are executed. Each action is bound
by a condition (guard) and only if it is true
the corresponding statements are executed. At
lower level these conditions will be signals from
the controlled process, at higher level it may be
timers or conditional expressions on variables.
All conditions of the active state of one agent
are tested cyclically and all agents fixed to one
microprocessor are executed one after the other
to guarantee an exactly predictable time behav-
tor. Two distinguished states are obligatory on
each agent: At start up the agent goes into
the initial state, in case of emergency the
shutdown state is entered.

In related work some similarities to MAD-RTS
may be found, e.g. in all approaches which
are based on finite state machines like SDL
(Feergemand and Olsen, 1994) or Codesign Finite
State Machines (CSFM’s) (Chiodo et al., 1994).
Also, the concepts of synchronous real-time lan-
guages show some similarity to MAD-RTS, and
they also allow for an automatic transition to
silicon (Halbwachs, 1993).

2.2 Object-Based Hardware-Software Assignment

A thorough survey of the existing literature on
hardware/software codesign showed that many of
the proposed schemes could be used in princi-
ple. However, a decision was taken only to use
target languages of primary importance in em-
bedded systems (in terms of practical use). This
restricted our choice to C and plc programs, and
to VHDL, and may possibly exclude some hard-
ware/software codesign approaches for our pur-
poses. Further, it is not in the scope of this study
to evaluate or even survey hardware/software
codesign methods. The motto was rather, ” Just
do it! Do it as good as it is possible with today’s
commercially available tools and evaluate the nec-
essary design effort!” This again ruled out some
hardware/software codesign approaches which fo-
cus on hardware/software codesign research per
se.

The above, very pragmatic, standpoint lead us to
our hardware/software codesign approach, which
might be described as intuition-guided, object-
based, coarse-grain hardware/software repartition-
ing and assignment, based on the similarities of
hardware description languages to (software) pro-
gramming languages.

MAD objects are used as smallest design units for
hardware or software implementation. This means
that only whole agents including their subagents
are candidates in the hardware/software assign-
ment process. Fine-grained hardware/software as-
signment was not considered due to the neg-
ative experience with communication overhead,
which one of the authors had encountered during
a former work assignment in aerospace indus-
try. Object-based hardware-software assignment
partly avoids this problem and also preserves the
existing overall system structure (Tempelmeier,
1994b).

As an example for the following, the door agent
of an elevator control system from (Schrott, 1995)
is taken as a design unit to be put into hardware.
Some reasoning about the decision “Implement it
in hardware or software?” will be presented later
on.



2.3 Translating MAD to VHDL

The following MAD-program shows the hardware
independent specification of the door agent of an
elevator control system:

agent door2 host mealy;

decls
DigOut motor (outl,on,off);
DigOut direction(out2,open,close);
DigIn open_key(inl,on,off);
DigIn closed_key(in2,on,off);
DigIn light_barrier(in3,interrupted,ok) ;
Timer delay;

contracts
open do newstate opening;

states
closed/shutdown:
true => motor.off;
opening:
true => {direction.open; motor.on;}

=> {motor.off;
delay(10000) ;
newstate waiting;}

open_key.on

waiting:

delay.tout => newstate closing;
closing/initial:

true => {direction.close;

motor.on;}
closed_key.on
=> {newstate closed;
elevatorl.start;}
light_barrier.interrupted
=> {motor.off;
newstate opening;}
endagent;

Other agents may send the contract door2.open
in order to induce the door agent to open the
elevator door, wait for 10 seconds and close it
again. If the light barrier is interrupted during
closing the door is opened again. If the door is
closed, the contract elevator.start is sent to
agent elevatorl.

The programming system MAD-RTS is hosted
on a PC under MS-DOS. It contains the com-
piler for MAD and code generators and run time
systems for different targets. The compiler uses
the contract specification to generate automati-
cally the code for the transmission of contracts
between agents on the same or on different tar-
gets. Code generators are available for Intel 80x86,
MC68HC11 and programmable logic controllers
(figure 1d); the communication link is imple-

mented for RS 232 serial link and the CAN-field—
bus. If only digital input/output, no numeric ex-
pressions and no parameter passing to contracts
are used, a further code generator is available

which translates an agent program into a table
of a Mealy state machine M = (Q,%, A, 4, A, qo)

set of states

by input alphabet
A output alphabet
§:9xY—=Q state transition
A:OxY = A output function
qo0 initial state

It is relatively easy, to transcribe the finite state
machine implementation into VHDL. The code
is included in the appendix. The translation to
VHDL has been done manually for the prototype.
An automatic transition from MAD to VHDL is
easily possible and may be envisaged for the future
(figure 1d).

Some remarks on the VHDL code are given here
from the point of view of software engineers (cf.
listing in the appendix).

e The ports of the entity form the interface
to this hardware unit. They closely re-
semble the declarations in the MAD pro-
gram. Contracts and subagents for digital
input/output and for the timer are imple-
mented as interface bits of the hardware
entity.

e In the architecture part, the states of
the finite state machine are defined as an
enumeration type.

e In software one would perhaps imple-
ment the finite state machine as nested
case-statements. An outer case-statement
would cover all possible states, and the
nested case- or if-statements would cover
all possible inputs in a particular state.
The VHDL representation follows this
scheme in the process NextStateDecode.

e Two more processes (RegisteredState
and DecodeOutputs) are required by the
particular coding style suggested by the
synthesis tool.

Generally, not all VHDL constructs are synthe-
sizable. So each synthesis tool places certain re-
strictions on the designer. By following the style
guide for finite state machines of the synthesis
tool manufacturer (Skahill, 1996), no unsolvable
synthesis problems were encountered in our case
study.

We used Model Technology’s V-System for VHDL
simulation and Cypress Semiconductor’s Warp 2,
rel. 3.5 and 4.1 for synthesis and post-synthesis
simulation. Wilson WindowWare’s WinEdit served



as editor providing syntax colouring, error cap-
ture, etc. and also as integration tool, allowing to
call the other tools. All tools were running under
Windows95/NT.

As hardware targets, Cypress Semiconductor’s
Flash370 CPLDs with 128 macro-cells were used.
These could easily be programmed from a PC.
The use of CPLDs further reduced the low end
development effort, because no “place and route”
as for FPGAs was necessary.

Experience with V-System was very good.

Experience with Warp 2, rel. 3.5 was rather bad.
The problem was not that only a subset of VHDL
was synthesizable (of course), but that many
undocumented and undetected restrictions did
exist. Admittedly, the tool is available at almost
no cost. But, it is the design tool for programming
Cypress ICs. How could anybody have done a
large design with this tool? Probably, designers
have used this tool with a severely restricted
subset of VHDL, e.g. only with basic boolean
equations.

Experience with Warp 2, rel. 4.1 (Skahill, 1996)
was much better. However, some annoying restric-
tions as compared to full VHDL remain. As an
example, variables cannot be used to hold or pass
information, only as value holders. This means
that no memory elements are synthesized for vari-
ables and that signals must be used, instead. But,
in contrast to variables, signals cannot be declared
inside processes, and thus no ideal encapsulation
and structuring of the design is possible. As a
second example, procedures did not work properly
in release 3.5 and should not work properly in
release 4.1 according to the documentation, when
nested inside other statements. However, they did
work properly, at least in the few cases we dared
to try out.

As an intermediate conclusion, generating appli-
cation specific hardware has come within easy
reach of software engineers by virtue of modern
hardware description languages. We had no prob-
lems of fitting the hardware agents into our chips
and did not evaluate the efficiency of silicon area
usage of our VHDL compiler. We consider restric-
tions of available silicon area of minor importance
in the future, and did not take into consideration
to use hand-crafted hardware or software imple-
mentations.

3. THE RESULTING ARCHITECTURE

To test the MAD-RTS system a twin elevator
with four floors built with FischerTechnik (see
figure 2) was used. In the previous MAD software
approach (Schrott, 1995) it was controlled by one

micro-controller MC68HC11 on each floor, one in
each cage and one at each motor platform, all
connected via the CAN-field-bus. The agents were
distributed over these micro-controllers.

Fig. 2. FischerTechnik model of twin elevator

After the transfer of the door agents into hardware
the micro-controllers on each floor are substituted
by a CPLD Cypress 374 for each door (see fig-
ure 3). To connect them to the CAN-field-bus
an additional CAN-SLIO node is used on each
floor which translates the contracts sent via CAN
into digital signals connected to the CPLD. The
contract to open the door and to start the elevator
received resp. sent by the door agent are thus
available to agents running on the two remaining
micro-controllers. Supposing that the CAN proto-
col will be soon available in VHDL the interface
to the field bus can be integrated into the CPLD.

4. HARDWARE OR SOFTWARE?

In the described approach, it was a bit tedious
to get to a really synthesizable VHDL descrip-
tion, but this was not the big challenge. It was
also intuitively clear which parts of the system
could or should be implemented in hardware or
software. But is was hard to find objective criteria
for hardware/software assignment, which would—
ideally in an algorithmic way—produce the an-
swer “hardware” or “software” for each part of
the system. In the following, the standard criteria
of hardware-software codesign publications will be
investigated for their suitability to our case study.

e Performance
If there is a performance problem, it may
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Fig. 3. Microprocessor network for twin elevator

be a good idea to place time critical parts
in hardware. This may also be done, when
there is an indirect performance prob-
lem, e.g. when the requirement to stay
below some prescribed processor utiliza-
tion (Lions, 1996)!, cannot be fulfilled
without sacrificing safety . Sometimes
even slow mechanical processes like ele-
vators may encounter performance prob-
lems, e.g. a too slow reaction to interrupt-
ing the light barrier during closing of the
door. This could result from a centralized
synchronous control system (typically a
PLC), where polling all sensors brings cy-
cle time to the upper acceptable limit.

e Cost
Cost is a good criterion in mass produc-
tion or, concerning development cost, in
situations where only the software or the
hardware paradigm is mastered by the
designers.

e Form factor
The term form factor stands for space,
weight, power restrictions, and similar
properties of the system under consider-
ation. The form factor is of importance in

1A maximum processor utilization of 80% was allowed in
this case.

aerospace applications or for portable or
battery-powered devices, for instance.

o Safety

Hardware solutions are often deemed safer
than software solutions. Given the modern
design methods for digital hardware, with
hardware description languages much alike
software languages, this obviously does
not hold with respect to design errors.
However, there may be additional safety
against transient errors, because a direct
logic implementation will perhaps more
easily recover from a fault than a micro-
controller with a destroyed stack, for in-
stance. A further gain in safety could be
expected from improvements in architec-
tural cleanness and simplicity.

e Architectural cleanness and simplicity.
Object-based hardware/software re-parti-
tioning can improve the cleanness and
simplicity of the overall system archi-
tecture. For instance, in (Tempelmeier,
1994b) it is suggested to move a time
management unit from software to hard-
ware, because in this architecture software
time management needs four different in-
terrupts to derive one valid time value?.
Getting rid of these interrupts makes it
easier to verify the software. Similarly,
as soon as several programs are inter-
mingled on one processor, which implies
some form of time multiplexing, verifi-
cation becomes difficult again. Moreover,
any changes in any program require a re-
verification of the time behavior of all
intermingled programs in the processor.
Essentially, the fine-grained true paral-
lelism, which is available in hardware so-
lutions, constitutes the most important
advantage of hardware over software in
the architectural domain. One can reach
true parallelism in software by using mul-
tiple processors, but this results only in
coarse-grained parallelism (with the stan-
dard von Neumann architectures).

In our case, there were no serious performance
problems due to the decentralized control sys-
tem, and cost and form factor did not mat-
ter. It were thus safety considerations and the
desire for architectural cleanness that governed
the hardware/software assignment process. Due
to the coarse-grained assignment strategy, an
intuition-guided process seems appropriate. Ad-
ditional computer-generated metrics on perfor-
mance, cost, and form factor would be helpful in
the general case.

2 The four interrupts were necessary due to the complex
scheme of operating modes in the system.



5. CONCLUSION

Our case study has shown that about the same
effort is necessary to implement a hardware solu-
tion or a software solution for a logical unit in our
lift control system. MAD-RTS allows for a hard-
ware independent programming; the compiler can
generate code for agents running on conventional
processors, but also via finite state machine and
VHDL create a hardware agent. The communica-
tion between the agents is automatically included.

More difficult is the question of whether to assign
a unit to hardware or to software. Many standard
guidelines for this problem do not apply to our
example. Safety considerations and architectural
cleanliness and simplicity give clues that hardware
could be used, but these are rather fuzzy criteria.
However, from our experience with this case study,
we would not accept the question “Why not leave
everything in software?” without replying “Why
not implement everything in hardware?”.
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APPENDIX

VHDL Listing of the Door Agent

-- Door agent in VHDL

-- Version, 30-May-1997

-- Functionality: ok

-- Synthesis: ok

-- Cypress FSM Encoding Style: 3a

-- Three processes;

- outputs decoded from state bits

ENTITY door2 IS
PORT (

-- contract interface

open_door : IN bit;
elevl_start : OUT bit;

-- subagents

motor, -- DigQOut
direction : OUT bit; -- DigOut
open_key, -- Digln
closed_key, -- Digln
light_barr : IN bit; -- Digln
delay_done : IN bit;
delay_start : OUT bit;

-- delay implemented
-- as DigIn/Out from
-- external timer

-- "technology bits"
clk, reset : IN Dbit

);
END ENTITY door2;

ARCHITECTURE mealy OF door2 IS

TYPE states IS ( closed, opening,
waiting, closing);
SIGNAL current_state,
next_state
SIGNAL timer_st :
integer range 0 to 2 :=0;

. states;



BEGIN

NextStateDecode:

PROCESS (current_state, open_door,
delay_done, open_key,
closed_key, light_barr)

BEGIN

IF (open_door = ’1’) THEN
next_state <= opening;
ELSE
CASE current_state IS
WHEN closed =>
next_state <= closed;
WHEN opening =>
IF (open_key = ’1’) THEN
next_state <= waiting;
ELSE
next_state <= opening;
END IF;
WHEN waiting =>
IF (delay_done = ’1’) THEN
next_state <= closing;
ELSE
next_state <= waiting;
END IF;
WHEN closing =>
IF (light_barr = ’0’) THEN
next_state <= opening;
ELSE
IF (closed_key = ’1’) THEN
next_state <= closed;
ELSE
next_state <= closing;
END IF;
END IF;
WHEN OTHERS =>
next_state <= closing;
END CASE;
END IF;

END PROCESS NextStateDecode;

RegisteredState:
PROCESS (clk, reset)
BEGIN
IF (reset = ’1’) THEN
current_state <= closing;
ELSIF (clk’event AND clk = ’1’) THEN
current_state <= next_state;
END IF;
END PROCESS RegisteredState;

DecodelQutputs:
PROCESS (current_state)
BEGIN
IF (current_state = waiting) THEN
delay_start <= ’17;
ELSE
delay_start <= ’07;
END IF;
IF current_state = opening OR
(current_state = closing
AND light_barr = ’1’) THEN
motor <= ’17;

ELSE
motor <= ’0’;
END IF;
IF (current_state = opening) THEN
direction <= ’1’; -- direction open
ELSE
direction <= ’0’;
END IF;

IF (current_state = closing AND
closed_key = ’1’) THEN
elevl_start <= ’1’;
ELSE
elevl_start <= ’0’;
END IF;
END PROCESS DecodeQutputs;

END ARCHITECTURE mealy;



