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Abstract

Traditional Support Vector Machines (SVMs) need pre-wiieite time windows to predict and clas-
sify time series. They do not have an internal state necgssaleal with sequences involving arbitrary
long-term dependencies. Here we introduce a new class ofrest, truly sequential SVM-like devices
with internal adaptive states, trained by a novel metholkdatVOlution of systems with KErnel-based
outputs (Evoke), an instance of the recent Evolino classethods|[L[2]. Evoke evolves recurrent neu-
ral networks to detect and represent temporal dependenbiés using quadratic programming/support
vector regression to produce precise outputs, in conwastrtrecent work[,12] which instead uses pseu-
doinverse regression. Evoke is the first SVM-based mecmal@arning to classify a context-sensitive
language. It also outperforms recent state-of-the-adigri-based recurrent neural networks (RNNs)
on various time series prediction tasks.

1 Introduction

Support Vector Machines (SVM<)I[3] are powerful regressonrg classifiers that make predictions based
on a linear combination of kernel basis functions. The kienm&ps the input feature space to a higher
dimensional space where the data is linearly separabléa@sitication), or can be approximated well with
a hyperplane (in regression). A limited way of applying &rig SVMs to sequence prediction [4, 5] or
classification([B] is to build a training set either by tramshing the sequential input into some static domain
(e.g., a frequency and phase representation, a Hidden Mankadel (HMM) [4,[8], a simple frequency
count of symbols or substrinds [9]), or by considering fiestd, fixed time windows ofn sequential input
values. One alternative presented.n [10] is to averageskdistance between elements of input sequences
aligned tom points. Such window-based approaches are obviously bauffailtif there are temporal
dependencies exceeding steps; while HMMs present numerous local minima when ticaiwéh long
sequences [11,12]. In a more sophisticated approach byeBsydnd Vandewall€ [lL3], a window of
previous output values is fed back as input to a recurrenteineith a fixed kernel. So far, however, there
has not been any recurrent SVM thearnsto create internal state representations for sequenagear
tasks involving time lags of arbitrary length between intpot input events. For example, consider the
task of correctly classifying arbitrary instances of thatext-free language™b™ (n a’s followed byn b’s,
for arbitrary integers. > 0).

Our novel algorithm, EVOlution of systems with KErnel-bdsmutputs (Evoke), addresses such prob-
lems. It evolves a recurrent neural network (RNN) as a piegssor for a standard SVM kernel. The
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combination of both can be viewed as an adaptive kernelilegmtask-specific distance measure between
pairs of input sequences. Although Evoke uses SVM methodsni solve several tasks that traditional
SVMs cannot even solve in principle.

Evoke is a special instance of a recent, broader algoritframework for supervised sequence learn-
ing called Evolino: EVolution of recurrent systems with @pal LINear Outputl[L[2]. Evolino combines
neuroevolution (i.e. the artificial evolution of neuralwetks) and analytical linear methods that are opti-
mal according to various criteria. The underlying idea oblho is that often a linear model can account
for a large number of properties of a sequence learning pnobNon-linear properties unpredictable by
the linear model are then dealt with by more general evatatip optimization processes. Recent work has
focused on the traditional problem of minimizing mean sedarror (MSE) summed over all time steps
of a time series to be predicted. An optimal linear mappignfthidden nodes to output nodes was ob-
tained through the Moore-Penrose pseudoinverse metteodP(iEvolino), which is both fast and optimal
in the sense that it minimizes MSE_]14]. The weights of the@mamplex, nonlinear hidden units were
found through evolution, where the the fithess function wasrésidual error on a validation set, given the
training-set-optimal linear mapping from hidden to outpades.

In the present work we use a different optimality criterioamely, the maximum margin criterion of
SVMs [3]. Hence the optimal linear output weights are evidaising quadratic programming, as in
traditional SVMs, the difference here being the evolutigrRNN preprocessing of the input.

The resulting Evoke system not only learns to solve taskelualle by any traditional SVM, but also
outperforms recent state-of-the-art RNNs on certain taskkiding Echo State Networks (ESNE)[15] and
previous gradient descent RNNsL6] 17,[18,[19[2D, 21].

2 TheEvokeAlgorithm

Evolino systems are based on two cascaded modules: (1) eestueural network that receives the
sequence of external inputs, and (2) a parametric functiahrhaps the internal activations of the first
module to a set of outputs. In particular, an Evoke netwoigufe[la) is governed by the following
formulas:

¢(t) :f(W,U.(t),U.(t— 1),...,11(0)), 1)
kL )

y(t) = wo + Z Zwin(¢(t)a #'(7)), 2)
i=1 j=0

whereg(t) € R™ is the activation at time of then units of the RNN,f(-), given the sequence of input
vectorsu(0)..u(t), and weight matriXW . Note that, because the networks are recurrép},is a function

of the entire input history. The outpytt) € R of the combined system can be interpreted as a class label,
in classification tasks, or as a prediction of the next inplt+ 1), in time-series prediction. To compute
y(t) we take the weighted sum of the kernel distafde, -) betweenp(t) and each activation vecter (;)
obtained by first running the training set of sequences titndbe network (see below).

In order to find aW that minimizes the error betweelit) and the correct output, we use artificial evo-
lution [22,[23[24]. Starting with random population of reaimbered strings ashromosomeepresenting
candidate weight matrices, we evaluate each candidateghrihe following two-phase procedure.

In the first phase, the aforementioned training set of sexpipairs{u’,d'},i = 1..k, each of length
I*, is presented to the network. For each input sequeiicstarting at timg = 0, each patterm‘(t) is
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Figure 1: (a)Evoke network. An RNN receives sequential inpuigt) and produces neural activation
vectorse; . .. ¢, at every time step. These values are fed as input to a Support Vector Machinighwh
outputs a scalag(t). While the RNN is evolved, the weights of the SVM module arenpated with
support vector regression/classification. (lng Short-Term Memory. The figure shows the LSTM
architecture that we use for the RNN module. This exampleorit has one input (lower-most circle),
and twomemory cell{two triangular regions). Each cell has an internal stategether with a Forget
gate (G ) that determines how much the state is attenuated at eaetstep. The Input gat&(;) controls
access to the cell by the external inputs that are summedaata: unit, and the Output gaté(,) controls
when and how much the cell's output urit)fires. Small dark nodes represent the multiplication fiomct

successively propagated through the RNN to produce a vettmtivationse’ (t) that is stored as a row
inan x Zf I* matrix ®. Associated with each input sequence iai@etrow vectord® in D containing
the correct output values for each time step. Oncé akquences have been seen, the weightof the
kernel model (equatidd 2) are computed using support veeggession/classification frod to D, with
{¢',d'} as training set.

In the second phase, a validation set is presented to theoriettut now the inputs are propagated
through the RNNandthe newly computed output connections to prody@e. The error in the classifica-
tion/prediction or theesidual error, possibly combined with the error on the training set, isitheed as
the fithness measure to be minimized by evolution. By meaguiror on the validation set rather that just
the training set, RNNs will receive better fitness for beibtgao generalize.

Those RNNSs that are most fit are then selected for reprodusti@re new candidate RNNs are created
by exchanging elements between chromosomes and an possitdying them. New individuals replace
the worst old ones and the cycle repeats until a sufficierdtydgsolution is found.

This idea of evolving neural networks using artificial exan or neuroevolution25] is normally



Technical Report No. IDSIA-19-05 (version 2.0) 4

applied to reinforcement learning tasks where correct odtwutputs (i.e. targets) are not knoaipriori.
However, Evolino/Evoke uses it for supervised learningnkéedback based on a validation set (as opposed
to the traditional training set). Instead of trying to evoln RNN that makes predictions directly, we use
an RNN to perform a non-linear transformation from the a&bjt-dimensional space of sequences to the
finite-dimensional space of neural activations, where i1 $an operate. This way we can exploit the
powerful generalization capability of SVMs, in the conteksequential data.

In this study, Evoke is instantiated using Enforced SubRdjmns (ESP;[[26]) to evolve Long Short-
Term Memory (LSTM; [21]) networks. We combine these two gatar methods because both have
routinely outperformed previous methods in their domdsP8 211 28, 30, 31, 3P, 133,134].

ESP differs from standard neuroevolution methods in tmasteiad of evolving complete networks, it
coevolveseparate subpopulations of network componentsgarons If the performance of ESP does not
improve for a predetermined number of generations, a teclen¢alledburst mutatiofi26, 1] is used, to
inject diversity into the subpopulations.

LSTMis an RNN purposely designed to learn long-term depeaiés via gradient descent. The unique
feature of the LSTM architecture is theemory celthat is capable of maintaining its activation indefinitely
(figureb). Memory cells consist of a linear unit which halldsstateof the cell, and three gates that can
open or close over time. The Input gate “protects” a neuromfits input: only when the gate is open, can
inputs affect the internal state of the neuron. The Outpte pds the internal state out to other parts of the
network, and the Forget gate enables the state to “leakVigoivhen it is no longer useful. The gates also
receive inputs from neurons, and a function over their ifpsiially the sigmoid function) decides whether
they open or close[[21[. 9,130,131] 82| B3, 34]. Hereaftertehm gradient-based LSTM (G-LSTM) will
be used to refer to LSTM when it is trained in the conventiovesy using gradient-descent.

ESP and LSTM are combined by coevolving subpopulations aharg cells instead of standard re-
current neurons. Each chromosome is a string containingpttagnal input weights and the Input, Output,
and Forget gate weights, for a total4k (I + H) weights in each memory cell chromosome, whEie
the number of external inputs ard is the number of memory cells in the network. There are fotg se
of I + H weights because the three gates and the cell itself reagive from outside the cell and the
other cells. ESP normally uses crossover to recombine nsurblowever, for Evoke, where fine local
search is desirable, ESP uses only mutation. The top quartbe chromosomes in each subpopulation
are duplicated and the copies are mutated by adding Caustripdied noise to all of their weight values.

The support vector method used to compute the weightsif equatioriR) is a large scale approxima-
tion of the quadratic constrained optimization, as impletad in [35].

For continuous function generatidmackprojection(or teacher forcingn standard RNN terminology)
is used, where the predicted outputs are fed back as inptfte imext time step:

¢(t) = f(u(t)vy(t - 1)5 u(t - 1)5 s 7y(0)v u(O))

During training and validation, the correct target values lzackprojected, in effect “clamping” the net-
work’s outputs to the right values. During testing, the ratabackprojects its own predictions.

3 Experimental Results

Experiments were carried out on two test problems: corgersitive languages, and multiple superim-
posed out-of-phase sine waves. These tasks were choseghtmhi Evoke’s ability to perform well in
both discrete and continuous domains. The first task is ofyfee standard SVMs cannot deal with at all;
the second is of the type even the recent ESNE [15] cannotidigmal
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| Training data] G-LSTM | PI-Evolino | Evoke |
1..10 1..29 1..53 1..257
1..20 1..67 1..95 1..374

Table 1:Generalization resultsfor thea™b™c¢™ language. Since traditional SVMs cannot solve this task at
all, the table compares Evoke to gradient-based LSTM (GNThe only pre-2005 subsymbolic method
that has reliably learnt this problem, and pseudoinveeset Evolino (PI-Evolino). The left column shows
the set of legal strings used to train each method. The othlamms show the set of strings that each
method was able to accept after training. The results forSFM are from [3D], and for Evolino from
[, Z2]. Average of 20 runs.

3.1 Context-Sensitive Grammars

Standard SVMs, or any approach based on a fixed time windowmotdearn to recognize context-sensitive

languages where the length of the input sequence is aspb#rat unknown in advance. For this reason we
focus on the simplest such language, namely*c™T (i.e. strings ofn as, followed byn bs, followed by

n ¢s, and ending with the termination symkig). Classifying exemplars of this language entails counting
symbols and remembering counts until the whole string has bead. Since traditional SVMs cannot solve

this task at all, we compare Evoke to the pseudoinversediiasaino, and the only pre-2005 subsymbolic

learning machine that has satisfactorily solved this grohlnamely, gradient-based LSTM[30].

Symbol strings were presented to the networks, one symizoliate. The networks had 4 input units,
one for each possible symbdi:for start,a, b, andc. An inputis setto 1.0 when the corresponding symbol
is observed, and -1.0 when it is not present. The network stas fed as input to four distinct SVM
classifiers, and each was trained to predict one of the dedsilowing symbolsz, b, c andT'.

Two sets of 20 simulations were run each using a differemitrg set of legal stringsfa™b"c"},n =
1..N, whereN was 10 and 20. The second half of each set was used for validatid the fithess of each
individual was evaluated as the sum of training and valaedirror, to be minimized by evolution.

LSTM networks with 5 memory cells were evolved, with randaritial values for the weights between
—5.0 and5.0. The Cauchy noise parameterfor both mutation and burst mutation was se0Otb, i.e.
50% of the mutations is kept within this bound. In keeping witke 8etup in[[30], we added a bias unit to
the Forget gates and Output gates with values bb and—1.5, respectively. The SVM parameters were
chosen heuristically: a Gaussian kernel with standardatievi2.0 and capacityl00.0. Evolution was
terminated after 50 generations, after which the best n&timeach simulation was tested. The results are
summarized in Table3.1.

Evoke learns in approximately 6 minutes on average (8iG&lz desktop) but, more importantly, it is
able to generalize far better than G-LSTM—the only gradlzaged RNN so far that has achieved good
generalization on such tasks [29] B0, 134, 33].

While being superior fotv = 10 andN = 20, the performance of Evoke degraded for larger values of
N, for which both PI-Evolino and G-LSTM achieved better résul

3.2 Multiple Superimposed Sine Waves

In [36], the author reports that Echo State Network$ [15]ena@ble to learn functions composed of multiple
superimposed oscillators. Specifically, functions lie (0.2z) + sin(0.311z), in which the individual
sines have the same amplitude but their frequencies are ultiples of each other. G-LSTM also has
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Figure 2: Performance of Evoke on the double superimposed sine wave task. The plot shows the
generated output (continuous line) of a typical networkdpieed after 50 generations (3000 evaluations),
compared with the test set (dashed line with crosses).

difficulties in solving such tasks quickly.

For this task, networks with 10 memory cells were evolvedfbgenerations to prediad0 time steps
of the above function, excluding the firtb0 as washout time; fitness was evaluated summing the error
over the training set (point1..400) and a validation set (point$1..700), and then tested on another set
of data points from time-steg91..1000. This time the weight range was sef{tel.0, 1.0], and a Gaussian
kernel with standard deviatidh(0 and capacityl0.0 was used for the SVM.

On 20 runs with different random seeds, the average summed dfjearer over the test se8{0
points) was0.021. On the same problem, though, pseudoinverse-based Evelauhed a much better
value 0f0.003. Experiments with three superimposed waves, as inl [1, 2k gasatisfactory results.

Figure[3:2 shows the behavior of one of the double sine waekémetworks on the test set.



Technical Report No. IDSIA-19-05 (version 2.0) 7

4 Conclusion

We introduced the first kernel-adapting, truly sequentdMsbased classifiers and predictors. They are
trained by the Evoke algorithm: EVOlution of systems withridEl-based outputs. Evoke is a special case
of the recent Evolino class of algorithmi$|[1, 2] in which astyised learning module (SVM in this case) is
employed to assign fitness to the evolving recurrent systhatpre-process inputs. Our particular Evoke
implementation uses the ESP algorithm to coevolve the hiddeles of an LSTM RNN.

This versatile method can deal with long time lags betwesardie events as well as with continuous
time-series prediction. It is able to solve a context-garesgrammar task that standard SVMs cannot
solve even in principle. It also outperforms ESNs and pnevistate-of-the-art RNN algorithms for such
tasks (G-LSTM) in terms of generalization. Finally, Evoksoaquickly solves a task involving multiple
superimposed sine waves on which ESNs fail, and where G-LBT\bw.

The present work represents a pilot study of evolutionacyment SVMs. As for its performance,
Evoke was generally better than gradient-based LSTM, busevthan the pseudoinverse-based Evolino
[, [2]. One possible reason for this could be that the kerraglping of the SVM componentinduces a more
rugged fitness landscape that makes evolutionary seardem&uture work will further explore Evoke’s
limitations, and ways to circumvent them, including thees@lution of SVM kernel parameters.
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