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Abstract

In recent years, gradient-based LSTM recurrent neuralorésyRNNS)
solved many previously RNN-unlearnable tasks. Sometiimasever, gra-
dient information is of little use for training RNNs, due tamerous local
minima. For such cases we present a novel method, namely|UEv@®
of systems with LINear Outputs (Evolino). Evolino evolvesights to the
nonlinear, hidden nodes of RNNs while computing optimadnmappings
from hidden state to output, using methods such as psewdosgrbased
linear regression. If we instead use quadratic programrtengnaximize
the margin, we obtain the first evolutionary recurrent Suppector Ma-
chines. We show that Evolino-based LSTM can solve tasksgblab State
nets [15] cannot, and achieves higher accuracy in certaitimemus func-
tion generation tasks than conventional gradient descBi <R including
gradient-based LSTM.

1 Introduction

Recurrent Neural Networks (RNNS; [27,32,33,49,52]) ardhmimatical abstrac-
tions of biological nervous systems that can perform complappings from in-
put sequences to output sequences. In principle one carthveine up just like
microprocessors, hence RNNs can compute anything a tradittomputer can
compute [35]. In particular, they can approximate any dyicahsystem with
arbitrary precision [44]. However, unlike traditional,ogrammed computers,
RNNslearn their behavior from a training set of correct example seqasnAs
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training sequences are fed to the network, the error betweeactual and de-
sired network output is minimized using gradient descelhenaby the connec-
tion weights are gradually adjusted in the direction thauces this error most
rapidly. Potential applications include adaptive robgtispeech recognition, at-
tentive vision, music composition, and innumerably marheat where retaining
information from arbitrarily far in the past can be crititalmaking optimal deci-

sions.

RecentlyEcho State NetworKESNSs; [15]) and a very similar approadhig-
uid State MachinefL7], have attracted significant attention. Composed priigna
of a large pool of hidden neurons (typically hundreds or Hamds) with fixed
random weights, ESNs are trained by computing a set of weigbin the pool
to the output units using fast, linear regression. The idehat with so many
random hidden units, the pool is capable of very rich dynarthat just need to
be correctly “tapped” by setting the output weights appiaipty. ESNs have the
best known error rates on the Mackey-Glass time seriesgireditask [15].

The drawback of ESNs is that the only truly computationatbyyprful, non-
linear part of the net does not learn, whereas previous sigeel; gradient-based
learning algorithms for sequence-processing RNNs [2738240, 52] adjusall
weights of the net, not just the output weights. Unfortulyatearly RNN archi-
tectures could not learn to look far back into the past bexthesy made gradients
either vanish or blow up exponentially with the size of thedilag [9, 10].

Arecent RNN called Long Short-Term Memory (LSTM; [11]), hewver, over-
comes this fundamental problem through a specialized texthre that does not
impose any unrealistic bias towards recent events by maingaconstant error
flow back through time. Using gradient-based learning fahlioear and nonlin-
ear nodes, LSTM networks can efficiently solve many taskisvtieae previously
unlearnable using RNNs, e.g. [1-3,8, 11,29, 38].

However, even when using LSTM, gradient-based learningralgns can
sometimes yield suboptimal results because rough errtacas can often lead to
inescapable local minima. As we showed [12, 39], many RNNlers involv-
ing long-term dependencies that were considered chafigriggnchmarks in the
1990s, turned out to be trivial in that they could be solveddngdom weight guess-
ing. That is, these problems were difficult only becauseniegrrelied solely on
gradient information—there was actually a high densityadfisons in the weight
space, but the error surface was too rough to be exploited tise local gradient.
By repeatedly selecting weights at random, the network do¢get stuck in a
local minimum, and eventually happens upon one of the pldrsilutions.

One popular method that uses the advantage of random waigksmg in a
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Figure 1:Evolino network A recurrent neural network receives sequential inputs
u(t) and produce the vectop{, ¢», . . ., ¢,,) at every time step. These values are
linearly combined with the weight matri¥’ to yield the network’s output vector
y(t). While the RNN is evolved, the output layer weights are cotagwsing a
fast, optimal method such as linear regression or quadeedgramming.

more efficient and principled way is to search the space of RiMjht matri-
ces [20,21, 26,45,53, 54] using evolutionary algorithn® 1., 41]. The applica-
bility of such methods is actually broader than that of geatibased algorithms,
since no teacher is required to specify target trajectéoiethe RNN output nodes.
In particular, recent progress has been made with coopelatioevolving re-
current neurons, each with its own rather small, local $eapace of possible
weight vectors [6, 23, 30]. This approach can quickly learadlve difficult rein-
forcement learning control tasks [5, 6, 22], including otied require use of deep
memory [7].

Successfully evolved networks of this type are currentlyrsther small, with
not more than several hundred weights or so. At least forrsigesl applications,
however, such methods may be unnecessarily slow, sincalthagt exploit gra-
dient information about good directions in the search space

To overcome such drawbacks, in what follows we limit the diontd evo-
lutionary methods to weight vectors of hidden units, whiséing fast traditional
methods for finding optimal linear maps from hidden to ouymits. We present
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a general framework for training RNNs called EVOlution otuerent systems
with LINear Outputs (Evolino) [40,51]. Evolino evolves wits to the nonlinear,
hidden nodes while computing optimal linear mappings froddén state to out-
put, using methods such as pseudo-inverse-based lineassamn [28] or Support
Vector Machines [48], depending on the notion of optimagityployed. This gen-
eralizes methods such as those of Maillard [19] and Ishil. ¢14,47] that evolve

radial basis functions and ESNSs, respectively. Applieth&ltSTM architecture,

Evolino can solve tasks that ESNs [15] cannot, and achieiggehaccuracy in

certain continuous function generation tasks than comweait gradient descent
RNNs, including gradient-based LSTM (henceforth called &FM).

The next section describes the Evolino framework as welasspecific in-
stances, PI-Evolino (section 2.3) and Evoke (section 2d) both combine a
cooperative coevolution algorithm called Enforced SuhRatons (section 2.1)
with LSTM (section 2.2). In section 3 we apply Evolino to falifferent time se-
ries prediction problems, and in section 4 we provide sonmeloaling remarks.

2 Evolino

Evolino is a general framework for supervised sequencaileguthat combines
neuroevolution (i.e. the evolution of neural networks) andlytical linear meth-
ods that are optimal in some sense, such as linear regressjoadratic program-
ming (see section 2.4). The underlying principle of Evolisthat often a linear
model can account for a large number of properties of a pnobRroperties that
require non-linearity and recurrence are then dealt witb\umjution.

Figure 1 illustrates the basic operation of an Evolino nekwd he output of
the network at time, y(¢) € R™, is computed by the following formulas:

y(t) = Wo(t), 1)

o(t) = fu(t), ult —1),...,u(0)), )
whereg(t) € R" is the output of a recurrent neural netwgfitk), andi¥ is a weight
matrix. Note that because the networks are recurrgnt,is indeed a function of
the entire input history(t), u(t — 1),...,u(0). In the case of maximum margin
classification problems [48] we may compuiié by quadratic programming. In
what follows, however, we focus on mean squared error mgation problems
and computél’ by linear regression.

In order to evolve arf(-) that minimizes the error betwegnand the correct
output, d, of the system being modeled, Evolino does not specify acudet
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evolutionary algorithm, but rather only stipulates thaivarks be evaluated using
the following two-phase procedure.

In the first phase, a training set of sequences obtained frersystem{u*, d'},

i = 1..k, each of lengtl#, is presented to the network. For each sequehcsart-
ing at timet = 0, each input pattern’(t) is successively propagated through the
recurrent network to produce a vector of activatigh@) that is stored as a row in
a>_ ¥ I’ x n matrix ®. Associated with eachi(t), is atargetvectord’(t) in matrix

D containing the correct output values for each time step.eGilid: sequences
have been seen, the output weightgthe output layer in figure 1) are computed
using linear regression fro@ to D. The row vectors irp (i.e. the values of each
of then outputs over the entire training set) form a non-orthogdasais that is
combined linearly by to approximateD.

In the second phase, the training set is presented to th@rieagain, but now
the inputs are propagated through the recurrent netwopkandthe newly com-
puted output connections to produce predictigft3. The error in the prediction
or theresidual erroris then used as the fithess measure to be minimized by evolu-
tion. Alternatively, the error on a previously unseen vatidn set, or the sum of
training and validation error, can be minimized.

Neuroevolution is normally applied to reinforcement leagtasks where cor-
rect network outputs (i.e. targets) are not knavoriori. Evolino uses neuroevo-
lution for supervised learning to circumvent the problerhgmadient-based ap-
proaches. In order to obtain the precision required for t&@ees prediction, we
do not try to evolve a network that makes predictions diyedthstead, the net-
work outputs a set of vectors that form a basis for linearasgjon. The intuition
is that finding a sufficiently good basis is easier than trymfind a network that
models the system accurately on its own.

One possible instantiation of Evolino that we have explatess far with
promising results coevolves the recurrent nodes of LSTMogs using a vari-
ant of the Enforced SubPopulations (ESP) neuroevolutigarahm. The next
sections describe ESP, LSTM, and the details of how they ambmed in the
Evolino framework to form two algorithms: PI-Evolino whialses the mean
squared error optimality criterion, and Evoke which usesrttaximum margin.

2.1 Enforced SubPopulations (ESP)

Enforced SubPopulations differs from standard neuroéxmiumethods in that
instead of evolving complete networks,cibevolveseparate subpopulations of
network components areurons(figure 2). ESP searches the space of networks
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Figure 2: Enforced SubPopulations (ESP). The population of neurons is seg-
regated into subpopulations. Networks are formed by ratyla@lecting one
neuron from each subpopulation. A neuron accumulates a$itseore by adding
the fitness of each network in which it participated. The bestrons within each
subpopulation are mated to form new neurons. The networwshere is an
LSTM network with four memory cells (the triangular shapes)



indirectly by sampling the possible networks that can bestrocted from the
subpopulations of neurons. Network evaluations serveduige a fithess statis-
tic that is used to produce better neurons that can eveptuaitombined to form
a successful network. This cooperative coevolutionary@ggh is an extension to
Symbiotic, Adaptive Neuroevolution (SANE; [23]) which algvolves neurons,
but in a single population. By using separate subpopulatieB8P accelerates the
specialization of neurons into different sub-functiongded to form good net-
works because members of different evolving sub-functigges are prevented
from mating. Subpopulations also reduce noise in the nefitreess measure be-
cause each evolving neuron type is guaranteed to be repedsarevery network
that is formed. Both of these features allow ESP to evolvevokds more effi-
ciently than SANE [4].

ESP normally uses crossover to recombine neurons. Howevéne present
Evolino variant, where fine local search is desirable, EXR Cauchy-distributed
mutation to produce all new individuals, making the apphoaceffect an Evolu-
tion Strategy [42]. More concretely, evolution proceedfodsws:

1. Initialization: The number of hidden unif# in the networks that will be
evolved is specified and a subpopulatiomafieuron chromosomes is cre-
ated for each hidden unit. Each chromosome encodes a ngumpat and
recurrent connection weights with a string of random reahbers.

2. Evaluation: A neuron is selected at random from each ofttseibpopula-
tions, and combined to form a recurrent network. The netwsdvaluated
on the task and awarded a fitness score. The score is addeziciantiula-
tive fitnessof each neuron that participated in the network. This praced
is repeated until each neuron participatedimvaluations.

3. Reproduction: For each subpopulation the neurons ailedaby fithess,
and the top quarter of the chromosomesgarentsin each subpopulation
are duplicated and the copiesdildrenare mutated by adding noise to all
of their weight values from the Cauchy distributiff) = ~ar a7y Where
the parametet: determines the width of the distribution. The c?uldren then
replace the lowest-ranking half of their correspondingosytulation.

4. Repeat the Evaluation—Reproduction cycle until a seffity fit network is
found.

If during evolution the fitness of the best network evaluaedar does not
improve for a predetermined number of generations, a tgclencalledourst mu-
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Figure 3: Genotype-Phenotype mapping. Each chromosome (genotype, left)
in a subpopulation encodes the external input, and inpapubuand forget gate
weights of an LSTM memory cell (right). The weights leading of the state (S)
and output (O) units are not encoded in the genotype, buhatedd computed at
evaluation time by linear regression.

tationis used. The idea of burst mutation is to search the spacedificaiions to
the best solution found so far. When burst mutation is atdtghe best neuron in
each subpopulation is saved, the other neurons are desgtddiew neurons are
created for each subpopulation by adding Cauchy distribotese to its saved
neuron. Evolution then resumes, but now searching in a beiglood around the
previous best solution. Burst mutation injects new divgrsito the subpopula-
tions and allows ESP to continue evolving after the initisibsopulations have
converged.

2.2 Long Short-Term Memory

LSTM is a recurrent neural network purposely designed tenléang-term de-
pendencies via gradient descent. The unique feature of$fiéAarchitecture is

8



i fpeephole

output

external inputs

Figure 4:Long Short-Term Memory The figure shows an LSTMemory cell
The cell has an internal statetogether with a forget gatés(-) that determines
how much the state is attenuated at each time step. The iapai{g;) controls
access to the cell by the external inputs that are summedheto unit, and the
output gate (o) controls when and how much the cell fires. Small dark nodes
represent the multiplication function.



thememory celthat is capable of maintaining its activation indefinitdigre 4).
Memory cells consist of a linear unit which holds tstateof the cell, and three
gates that can open or close over time. The input gate “@sStacneuron from
its input: only when the gate is open, can inputs affect therimal state of the
neuron. The output gate lets the state out to other partseofietwork, and the
forget gate enables the state to “leak” activity when it idorgger useful.

The state of cell is computed by:

si(t) = net;(t) g™ (t) + giforgd(t)si(t - 1), (3)

whereg™ andg/o9¢ are the activation of the input and forget gates, respdgtive
andnet is the weighted sum of the external inputs (indicated byikén figure 4):

net;(t) = h Z wie;(t—1) + Z wif (¢ (4)

whereh is usually the identity function, ang is the output of cel:

¢;(t) = tanh(g5" (t)s;(t)). (5)

whereg®“t is the output gate of cell. The amount each gatg of memory celli
is open or closed at timeis calculated by:

type o type type
g; =0 E w; ) + E W,y U (6)

wheretype can bemnput, output, or forget, anda is the standard sigmoid func-
tion. The gates receive input from the output of other cgllsind from the exter-
nal inputs to the network.

2.3 Combining LSTM, ESP, and Pseudoinversein Evolino

We apply our general Evolino framework to the LSTM architeet using ESP

for evolution and regression for computing linear mappifige hidden state to
outputs. ESP coevolves subpopulations of LSTM memory aediead of stan-
dard recurrent neurons (figure 2). Each chromosome is gystontaining the
external input weights and the input, output, and forgeé gegights, for a total

of 4 x (I + H) weights in each memory cell chromosome, wherie the number

of external inputs and{ is the number of memory cells in the network. There
are four sets of + H weights because the three gates and the cell itself receive
input from outside the cell and the other cells. Figure 3 shbaw the memory
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cells are encoded in an ESP chromosome. Each chromosomelpaysilation
encodes the connection weights for a cell’s input, outpud, farget gates, and
external inputs.

The linear regression method used to compute the outpuhigsid in equa-
tion 2) is the Moore-Penrose pseudo-inverse method, wkiblth fast and opti-
mal in the sense that it minimizes the summed squared er@p{Compare [19]
for an application to feedforward RBF nets and [14] for anligagion to Echo
State Networks. The vectai(¢) consists of both the cell outputs and their in-
ternal statess;, so that the pseudo-inverse computes two connection vegeight
each memory cell. We refer to the connections from intertaés to the output
units as “output peephole” connections, since they peertimt interior of the
cells.

For continuous function generatidmckprojectior(or teacher forcingn stan-
dard RNN terminology) is used where the predicted outp@$eat back as inputs
in the next time stepp(t) = f(u(t),y(t — 1), u(t — 1),...,y(0),u(0)).

During training, the correct target values are backpregcin effect “clamp-
ing” the network’s outputs to the right values. During tegtithe network back-
projects its own predictions. This technique is also use@&8Xs, but whereas
ESNSs do not change the backprojection connection weightdirto evolves them,
treating them like any other input to the network. In the expents described
below, backprojection was found useful for continuous fiorcgeneration tasks,
but interferes to some extent with performance in the disctentext-sensitive
language task.

2.4 Evoke: Evolino for Recurrent Support Vector M achines

As outlined in section 2, the Evolino framework does not pribg a particu-
lar optimality criterion for computing the output weight$f we replace mean
squared error with the maximum margin criterion of Suppattdr Machines
(SVMs) [48], the optimal linear output weights can be eviddaising e.g. quadratic
programming, as in traditional SVMs. We call this Evolinaigat EVOlution of
systems with KErnel-based outp(fEsvoke; [37]). The Evoke variant of equation 1
becomes:

1) = w0+ 303wy K(0(1), 6/ @)

i=1

where ¢(t) € R" is, again, the output of the recurrent neural netwg(k at
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time ¢ (equation 2),K(-,-) is a predefined kernel function, and the weights
correspond td: training sequences’, each of length;, and are computed with
the support vector algorithm.

Support Vector Machines are powerful regressors and @lassithat make
predictions based on a linear combination of kernel bagistfons. The kernel
maps the input feature space to a higher dimensional spagee\ilie data is lin-
early separable (in classification), or can be approximattiwith a hyperplane
(in regression). A limited way of applying existing SVMs ime series predic-
tion [24, 25] or classification [34] is to build a training sa&ther by transforming
the sequential input into some static domain (e.g., a frequand phase repre-
sentation), or by considering restricted, fixed time wind@i» sequential input
values. One alternative presented in [43] is to averageekelistance between
elements of input sequences aligneditgoints. Of course such approaches are
bound to fall if there are temporal dependencies exceedirgieps. In a more
sophisticated approach by Suykens and Vandewalle [46]ndami of m previous
output values is fed back as input to a recurrent model witkealfkernel. So far,
however, there has not been any recurrent SVMI#ansto create internal state
representations for sequence learning tasks involving tags of arbitrary length
between important input events. For example, considerasiedf correctly clas-
sifying arbitrary instances of the context-free languatj® (n a’s followed byn
b’s, for arbitrary integers > 0).

For Evoke, the evolved recurrent neural network (RNN) iseppwcessor for
a standard SVM kernel. The combination of both can be vievgednaadaptive
kernel learning a task-specific distance measure betweengbanput sequences.
Although Evoke uses SVM methods, it can solve several tasiisttaditional
SVMs cannot even solve in principle. We will see that it alsdperforms recent
state-of-the-art RNNs on certain tasks, including EchaeSketworks (ESNS)
[15] and previous gradient descent RNNs [11,27,32,33,209,5

3 Experiments

Experiments with PI-Evolino were carried out on four tesbthgems: context-
sensitive languages, multiple superimposed sine waveity paoblem with dis-
play, and the Mackey-Glass time series. The first two weresehdo high-
light Evolino’s ability to perform well in both discrete armbntinuous domains,
and to solve tasks that neither ESNs [15] nor traditionatiigrat descent RNNs
[27, 32, 33,49, 52] can solve well. We also report successtpkriments with
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Figure 5:Internal state activations. The state activations for the 4 memory cells
of an Evolino network being presented the stritfe 120, The plot clearly
shows how some units function as “counters,” recording h@amynas andbs have
been seen. More complex, non-linear behavior by the gatest ishown.

Evoke-trained RSVMs on these tasks. The parity problem digplay demon-

strates PIl-Evolino’s ability to cope with rough error sada that confound gra-
dient based approaches including G-LSTM. Although the Mge&lass system
can be modeled very accurately by non-recurrent systenjsi{ifas selected to
compare PI-Evolino with ESNSs, the reference method on thdkely used time

series benchmark.

3.1 Context-Sensitive Grammars

Context-sensitive languages are languages that cannetbgnized by determin-
istic finite-state automata, and are therefore more comiplerme respects than
regular languages. In general, determining whether agstrirsymbols belongs
to a context-sensitive language requires rememberingaBymbols in the string
seen so far, ruling out the use of non-recurrent architestur

To compare Evolino-based LSTM with published results fdt&FM [1], we
chose the languag€b™c". The task was implemented using networks with four
input units, one for each symb@t, b, ¢) plus the start symbd¥, and four output
units, one for each symbol plus the termination synibolSymbol strings were
presented sequentially to the network, with each symbalisesponding input
unit set to 1, and the other three set to -1. At each time skepnétwork must

13



predict the possible symbols that could come next in a ldgalgs Legal strings
in a™b"c" are those in which the numberf, bs, andcs is equal, e.gST, SabcT,
SaabbecT, SaaabbbeecT, and so forth. So, fon = 3, the set of input and target
values would be:

| Inpu: | S| a|a]al|b|b[b]c|[c|c]
| Target:| a/T|a/b| ab|ab|b|b[c|c|[c|T|

Evolino-based LSTM networks were evolved using 8 differeeaining sets,
each containing legal strings with values foras shown in the first column of
Table 1. In the first four sets, ranges from to &k, wherek = 10, 20, 30, 40. The
second four sets consist of just two training samples, anme weended to test
how well the methods could induce the language from a neairtynmal number
of examples.

LSTM networks with memory cells were evolved (4 for Pl-Ewalj 5 for
Evoke), with random initial values for the weights betweef.1 and 0.1 for
Evolino and between-5.0 and 5.0 for Evoke. The Cauchy noise parameter
for both mutation and burst mutation was sett60001 for Evolino and to0.1
for Evoke, i.e.50% of the mutations is kept within these bounds. In keeping with
the setup in [1], we added a bias unit to the Forget gates ampuDgates with
values of+1.5 and —1.5, respectively. For Evoke, the parameters of the SVM
module were chosen heuristically: a Gaussian kernel wathdztrd deviatior2.0
and capacity 00.0. Evolino evaluates fitness on the entire training set, bokEv
uses a slightly different way of evaluating fitness: while thaining set consists
of the first half of the strings, fithess was defined as perfocean the second
half of the data, the validation set. Evolution was termadeadfter 50 generations,
after which the best network in each simulation was tested.

Table 1 compares the results of Evolino-based LSTM, usiegidksinverse as
supervised learning module (PI-Evolino), with those of GIM from [1]; “Stan-
dard PI-Evolino” uses parameter settings that are a compsobetween discrete
and continuous domains. If we geto thetanh function, we obtain “Tuned PI-
Evolino.” We never managed to train ESNSs to solve this tasdsymably because
the random pre-wiring of ESNs rarely represents an algorittr solving such
context sensitive language problems.

The Standard PI-Evolino networks had generalization vanylar to that of
G-LSTM on thel..k training sets, but slightly better on the two-example ftragn
sets. Tuned PI-Evolino showed a dramatic improvement ove6GM on all of
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Training| Standard Tuned | Gradient-
data | PI-Evolino | PI-Evolino| LSTM

1..10 1..29 1..53 1..28
1..20 1..67 1..95 1..66
1..30 1..93 1..355 1.91
1..40 1..101 1..804 1..120
10,11 4.14 3..35 10..11
20,21 13..36 5..39 17..23

30,31 26..39 3..305 29..32
40,41 32..53 1..726 35..45

Table 1: Results for the a"b"¢" language. The table compares Pseudoinverse
based Evolino (PI-Evolino) with Gradient-based LSTM (GII\p) on thea™b™c™
language task. “Standard” refers to Evolino with the part@msettings used for
both discrete and continuous domaias{’c* and superimposed sine waves). The
“Tuned” version is biased to the language task: we additipsguash the cell
input with thetanh function. The leftmost column shows the set of strings used
for training in each of the experiments. The other three roolsi show the set of
legal strings to which each method could generalize aftegéiterations (3000
evaluations), averaged over 20 runs. The upper trainirgceitain all strings
up to the indicated length. The lower training sets only aonéa single pair. PI-
Evolino generalizes better than G-LSTM, most notably whieméd on only two
examples of correct behavior. The G-LSTM results are takam {1].
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Figure 6: Performance of Pl-Evolino on the Mackey-Glass time-series. The
plot shows both the Mackey-Glass system and the predictiadenby a typical
Evolino-based LSTM network evolved for 50 generations. dbx@ous difference
between the system and the prediction during the first 1Q8sg&edue to the
washout time. The inset shows a magnification that illusgrahore clearly the
deviation between the two curves.

the training sets, but, most remarkably on the two-exanmgtiewhere it was able
to generalize on average to all strings umte= 726 after being trained on only
n = {40,41}. Evoke’s performance was superior fdf = 10 and N = 20,
generalizing up tow = 257 andn = 374 respectively, but degraded for larger
values of N, for which both PI-Evolino and G-LSTM achieved better résul
Figure 3.1, shows the internal states of each of the 4 menwaily af one of the
networks evolved by PI-Evolino while processiaitj®55%° 3%,

3.2 Parity Problem with Display

The Parity Problem with Display involves classifying segces consisting of's
and—1's according to whether the numberid$ is even or odd. The target, which
depends on the entire sequence, is a displayof 10 output neurons depicting
“O” for odd and “E” for even. The display prevents the tasknfirbeing solved by
guessing the network weights [12], and makes the error gnadery rough.

We trained PI-Evolino with 2 memory cells &6 random sequences of length
between100 and110. Unlike G-LSTM, which typically cannot solve this task
due to a lack of global gradient information, PI-Evolinoreed a perfect display
classification on a test set within 30 generations, iR@kxperiments.

3.3 Mackey-Glass Time-Series Prediction

The Mackey-Glass system (MGS; [18]) is a standard benchfoadhaotic time
series prediction. The system produces an irregular timessthat is produced
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by the following differential equationj(t) = ay(t — 7) /(1 +y(t — 7)°) —yy(t),
where the parameters are usually setvte- 0.2, 3 = 10,~v = 0.1. The system
is chaotic whenever the delay> 16.8. We use the most common value for the
delayr = 17.

Although the MGS can be modeled very accurately using feediia net-
works with a time-window on the input, we compare PIl-EvoliooESNs (cur-
rently the best method for MGS) in this domain to show its caégdor making
precise predictions. We used the same setup in our expdsrasin [15].

Networks were evolved in the following way. During the firdigse of an
evaluation, the network predicts the next function value3f@00 time steps with
the benefit of the backprojected target from the previous wtep. For the first
100 “washout” time steps, the vectaef§&) are not collected, i.e only thg(t),t =
101..3000, are used to calculate the output weights using the psewdwosie. Dur-
ing the second phase, the previous target is backprojentgdioring the washout
time, after which the network runs freely by backprojectitsgown predictions.
The fitness score assigned to the network is the MSE on timps Kie..3000.

Networks with 30 memory cells were evolved for 200 generatjoand a
Cauchy noiser of 10~7. A bias input of 1.0 was added to the network, the back-
projection values were scaled by a factor of 0.1, and theimgllt was squashed
with thetanh function.

At the end of an evolutionary run, the best network found veassd by having
it predict using the backprojected previous target for tist 8000 steps, and then
run freely from time step 3001 to 3084The average NRMSE for PI-Evolino
with 30 cells over the 15 runs was) x 10~2 compared ta0~*2 for ESNs with
1000 neurons [15]. The PI-Evolino results are currentlysbeond-best reported
so far.

Figure 6 shows the performance of an Evolino network on theti®-series
with even fewer memory cells, after 50 generations. Bec#uisenetwork has
fewer parameters, it is unable to achieve the same preasiavith 30 neurons,
but it demonstrates how Evolino can learn such functiong geiickly; in this
case within approximately 3 minutes of CPU time.

The normalized root mean square error (NRM9EB4 steps after the end of the training
sequence is the standard comparison measure used fordbispr
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Figure 7: Performance of Pl-Evolino on the superimposed sine wave tasks.
The plots show the behavior of a typical network produceeraftspecified num-
ber of generations: 50 for the two-, three-, and four-simefions, and 150 for the
five-sine function. The first 300 steps of each function, i léft column, were
used for training. The curves in the right column show valpeeslicted by the
networks (dashed curves) further into the future vs. theesponding reference
signal (solid curves). While the onset of noticeable priaiicerror occurs earlier
as more sines are added, the networks still track the cdyedwvior for hundreds
of time steps, even for the five-sine case.
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No. sines| No. cells| Training NRMSE| Gen. NRMSE
2 10 2.01x1073 4.15x1073
3 15 2.44x1073 8.04x1073
4 20 1.51x 1072 1.10x107!
5 20 1.60x 1072 1.66x1071

Table 2: PI-Evolino results for multiple superimposed sine waves. The table
shows the number of memory cells, training error, and gdrzaten error for
each of the superimposed sine wave functions. The trainRBISE is calculated

on time stepg00 to 400 (i.e. the washout time is not included in the measure); the
generalization NRMSE is calculated for time stdp8 to 700 (averaged over 20
experiments).

3.4 Multiple Superimposed Sine Waves

Learning to generate a sinusoidal signal is a relativelypténtask that requires
only one bit of memory to indicate whether the current nelwartput is greater
or less than the previous output. When sine waves with frecjas that are not
integer multiples of each other are superimposed, thetneguignal becomes
much harder to predict because its wavelength can be exirdomg, i.e. there
are large number of time steps before the periodic signalatsp Generating such
a signal accurately without recurrency would require a fiitikely large time-
delay window using a feedforward architecture.

Jaeger reports [16] that Echo State Networks are unableata feinctions
composed of even two superimposed oscillators, in paaicihk(0.2x)+sin(0.311z).
The reason for this is that the dynamics of all the neuronkér&SN “pool” are
coupled, while this task requires that the two underlyinthloscillators be repre-
sented by the network’s internal state.

Here we show how Evolino-based LSTM not only can solve the-dime
function mentioned above, but also more complex functiamméd by super-
imposing up to three more sine waves. Each of the functiors asastructed
by >°" , sin(\x), wheren is the number of sine waves and = 0.2, )\, =
0.311, A3 = 0.42, A, = 0.51, and\; = 0.74.

For this task, PI-Evolino networks were evolved using theeaetup and
procedure as for the Mackey-Glass system except that $6¢pd00 were used
the calculate the output weights in the first evaluation phasd fitness in the
second phase. Again, during the first 100 washout time stepsédctorsy(t)
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were not collected for computing the pseudo-inverse.

The first three tasksy = 2, 3, 4, used subpopulations of size 40 and simula-
tions were run for 50 generations. The five-sine wave task, 5, proved much
more difficult to learn requiring a larger subpopulationesof 100, and simula-
tions were allowed to run for 150 generations. At the end chean, the best
network was tested for generalization on data points franeistepst01..700,
making predictions using backprojected previous preaiicti

For Evoke, a slightly different setting was used, in whichwuerks were
evolved to minimize the sum of training and validation erar points100..400
and400..700 respectively, and tested on point¥)..1000. The weight range was
set to[—1.0, 1.0], and a Gaussian kernel with standard deviafidnand capacity
10.0 was used for the SVM.

Table 2 shows the number of memory cells used for each tadkharaverage
summed squared error on both the training set and the testinfpr the best
network found during each evolutionary run of Pl-Evolinovoke achieved a
relatively low generalization NRMSE df03 x 10~2 on the double sines problem,
but gave unsatisfactory results for three or more sines.

Figure 7 shows the behavior of one the successful netwooks &ach of the
tasks. The column on the left shows the target signal fronteTapand the output
generated by the network on the training set. The column emigfint shows the
same curves forward in time to show the generalization dafyatf the networks.
For the two-sine function, even after 9000 time-steps, #t&vork continues to
generate the signal accurately. As more sines are addqutgtietion error grows
more quickly, but the overall behavior of the signal is sgfiained.

Figure 8 reveals how the two-sine wave is represented iallgrby a typical
PI-Evolino network. For the purpose of illustration, a lessurate network con-
taining only three cells instead of ten, is shown. The uppaplyshows the overall
output of the network, while the other graphs show the outegfphole and out-
put activity of each cell multiplied by the correspondingpdoinverse-generated
output weight.

Although the network can generate the function very acelydor thousands
of time steps, it does not do so by implementing sinusoidaillesors. Instead,
each cell by itself behaves in a manner that is qualitatisetylar to the two-sine
but scaled, translated, and phase-shifted. These sixatepsignals are added
together to produce the network output.
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Figure 8:Internal representation of two-sine function. The upper graph shows
the output of a PI-Evolino LSTM network with three cells piaihg the two-sine
function. The three pairs of graphs below show the outpupétpand output
peephole (lower) values of each cell in the network mukiglby their respective
(pseudoinverse-generated) output weight. These sixIsignaadded to generate
the signal in the upper graph.
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4 Concluding Remarks

The human brain is a biological, learning RNN. Previous ssses with artifi-
cial RNNs have been limited by problems overcome by the LSTéhigecture.
Its algorithms for shaping not only the linear but also thalmzar parts allow
LSTM to learn to solve tasks unlearnable by standard feeddia nets, Support
Vector Machines, Hidden Markov Models, and previous RNNgev@us work
on LSTM has focused on gradient-based G-LSTM [1-3, 8, 1138P, Here we
introduced the novel Evolino class of supervised learniggrithms for such nets
that overcomes certain problems of gradient-based RNNslagal minima. Suc-
cessfully tested instances with hidden coevolving recuimeurons use either the
pseudoinverse to minimize the MSE of the linear mapping flodden units to
outputs (PI-Evolino), or quadratic programming to maxienize margin. The lat-
ter yields the first evolutionary recurrent SVMs or RSVMsjrted by an Evolino
variant called Evoke.

In the experiments of our pilot study, RSVMs generally perfed better than
G-LSTM and previous gradient-based RNNs, but typicallysedhan PI-Evolino.
One possible reason for this could be that the kernel mapgitige SVM com-
ponent induces a more rugged fitness landscape that makiesi@vary search
harder.

All of the evolved networks were comparatively small, uguétaturing less
than 3,000 weights. On the other hand, for large data sets asi¢those used
in speech recognition we typically need much larger LSTMmogks with on
the order of 100,000 weights [8]. On such problems, we haviaisgenerally
obtained better results with G-LSTM than with Evolino. Te&ems to reaffirm
the heuristic that evolution of large parameter sets isnoffi@rder than gradient
search in such sets. Currently it is unclear when exactlgmorfone over the other.
Future work will explore hybrids combining G-LSTM and Evadiin an attempt
to leverage the best of both worlds. We will also explore wafysnproving the
performance of Evoke, including the coevolution of SVM l&rparameters.

We have barely tapped the set of possible applications afiewrapproaches:
in principle, any learning task that requires some sort apéigle short-term mem-
ory may benefit.
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