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Abstract. The growing literature on consciousness does not providarad
demonstration of theisefulnesof consciousness. Here we point out that the
recently formulated Godel machines may provide just sutbchnical justifi-
cation. They are the first mathematically rigorous, genéudlly self-referential,
self-improving, optimally efficient problem solvers, “carious” or “self-aware”
in the sense that their entire behavior is open to introgmgcand modifiable.
A Godel machine is a computer that rewrites any part of ita avitial code as
soon as it finds a proof that the rewriteuseful,where the problem-dependent
utility function, the hardware, and the entire initial code are describeckinyres
encoded in an initial asymptotically optimal proof searalvbich is also part of
the initial code. This type of total self-reference is psety the reason for the
Godel machine’s optimality as a general problem solvey:saff-rewrite is glob-
ally optimal—no local maximal—since the code first had toverthat it is not
useful to continue the proof search for alternative seifrites.

1 Introduction and Outline

In recent years the topic of consciousness has gained sadibility as a serious re-
search issue, at least in philosophy and neuroscience[&.ddowever, there is a lack
of technicaljustifications of consciousness: so far no one has shownctiregcious-

ness is really useful for solving problems, even though lgrolsolving is considered
of central importance in philosophy [29].

Our fully self-referential Godel machine [43,45] may bewed as providing just
such a technical justification. It is “self-aware” or “coimes” in the sense that the al-
gorithm determining its behavior is completely open to-#r¢pection, and modifiable
in a very general (but computable) way. It can ‘step outsideself’ [13] by executing
self-changes that are provably good, where the mechanisgefterating the proofs
also is part of the initial code and thus subject to analysiséhange. We will see that
this type of total self-reference makes the Godel machinepimal general problem
solver, in the sense of Global Optimality Theorem 1, to beutised in Section 4.

Outline. Section 2 presents basic concepts of Gddel machinesioredab the most
relevant previous work, and limitations. Section 3 presd¢he essential details of a
self-referential axiomatic system of one particular Gadachine, Section 4 the Global



Optimality Theorem 1, and Section 5 é)-optimal (Theorem 2) initial proof searcher.
Section 6 provides examples and additional relations teigus work, and lists answers
to several frequently asked questions about Godel mash8extion 7 wraps up.

2 Basic Overview / Most Relevant Previous Work / Limitations

All traditional algorithms for problem solving are hardedt. Some are designed to
improve some limited type of policy through experience [18]t are not part of the
modifiable policy, and cannot improve themselves in a théaiy sound way. Hu-
mans are needed to create new / better problem solving tigtziand to prove their
usefulness under appropriate assumptions.

Here we eliminate the restrictive need for human effort i@ thost general way
possible, leaving all the work including the proof searclatsystem that can rewrite
and improve itself in arbitrary computable ways and in a meditient fashion. To
attack this“Grand Problem of Atrtificial Intelligence,'we introduce a novel class of
optimal, fully self-referential [10] general problem sefg calledGodel machine$43,
44]1 They are universal problem solving systems that interath wome (partially
observable) environment and can in principle modify thdwesewithout essential lim-
its apart from the limits of computability. Their initial gbrithm is not hardwired; it
can completely rewrite itself, but only if a proof searcherbedded within the initial
algorithm can first prove that the rewrite is useful, givenmarfalized utility function re-
flecting computation time and expected future success (ewards). We will see that
self-rewrites due to this approach are actuagllgbally optimal(Theorem 1, Section
4), relative to Godel's well-known fundamental restigets of provability [10]. These
restrictions should not worry us; if there is no proof of sose#-rewrite’s utility, then
humans cannot do much either.

The initial proof searcher i9()-optimal (has an optimal order of complexity) in the
sense of Theorem 2, Section 5. Unlike hardwired systemsasiehitter’'s [15, 16] (Sec-
tion 2) and Levin's [23, 24], however, a Godel machine caprinciple speed up any
part of its initial software, including its proof searchtr,meetarbitrary formalizable
notions of optimality beyond those expressible indhg-notation. Our approach yields
the first theoretically sound, fully self-referential, opal, general problem solvers.

2.1 Set-up and Formal Goal

Many traditional problems of computer science requireu problem-defining input
at the beginning of the problem solving process. For exantipdeinitial input may be a
large integer, and the goal may be to factorize it. In whdofes, however, we will also
consider thanore general caswhere the problem solution requires interaction with a
dynamic, initially unknown environment that produces atoaral stream of inputs and

1 Or ‘Goedel machine’to avoid theUmlaut But ‘Godel machine'would not be quite correct.
Not to be confused with what Penrose calls, in a differentexdin'Godel’s putative theorem-
proving machine[28]!



feedback signals, such as in autonomous robot control tagkere the goal may be
to maximize expected cumulative future reward [19]. Thigymeqjuire the solution of
essentially arbitrary problems (examples in Section 6rfhtdate traditional problems
as special cases).

Our hardware (e.g., a universal or space-bounded Turindnima¢55] or the ab-
stract model of a personal computer) has a single life whictsists of discrete cycles
or time stepg = 1,2, .... Its total lifetimeT" may or may not be known in advance.
In what follows, the value of any time-varying variakfeat timet will be denoted by
Q(1).

During each cycle our hardware executes an elementarytiperehich affects its
variable states € S C B* (whereB* is the set of possible bitstrings over the binary
alphabetB = {0,1}) and possibly also the variable environmental staiey € &
(here we need not yet specify the problem-dependerf)sathere is a hardwired state
transition functionf” : S x £ — S. Fort > 1, s(t) = F(s(t — 1), Env(t — 1)) is the
state at a point where the hardware operation of cyelel is finished, but the one of
t has not started ye'nv(¢) may depend on past output actions encodedin- 1)
and is simultaneously updated or (probabilistically) comeg by the possibly reactive
environment.

In order to talk conveniently about programs and data, wioiftgn attach names to
certain string variables encoded as components or su@psiois. Of particular interest
are the three variables calléiche, x, y, andp:

1. At timet, variabletime holds a unique binary representationtofVe initialize
time(1) = ‘1, the bitstring consisting only of a one. The hardware inteats
time from one cycle to the next. This requires at m6giog ¢) and on average
only O(1) computational steps.

2. Variablex holds the inputs form the environment to the Godel mactioet > 1,
z(t) may differ froma(¢ — 1) only if a program running on the Gddel machine has
executed a special input-requesting instruction at timel. Generally speaking,
the delays between successive inputs should be sufficimgig so that programs
can perform certain elementary computations on an inpeh as copying it into
internal storage (a reserved partspbefore the next input arrives.

3. Variabley holds the outputs of the Godel machingt) is the output bitstring
which may subsequently influence the environment, whéte = ‘0’ by default.
For exampley(t) could be interpreted as a control signal for an environment-
manipulating robot whose actions may have an effect onéunputs.

4. p(1) is the initial software: a program implementing the origisab-optimal) pol-
icy for interacting with the environment, represented asigsginge(1) of p(1),
plus the original policy for searching proofs. Details vii# discussed below.

At any given timet (1 < ¢t < T') the goal is to maximize future succesautility. A
typical “value to go” utility function is of the formu(s, Env) : S x £ — R, whereR
is the set of real numbers:

E,(T|s,Env)
u(s, Env) = E, Z r(1) | s, Env|, 1)

T=time



wherer(t) is a real-valued reward input (encoded withift)) at timet¢, E,(- | -)
denotes the conditional expectation operator with resfmesbme possibly unknown
distribution » from a setM of possible distributionsN/ reflects whatever is known
about the possibly probabilistic reactions of the envirenth, and the above-mentioned
time = time(s) is a function of states which uniquely identifies the current cycle.
Note that we take into account the possibility of extendimeexpected lifespah,, (T |

s, Env) through appropriate actions.

Alternative formalizable utility functions could favor pnovement ofworst case
instead ofexpecteduture performance, or higher reward intgher time intervaletc.
Clearly, most classic problems of computer science canrbeuiated in this framework—
see examples in Section 6.1.

2.2 Basic Idea of @del Machine

Our machine becomes a self-referential [@@ldel machindy loading it with a partic-
ular form of machine-dependent, self-modifying codd he initial codep(1) at time
step 1 includes a (typically sub-optimal) problem solvingputinee(1) for inter-
acting with the environment, such as any traditional reicément learning algorithm
[19], and a general proof searcher subroutine (Sectiorebstfstematically makes pairs
(switchprog, proof)variable substrings of) until it finds aproof of a target theorem
which essentially state&he immediate rewrite op through current progranswitch-
progon the given machine implies higher utility than leavnas is’. Then it executes
switchprog which may completely rewritg, including the proof searcher. Section 3
will explain details of the necessary initial axiomatic &ya A encoded irp(1). Com-
pare Figure 1.

The Global Optimality Theorem (Theorem 1, Section 4) shows this self-improve-
ment strategy is not greedy: since the utilitylefwving p as is’implicitly evaluates alll
possible alternativewitchprog which an unmodifiegh might find later, we obtain a
globally optimal self-change—thmirrent switchprogepresents the best of all possible
relevant self-changes, relative to the given resourcddiins and initial proof search
strategy.

2.3 Proof Techniques and arO()-optimal Initial Proof Searcher

Section 5 will present af)()-optimal initialization of the proof searcher, that is, one
with an optimalorder of complexity (Theorem 2). Still, there will remain a lot afam
for self-improvement hidden by th@()-notation. The searcher uses an online extension
of Universal Searclj23, 24] to systematically testnline proof techniquesvhich are
proof-generating programs that may read parts of stédemilarly, mathematicians are
often more interested in proof techniques than in theorefasprove target theorems
as above, proof techniques may invoke special instrucfimngenerating axioms and
applying inference rules to prolong the curr@nbof by theorems. Here an axiomatic
systemA encoded irp(1) includes axioms describin@) how any instruction invoked
by a program running on the given hardware will change thehinads states (includ-
ing instruction pointers etc.) from one step to the nextlishat proof techniques can
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Fig. 1. Storage snapshot of a not yet self-improved example Godehine, with the initial soft-

ware still intact. See text for details.

reason about the effects of any program including the preafcher)(b) the initial
programp(1) itself (Section 3 will show that this is possible withoutrimducing cir-
cularity), (c) stochastic environmental propertiéd) the formal utility functionu, e.g.,

equation (1), which automatically takes into account cotapenal costs of all actions

including proof search.

2.4 Relation to Hutter’s Previous Work

Here we will briefly review the most closely related previousrk, and point out the
main novelties of the Godel machine. More relations to oijgroaches can be found

in Section 6.2.




Hutter's non-self-referential but stitD()-optimal ‘fastest’ algorithm for all well-
defined problem$lseARCH [16] uses ehardwired brute force proof searcher and ig-
nores the costs of proof search. Assume discrete inputibdtpmainsX /Y, a formal
problem specificatiorf : X — Y (say, a functional description of how integers are
decomposed into their prime factors), and a particulag X (say, an integer to be
factorized). HSEARCH orders all proofs of an appropriate axiomatic system by &ize
find programsy that for all z € X provably computef (z) within time boundt,(z).
Simultaneously it spends most of its time on executingdiveth the best currently
proven time bound,(x). It turns out that HEARCH s as fast as th&astestalgorithm
that provably computeg(z) for all z € X, save for a constant factor smaller than
1+ e (arbitrarye > 0) and anf-specific butz-independent additive constant [16]. This
constant may be enormous though.

Hutter's Aixi(t,) [15] is related. In discrete cycle= 1,2, 3, ... of Aixi(t,1)’s life-
time, actiony(k) results in perceptiom(k) and reward-(k), where all quantities may
depend on the complete history. Using a universal computdr as a Turing machine,
Aix1(t,l) needs an initial offline setup phase (prior to interactiothvlie environment)
where it uses &ardwiredbrute force proof searcher to examine all proofs of length
at mostL, filtering out those that identify programs (of maximal sizend maximal
runtimet per cycle) which not only could interact with the environrhbut which for
all possible interaction histories also correctly predidbwer bound of their own ex-
pected future reward. In cycle Aixi(t,l) then runs all programs identified in the setup
phase (at mot'), finds the one with highest self-rating, and executes itsssponding
action. The problem-independent setup time (where alnibst the work is done) is
O(L - 2%). The online time per cycle i©(t - 2!). Both are constant but typically huge.

Advantages and Novelty of the @del Machine.There are major differences between
the Godel machine and Hutter'ssHARCH[16] and AixI (t,1) [15], including:

1. Thetheorem provers of$£ARCHand AixI (t,1) are hardwired, non-self-referential,
unmodifiable meta-algorithms that cannot improve thenesel¥hat is, they will
always suffer from the same huge constant slowdowns (tifpica 101°°9) buried
in the O()-notation. But there is nothing in principle that prevents tuly self-
referential code from proving and exploiting drastic retituts of such constants,
in the best possible way that provably constitutes an imgmmeent, if there is any.

2. The demonstration of th@()-optimality of HSEARCHand Aixi (t,]) depends on a
clever allocation of computation time to some of their unifiable meta-algorithms.
Our Global Optimality Theorem (Theorem 1, Section 4), hosvgig justified through
a quite different type of reasoning which indeed exploitd arucially depends on
the fact that there is no unmodifiable software at all, and tiha proof searcher
itself is readable, modifiable, and can be improved. Thi¢sig the reason why its
self-improvements can be more than mei@{y-optimal.

3. HsearcHuses a “trick” of proving more than is necessary which alsagipears
in the sometimes quite misleadiny )-notation: it wastes time on finding programs
that provably computg(z) for all z € X even when the currenfi(z)(x € X) is
the only object of interest. A Godel machine, however, sé¢egrove only what is
relevantto its goal formalized hy. For example, the generabf eq. (1) completely



ignores the limited concept 61()-optimality, but instead formalizes a stronger type
of optimality that does not ignore huge constants just bee#uwey are constant.

4. Both the Godel machine and (t,I) can maximize expected reward $HARCH
cannot). But the Godel machine is more flexible as we may piuany type of
formalizable utility function (e.g.worst caseaeward), and unlike &I (t,l) it does
not require an enumerable environmental distribution.

Nevertheless, we may useA(t,l) or HSEARCH or other less general methods to ini-
tialize the substring of p which is responsible for interaction with the environment.
The Godel machine will replacg€1) as soon as it finds a provably better strategy.

2.5 Limitations of Godel Machines

The fundamental limitations are closely related to thos# iitentified by Godel's cel-
ebrated paper on self-referential formulae [10]. Any forsystem that encompasses
arithmetics (or ZFC etc) is either flawed or allows for ungole but true statements.
Hence even a Godel machine with unlimited computatiorsdweces must ignore those
self-improvements whose effectiveness it cannot prowg, ér lack of sufficiently
powerful axioms inA. In particular, one can construct pathological examplesnvi-
ronments and utility functions that make it impossible foe imachine to ever prove
a target theorem. Compare Blum'’s speed-up theorem [3, 4dbar certain incom-
putable predicates. Similarly, a realistic Godel machiith limited resources cannot
profit from self-improvements whose usefulness it cannov@mwithin its time and
space constraints.

Nevertheless, unlike previous methods, it can in princgeloit at least theprov-
ablygood speed-ups @nypart of its initial software, including those parts resyibles
for huge (but problem class-independent) slowdowns ighbyethe earlier approaches
[15, 16].

3 Essential Details of One Representative &lel Machine

Notation. Unless stated otherwise or obvious, throughout the papelyrietroduced
variables and functions are assumed to cover the rangediiniplithe contexti(q)
denotes the number of bits in a bitstriqgy,, then-th bit of ¢; A the empty string (where
I(A\) =0); ¢gmen = Aif m > nandg,gm+1 - - - g Otherwise (whereg := go.0 := A).
Theorem proving requires an axiom scheme yielding an enaioieset of axioms
of a formal logic system4 whose formulas and theorems are symbol strings over
some finite alphabet that may include traditional symbolsogfc (such as—, A, =
,(,),V, 3, .., 1, ¢, .., f1, f2,- . .), probability theory (such aB/(-), the expectation
operator), arithmetics, —, /,=,>_, <, ...), string manipulation (in particular, sym-
bols for representing any part of statat any time, such asr.ss(5555)). A proof is
a sequence of theorems, each either an axiom or inferred gremous theorems by
applying one of the inference rules suchmsdus ponensombined withunification

e.g., [9].



The remainder of this paper will omit standard knowledgedddund in any proof
theory textbook. Instead of listingll axioms of a particulard in a tedious fashion,
we will focus on the novel and critical details: how to ovare®problems with self-
reference and how to deal with the potentially delicaterenfjeneration of proofs that
talk about and affect the currently running proof generasetf.

3.1 Prooftechniques

Brute force proof searchers (used in Hutter'sxKt,l) and HSEARCH see Section 2.4)
systematically generate all proofs in order of their siZ@sproduce a certain proof,
this takes time exponential in proof size. Instead O\y-optimal p(1) will produce
many proofs with low algorithmic complexity [51, 21, 25] nfumore quickly. It sys-
tematically tests (see Section @pof techniquesvritten in universal languagg im-
plemented withirp(1). For example£ may be a variant of PROLOG [6] or the univer-
sal FORTH[27]-inspired programming language used in recent workmintal search
[46]. A proof technique is composed of instructions thabwlbny part ofs to be read,
such as inputs encoded in variablgla substring ofs) or the code ofp(1). It may
write on sP, a part ofs reserved for temporary results. It also may rewsitétchprog
and produce an incrementally growing proof placed in thiegtvariableproof stored
somewhere i3. proofands? are reset to the empty string at the beginning of each new
proof technique test. Apart from standard arithmetic amatfion-defining instructions
[46] that modifys?, the programming languag&includes special instructions for pro-
longing the currenproof by correct theorems, for settirsyvitchprog and for checking
whether a provably optimal-modifying program was found and should be executed
now. Certain long proofs can be produced by short proof tiegcies.

The nature of the sigroof-modifying instructions below (there are no others) makes
it impossible to insert an incorrect theorem im@of, thus trivializing proof verifica-
tion:

1. get-axiom(n)takes as argument an integecomputed by a prefix of the currently
tested proof technique with the help of arithmetic instiarts such as those used
in previous work [46]. Then it appends theth axiom (if it exists, according to the
axiom scheme below) as a theorem to the current theorem seg|irgoroof. The
initial axiom scheme encodes:

(a) Hardware axioms describing the hardware, formally specifying how certain
components ok (other than environmental input§ may change from one
cycle to the next.

For example, if the hardware is a Turing macRiG&M) [55], thens(t) is a
bitstring that encodes the current contents of all tapekeftV, the positions

2 Turing reformulated Gédel's unprovability results inrter of Turing machines (TMs) [55]
which subsequently became the most widely used abstractlmddomputation. It is well-
known that there araniversalTMs that in a certain sense can emulate any other TM or any
other known computer. Godel’s integer-based formal laggucan be used to describe any
universal TM, and vice versa.



(b)

(c)

of its scanning heads, and the currérternal stateof the TM’s finite state
automaton, whilg" specifies the TM’s look-up table which maps any possible
combination of internal state and bits above scanning headsew internal
state and an action such as: replace some head'’s current bid bincrement
(right shift) or decrement (left shift) some scanning haadd and copy next
input bit to cell above input tape’s scanning head, etc.

Alternatively, if the hardware is given by the abstract Mad@ modern micro-
processor with limited storage(t) will encode the current storage contents,
register values, instruction pointers etc.

For instance, the following axiom could describe how soméiBdhardware’s
instruction pointer stored igy.g4 is continually incremented as long as there is
no overflow and the value ofs; does not indicate that a jump to some other
address should take place:

(Vtvn: [(n <2 = DA >0)AE>1)A{<T)

A(string2num(s1.64(t)) = n) A (se5(t) = ‘0")]
— (string2num(s1.64(t + 1)) =n+ 1))

Here the semantics of used symbols such as ‘(" asicahd ‘—’ (implies) are
the traditional ones, whilestring2num’ symbolizes a function translating
bitstrings into numbers. It is clear that any abstract hardwmodel can be
fully axiomatized in a similar way.

Reward axiomsdefining the computational costs of any hardware instragtio
and physical costs of output actions, such as control ssgr{@) encoded in
s(t). Related axioms assign values to certain input events (fucion variable

x, a substring ofs) representing reward or punishment (e.g., when a Godel
machine-controlled robot bumps into an obstacle). Addalcaxioms define
the total value of the Godel machine’s life as a scalare@lfunction of all
rewards (e.g., their sum) and costs experienced betweédesdyandT, etc.
For example, assume that;.1s can be changed only through external inputs;
the following example axiom says that the total reward iases by 3 whenever
such an input equals ‘11’ (unexplained symbols carry theams/meaning):

(VtNtQ : [(fl < tg) N (tl > 1) A\ (tg < T) A\ (817;18(152) = ‘11’)]

— [R(t1,t2) = R(t1,t2 — 1) + 3]),

whereR(t1, t2) is interpreted as the cumulative reward between timemnd

to. It is clear that any formal scheme for producing rewards loarfully ax-
iomatized in a similar way.

Environment axiomsrestricting the way the environmentwill produce new in-
puts (encoded within certain substringspin reaction to sequences of outputs

y encoded irs. For example, it may be known in advance that the environment
is sampled from an unknown probability distributipncontained in a given
set M of possible distributions (compare equation 1). E)g.,may contain

all distributions that are computable, given the previassony [51, 52, 15], or



at least limit-computable [39, 40]. Or, more restrictivehe environment may
be some unknown but deterministic computer program [57s8i]pled from
the Speed Prior [41] which assigns low probability to enwiments that are
hard to compute by any method. Or the interface to the enrisati is Marko-
vian [33], that is, the current input always uniquely id&éati the environmental
state—a lot of work has already been done on this specia[84s2, 54]. Even
more restrictively, the environment may evolve in comgiepeedictable fash-
ion known in advance. All such prior assumptions are pégféotmalizable in
an appropriated (otherwise we could not write scientific papers about them).
(d) Uncertainty axioms; string manipulation axioms: Standard axioms for arith-
metics and calculus and probability theory [20] and stasind string manip-
ulation that (in conjunction with the hardware axioms andm@mment axioms)
allow for constructing proofs concerning (possibly unagr} properties of fu-
ture values of(t) as well as bounds on expected remaining lifetime / costs /
rewards, given some timeand certain hypothetical values for components of
s(7) etc. An example theorem saying something about expectgrépies of
future inputsz might look like this:

(thvu eM: [(1 < tl) AN (tl + 15597 < T) AN (85;9(t1) = ‘01011’)

/\(.7340;44(t1) = ‘OOOOO’)] — (31’ : [(tl <t<t:+ 15597)

998
I

where P,(. | .) represents a conditional probability with respect to an ax-
iomatized prior distribution from a set of distributiong/ described by the
environment axioms (Item 1c).
Given a particular formalizable hardware (Iltem 1a) and falisable assump-
tions about the possibly probabilistic environment (Itesih bbviously one can
fully axiomatize everything that is needed for proof-basssoning about past
and future machine states.

(e) Initial state axioms: Information about how to reconstruct the initial stafe)
or parts thereof, such that the proof searcher can buildfpincluding axioms
of the type

/\(P#(JJ17;22(75) = ‘011011’ | S(tl)) >

(smm(1) = 2), e.g.: (s7.9(1) = ‘010").

Here and in the remainder of the paper we use bold font in faasto indicate
syntactic place holders (such asn,2) for symbol strings representing vari-
ables (such as,n,2 whose semantics are explained in the text—in the present
contextz is the bitstrings,,.,,(1).
Note that it isno fundamental problem to fully encode both the hardware
descriptionand the initial hardware-describing within p itself. To see this,
observe that some software may include a program that catitpe software.

(f) Utility axioms describing the overall goal in the form of utility functiene.g.,
equation (1) in Section 2.1.

2. apply-rule(k, m, n) takes as arguments the indexf it exists) of an inference rule
such agnodus ponenéstored in a list of possible inference rules encoded within



p(1)) and the indicesn, n of two previously proven theorems (numbered in order
of their creation) in the currergroof. If applicable, the corresponding inference
rule is applied to the addressed theorems and the resutteareém appended to
proof. Otherwise the currently tested proof technique is infged. This ensures
thatproofis never fed with invalid proofs.

. delete-theorem(m)deletes then-th theorem in the currently storgaoof, thus
freeing storage such that proof-storing parts afan be reused and the maximal
proof size is not necessarily limited by storage constsaifiheorems deleted from
proof, however, cannot be addressed any morepply-ruleto produce further
prolongations oproof.

. set-switchprog(m,n)replaceswitchprog by s?,.,., provided that?, .. is indeed a
non-empty substring of?, the storage writable by proof techniques.

. check()verifies whether the goal of the proof search has been reaEhstlit tests
whether the last theorem (if any) proof has the form of darget theorem. A
target theorem states that given therentaxiomatized utility function: (Item 1f),
the utility of a switch fromp to the currenswitchprogwould be higher than the
utility of continuing the execution gf (which would keep searching for alternative
switchprog). Target theorems are symbol strings (encodeg wf the (decoded)
form

(u[s(t1) @ (switchbit(ty) = ‘1), Env(t1)] >

u[s(t1) @® (switchbit(t1) = ‘0"), Env(t1)]) (2)

where the variableé; (represented by syntactic place holde) stands for a time
step, while all other symbols belong to the alphabet of tie@tbm-proving calcu-
lus, that is, the set of possible target theorems is paraineteonly byt . Here the
calculus should permit the notaticiity ) @ (switchbit(t1) = ‘b’) as a shortcut
for the state obtained when we replaweitchbi(t,), the true value of the vari-
able bit switchbit (encoded ins) at timet;, by b € {0,1}. This will facilitate
the formulation of theorems that compare values conditimrevarious alternative
hypothetical properties of(¢1). (Note thats(¢;) may be only partially known by
the current proof technique even in environments wkéte) andswitchbi(t,) are
fully predetermined for all valid, .)

The purpose of introducing, is to deal with hardware-specific temporal delays
that may be involved in checking and switching—it may takéaificant amount
of time to match abstract symbol strings found during prarsh to the Godel
machine’s real current state. If a target theorem has basmdfoheck()uses a sim-
ple prewired subroutine to check whether there is enougé kft to set variable
switchbit(originally 0) to 1 before the continually increasitigne will equalt;. If
this subroutine returns a negative resahieck()exits. Otherwise it setswitchbit
:= 1 (there is no other way of changirsyvitchbi). Then it repeatedly testgme
until time > t1, to make sure the condition of formula (2) was fulfiledatThen
it transfers control tewitchprog(there is no other way of callingwitchprog. The
switchprogmay subsequently rewrite all parts afexcluding hardware-reserved
parts such agime andzx, but includingp.



6. state2theorem(m, n)takes two integer arguments, n and tries to transform the
current contents of,,.,, into a theorem of the form

(Smm(t1) = 2), e.g.: (S6:9(7775555) = 1001"),

wheret; represents a time measured (by checkimg) shortly afterstate2theorem
was invoked, and the bistrings,,.,(t1) (recall the special casg = 1 of Item
le). So we accept the time-labeled current observable wsnté any part ofs

as a theorem that does not have to be proven in an alternagiyéram, say, the
initial states(1), because the computation so far has already demonstrated th
the theorem is true. Thus we may exploit information congdyg environmental
inputs, and the fact that sometimes (but not always) thesastay to determine
the output of a program is to run it.

This non-traditional online interface between syntax aadhantics requires spe-
cial care though. We must avoid inconsistent results thinquayts ofs that change
while being read. For example, the present value of a quidklinging instruction
pointer IP (continually updated by the hardware) may be essentialipadable

in the sense that the execution of the reading subroutiedf igll already mod-
ify IP many times. For convenience, the (typically limited) hadewcould be set
up such that it stores the contents of fast hardware vargleleeryc cycles in a
reserved part ofs, such that an appropriate variant atate2theorem(@ould at
least translate certain recent values of fast variable® ititeorems. This, how-
ever, will not abolishall problems associated with self-observations. For example,
the s,,., to be read might also contain the reading procedure’'s owmperary,
constantly changing string pointer variables, ét@o address such problems on
computers with limited memorgtate2theorenfirst uses some fixed protocol to
check whether the current,,.,, is readable at all or whether it might change if it
were read by the remaining code sthte2theoremf so, or if m, n, are not in the
proper range, then the instruction has no further effechdédise it appends an
observedheorem of the fornism:n (t1) = z) to proof. For example, if the current
time is 7770000, then the invocationsihte2theorem(6,9hight return the theo-
rem(se.9(7775555) = ‘1001"), where7775555 — 7770000 = 5555 reflects the time
needed bgtate2theorerto perform the initial check and to read leading bits off the
continually increasingime (readingtime also costs time) such that it can be sure
that 7775555 is a recent proper time label following the startsihte2theorem

The axiomatic system is a defining parameter of a given Godel machine. Clearly,
A must be strong enough to permit proofs of target theorenpatticular, the theory of

3 We see that certain parts of the currentay not be directly observable without changing
the observable itself. Sometimes, however, axioms andquswbservations will allow the
Godel machine taleducetime-dependent storage contents that are not directlyredisie.
For instance, by analyzing the code being executed thragihuction pointetP in the exam-
ple above, the value dP at certain times may be predictable (or postdictable, #fiefact).
The values of other variables at given times, however, maypealeducible at all. Such lim-
its of self-observability are reminiscent of Heisenbeggtebrated uncertainty principle [11],
which states that certain physical measurements are retggmprecise, since the measuring
process affects the measured quantity.



uncertainty axioms (Item 1d) must be sufficiently rich. Tisiso fundamental problem:
we simply insert all traditional axioms of probability thgd20].

4 Global Optimality Theorem

Intuitively, at any given time should execute some self-modification algorithm (via in-
structioncheck(3—Item 5 above) only if it is the ‘best’ of all possible self-ghfications,
given the utility function, which typically depends on deile resources, such as stor-
age size and remaining lifetime. At first glance, howevegdatheorem (2) seems to
implicitly talk about just one single modification algonith namelyswitchprodt; ) as
set by the systematic proof searcher at timelsn't this type of local search greedy?
Couldn'tit lead to a local optimum instead of a global one? ioannot, according to
the global optimality theorem:

Theorem 1 (Globally Optimal Self-Changes, givern: and A encoded inp). Given
any formalizable utility functiom (Item 1f), and assuming consistency of the underlying
formal systemA, any self-change g obtained through execution of some program
switchprogdentified through the proof of a target theorem (2) is gldpaptimal in the
following sense: the utility of starting the execution of firesenswitchprogis higher
than the utility of waiting for the proof searcher to produae alternativeswitchprog
later.

Proof. Target theorem (2) implicitly talks about all the othssvitchprog that the proof
searcher could produce in the future. To see this, condigetvto alternatives of the
binary decision: (1) either execute the curr@nitchprog(setswitchbit= 1), or (2) keep
searching foproofs andswitchprog (setswitchbit= 0) until the systematic searcher
comes up with an even bettewitchprog Obviously the second alternative concerns
all (possibly infinitely many) potentiadwitchprog to be considered later. That is, if
the currenswitchprogwere not the ‘best’, then the proof searcher would not be table
prove that settingwitchbitand executingwitchprogwill cause higher expected reward
than discardingwitchprog assuming consistency gf. Q.E.D.

4.1 Alternative Relaxed Target Theorem

We may replace the target theorem (2) (Item 5) by the follgvéhernative target the-
orem:
(u[s(t1) & (switchbit(t1) = ‘1"), Env(ty)] >

ul[s(t1) @ (switchbit(t1) = ‘0"), Env(t1)]) (3)

The only difference to the original target theorem (2) ist ttiee “>" sign became a
“>"sign. That is, the Godel machine will change itself as sasiit has found a proof
that the change will not make things worse. A Global Optitgaliheorem similar to
Theorem 1 holds; simply replace the last phrase in Theorey thé utility of starting
the execution of the preseswvitchprogis at least as high as the utility of waiting for
the proof searcher to produce an alternatissitchproglater.



4.2 Global Optimality and Recursive Meta-Levels

One of the most important aspects of our fully self-refaedrdet-up is the follow-
ing. Any proof of a target theorem automatically proves tinat corresponding self-
modification is good for all further self-modifications affed by the present one, in
recursive fashion. In that sense all possible “meta-l&wlthe self-referential system
are collapsed into one.

4.3 How Difficult is it to Prove Target Theorems?

This depends on the tasks and the initial axiomof course. It is straight-forward to
devise simple tasks and corresponding consistesuich that there are short and trivial
proofs of target theorems. On the other hand, it is possibdenstruct set-ups where it
is impossible to prove target theorems, for example, bygus#sults of undecidability
theory, e.g., [30, 3, 4].

The point is: usually we do not know in advance whether it isgilde or not to
change a given initial problem solver in a provably good Wée traditional approach
is to invest human research effort into finding out. A Godektine, however, can do
this by itself, without essential limits apart from thosecofnputability and provability.

Note that to prove a target theorem, a proof technique doeseuessarily have
to compute the true expected utilities of switching and matching—it just needs to
determine which is higher. For example, it may be easy toethat speeding up a
subroutine of the proof searcher by a factor of 2 will cefialre worth the negligible
(compared to lifetim@") time needed to execute the subroutine-changing algoritiom
matter what is the precise utility of the switch.

5 Bias-Optimal Proof Search (BIOPS)

Here we construct a(1) that isO()-optimal in a certain limited sense to be described
below, but still might be improved as it is not necessariltimpl in the sense of
the givenu (for example, theu of equation (1) neither mentions nor cares €of)-
optimality). Our Bias-Optimal Proof Search (BIOPS) is edidly an application of
Universal Search [23, 24] to proof search. One novelty, vewés this: Previous prac-
tical variants and extensions of Universal Search have bpplied [36, 38,49, 46] to
offlineprogram search tasks where the program inputs are fixed satthe same pro-
gram always produces the same results. Inanline setting, however, BIOPS has to
take into account that the same proof technique startedfateatit times may yield dif-
ferent proofs, as it may read partsofe.g., inputs) that change as the machine’s life
proceeds.

BIOPS starts with a probability distributioR (the initial bias) on the proof tech-
niquesw that one can write irC, e.g.,P(w) = K ~'(*) for programs composed from
K possible instructions [24]. BIOPS isar-bias-optima[46] in the sense that it will
not spend much more time on any proof technique than it deseaccording to its



probabilistic bias, namely, not much more than its prolighiimes the total search
time:

Definition 1 (Bias-Optimal Searchers [46]) Let R be a problem clasg;, be a search
space of solution candidates (where any probteen’R should have a solution if),
P(q | r) be atask-dependentbias in the form of conditional proiygiistributions on
the candidateg € C. Suppose that we also have a predefined procedure thatcagate
tests any givep on anyr € R within timet(q, r) (typically unknown in advance). Then
a searcher is:-bias-optimal ¢ > 1) if for any maximal total search tim&;,;,; > 0

it is guaranteed to solve any probleme R if it has a solutionp € C satisfying
t(p,r) < P(p | r) Tiotar/n. Itis bias-optimal ifn = 1.

Method 51 (BIOPS) In phase(i = 1,2, 3, ...) Do: FOR all self-delimiting [24] proof
techniquesv € L satisfyingP(w) > 2~ Do:

1. Runw until halt or error (such as division by zero) 2P (w) steps consumed.
2. Undo effects ofv on s? (does not cost significantly more time than executing

A proof techniquew can interrupt Method 51 only by invoking instructiameck()
(Item 5), which may transfer control ®witchprog(which possibly even will delete
or rewrite Method 51). Since the initial runs on the formalized hardware, and since
proof techniques tested hycan readp and other parts of, they can produce proofs
concerning the (expected) performancer@nd BIOPS itself. Method 51 at least has
the optimalorder of computational complexity in the following sense.

Theorem 2. If independently of variabléme(s)some unknown fast proof technigque
would require at mosf (k) steps to produce a proof of difficulty measkréan integer
depending on the nature of the task to be solved), then Mdithoalill need at most
O(f(k)) steps.

Proof. It is easy to see that Method 51 will need at mosyf (k)/P(w)) = O(f(k))
steps—the constant factoy P(w) does not depend an Q.E.D.

Note again, however, that the proofs themselves may corupgte different, ar-
bitrary formalizable notions of optimality (stronger thdmose expressible in th@()-
notation) embodied by the given, problem-specific, foraedi utility functionu. This
may provoke useful, constant-affecting rewrites of th@ahproof searcher despite its
limited (yet popular and widely used) notion Of )-optimality.

6 Discussion & Additional Relations to Previous Work

Here we list a few examples of Godel machine applicabilitwarious tasks defined
by various utility functions and environments (Section)6dnd additional relations
to previous work (Section 6.2). We also provide a list of amsito frequently asked
questions (Section 6.3).



6.1 Example Applications

Traditional examples that do not involve significant intdi@n with a probabilistic en-
vironment are easily dealt with in our reward-based frantéwo

Example 1 (Time-limited NP-hard optimizatiomje initial input to the Godel machine
is the representation of a connected graph with a large nuofilbedes linked by edges
of various lengths. Within given time it should find a cyclic path connecting all nodes.
The only real-valued reward will occur at tirfie It equals 1 divided by the length of the
best path found so far (0 if none was found). There are no atipeits. The by-product
of maximizing expected reward is to find the shortest pathatihe within the limited
time, given the initial bias.

Example 2 (Fast theorem provingjrove or disprove as quickly as possible that all
even integers> 2 are the sum of two primes (Goldbach’s conjecture). The révgr
1/t, wheret is the time required to produce and verify the first such proof

More general cases are:

Example 3 (Maximizing expected reward with bounded resm)ré robot that needs
at least 1 liter of gasoline per hour interacts with a pdgtiahknown environment,
trying to find hidden, limited gasoline depots to occasibnedfuel its tank. It is re-
warded in proportion to its lifetime, and dies after at md3d years or as soon as its
tank is empty or it falls off a cliff etc. The probabilistic @nonmental reactions are
initially unknown but assumed to be sampled from the axidmedtSpeed Prior [41],
according to which hard-to-compute environmental reactare unlikely. This permits
a computable strategy for making near-optimal predictigii§. One by-product of
maximizing expected reward is to maximize expected lifetim

Example 4 (Optimize any suboptimal problem solv&iyen any formalizable prob-
lem, implement a suboptimal but known problem solver asisoft on the Godel ma-
chine hardware, and let the proof searcher of Section 5 rpariallel.

6.2 More Relations to Prvious, Less General Methods

Despite (or maybe because of) the ambitiousness and palteotver of self-improving

machines, there has been little work in this vein outsideawm labs at IDSIA and

TU Munich. Here we will list essential differences betwebe Godel machine and
our previous approaches to ‘learning to learn,’ ‘metaleaghself-improvement, self-

optimization, etc.

1. Godel Machine vs Success-Story Algorithm and Other Metalearers
A learner’s modifiable components are called its policy. Ayoathm that modifies
the policy is a learning algorithm. If the learning algonitthas modifiable compo-
nents represented as part of the policy, then we speak of-anselifying policy



(SMP) [47]. SMPs can modify the way they modify themselves &he Godel
machine has an SMP.

In previous work we used thsuccess-story algorith(®SA) to force some (stochas-
tic) SMP to trigger better and better self-modifications, &5, 47, 49]. During the
learner’s life-time, SSA is occasionally called at timesputed according to SMP
itself. SSA uses backtracking to undo those SMP-generaiid-Bodifications
that have not been empirically observed to trigger lifeloagard accelerations
(measured up until the current SSA call—this evaluates dhg-term effects of
SMP-modifications setting the stage for later SMP-modifices). SMP-modifica-
tions that survive SSA represent a lifelong success histémgil the next SSA call,
they build the basis for additional SMP-modifications. 8oley self-modifications
our SMP/SSA-based learners solved a complex task in a ihadizservable envi-
ronment whose state space is far bigger than most found iitérature [47].

The Godel machine’s training algorithm is theoreticallyeh more powerful than
SSA though. SSA empirically measures the usefulness ofqarsgelf-modifications,
and does not necessarily encourage provably optimal omasaBdrawbacks hold
for Lenat’s human-assisted, non-autonomous, self-modjfgarner [22], our Meta-
Genetic Programming [32] extending Cramer’s Genetic Rnogning [7, 1], our
metalearning economies [32] extending Holland’s macheéaeling economies [14],
and gradient-based metalearners for continuous progracespf differentiable
recurrent neural networks [34, 12]. All these methods, harecould be used to
seedp(1) with an initial policy.

. Godel Machine vs Universal Search

Unlike the fully self-referential Godel machine, Levitthiversal Search23, 24]
has a hardwired, unmodifiable meta-algorithm that cannptawe itself. Itis asymp-
totically optimal for inversion problems whose solutiommde quickly verified in
O(n) time (wheren is the solution size), but it will always suffer from the same
huge constant slowdown factors (typicaty> 101°°°) buried in theO()-notation.
The self-improvements of a Gdodel machine, however, can beethan merely
O()-optimal, since its utility function may formalize a stomggpe of optimality
that does not ignore huge constants just because they astantr-compare the
utility function of equation (1). The next item points outditibnal limitations of
Universal Search and its extensions.

. Godel Machine vsOoPs

The Optimal Ordered Problem Solvep®s[46, 42] extends Universal Search. Itis
a bias-optimal (see Def. 1) way of searching for a progranrsthlaes each problem
in an ordered sequence of problems of a rather general tgp@naally organizing
and managing and reusing earlier acquired knowledge. Swioffirecently also
proposed related ideas forsaientist’s assistarf63] that modifies the probability
distribution of Universal Search [23] based on experience.

As pointed out earlier [46] (section ondP slimitations), however, neither Univer-
sal Search nor Opslike methods are necessarily optimal for general lifelogig-
forcement learning (RL) tasks [19] such as those for whicki AL5] was designed.
The simple and natural but limited optimality notion ob®s is bias-optimality



(Def. 1): Oopsis a near-bias-optimal searcher for programs which comgnite
tions that one can quickly verify (costs of verification aa&en into account). For
example, one can quickly test whether some currently tgstegram has computed
a solution to theowers of Hanoproblem used in the earlier paper [46]: one just
has to check whether the third peg is full of disks.

But general RL tasks are harder. Here in principle the evanaf the value of

some behavior consumes the learner’s entire life! Thahésnhive test of whether
a program is good or not would consume the entire life. Thavéscould test only

one program; afterwards life would be over.

So general RL machines need a more general notion of optymafid must do
things that plain @pPsdoes not do, such as predictifigure tasks and rewards.
A provably optimal RL machine must somehgwove properties of otherwise un-
testable behaviors (such as: what is the expected rewahnisdf¢havior which one
cannot naively test as there is not enough time). That is gfanthat the Godel
machine does: it tries to greatly cut testing time, replgciaive time-consuming
tests by much faster proofs of predictable test outcomesewer this is possible.
Proof verification itself can be performed very quickly. larficular, verifying the
correctness of a found proof typically does not consumedh@aiming life. Hence
the Gddel machine may used®sas a bias-optimal proof-searching submodule.
Since the proofs themselves may concern quite diffeegbitrary notions of op-
timality (not just bias-optimality), the Godel machinen®ore general than plain
Oops But it is not just an extension of @s Instead of @Psit may as well use
non-bias-optimal alternative methods to initialize iteqirsearcher. On the other
hand, GPsis not just a precursor of the Godel machine. It is a standealincre-
mental, bias-optimal way of allocating runtime to prograimet reuse previously
successful programs, and is applicable to many traditipraillems, including but
not limited to proof search.

. Godel Machine vsAIX! etc.

Unlike Godel machines, Hutter’'s recentXd model[15, 18] generally needsn-
limited computational resources per input update. It combinesnsmaff's uni-
versal prediction scheme [51, 52] with axpectimaxomputation. In discrete cycle
k=1,2,3,..., actiony(k) results in perceptiom(k) and reward-(k), both sam-
pled from the unknown (reactive) environmental probaptitstribution x. Aixi
defines a mixture distributiofias a weighted sum of distributiomse M, where
M is any class of distributions that includes the true envitentu. For example,
M may be a sum of all computable distributions [51, 52], whéee sum of the
weights does not exceed 1. In cydlet+ 1, Aixi selects as next action the first
in an action sequence maximiziggpredicted reward up to some given horizon.
Recent work [17] demonstratedid 's optimal use of observations as follows.
The Bayes-optimal policy¢ based on the mixturgis self-optimizing in the sense
that its average utility value converges asymptoticallydth . € M to the opti-
mal value achieved by the (infeasible) Bayes-optimal yah¢ which knowsy in
advance. The necessary condition thdtadmits self-optimizing policies is also
sufficient. Furthermorey® is Pareto-optimal in the sense that there is no other pol-



icy yielding higher or equal value iall environments € M and a strictly higher
value in at least one [17].

While Aixi clarifies certain theoretical limits of machine learnirtgsicomputa-
tionally intractable, especially whekt includes all computable distributions. This
drawback motivated work on the time-bounded, asymptdyiagtimal Aixi(t,l)
system [15] and the relatedd# ARCH[16], both already discussed in Section 2.4,
which also lists the advantages of the Gddel machine. Batthaals, however,
could be used to seed the Gddel machine witiniral policy.

It is the self-referentialaspects of the Godel machine that relieve us of much of
the burden of careful algorithm design required faxAt,l) and HSEARCH They
make the Gddel machine both conceptually simptetmore general than i (t,1)
and HSEARCH

6.3 Frequently Asked Questions

In the past half year the author frequently fielded questadrmit the Gdodel machine.
Here a list of answers to typical ones.

1. Q: Does the exact business of formal proof search really maksesi the uncer-
tain real world?

A: Yes, itdoes. We just need to insert intd ) the standard axioms for representing
uncertainty and for dealing with probabilistic settingslaxpected rewards etc.
Compare items 1d and 1c in Section 3.1, and the definitionilitf.gs anexpected
value in equation (1).

2. Q: The target theorem (2) seems to refer only to\key firstself-change, which
may completely rewrite the proof-search subroutine—db#sa make the proof of
Theorem 1 invalid? What prevents later self-changes fromgo@estructive?

A: This is fully taken care of. Please have a look once more girihef of Theorem
1, and note that the first self-change will be executed oritysfprovably useful (in
the sense of the present untility functiahpfor all future self-changes (for which
the present self-change is setting the stage). This is lactha main point of the
whole Godel machine set-up.

3. Q (related to the previous itemJthe Gdel machine implements a meta-learning
behavior: what about a meta-meta, and a meta-meta-met&leve
A: The beautiful thing is that all meta-levels are automaljoadllapsed into one:
any proof of a target theorem automatically proves that threesponding self-
modification is good for all further self-modifications affed by the present one,
in recursive fashion. Recall Section 4.2.

4. Q: The Gdel machine software can produce only computable mapfiogsinput
sequences to output sequences. What if the environment-isamputable?

A: Many physicists and other scientists (exceptions: [57), 8¢jually do assume
the real world makes use of all the real numbers, most of whiehincomputable.
Nevertheless, theorems and proofs are just finite symhagstrand all treatises
of physics contain only computable axioms and theorems) ev&n some of the
theorems can be interpreted as making statements aboutntabty many objects,



such as all the real numbers. (Note though that the Lowemt&iolem Theorem
[26,50] implies that any first order theory with an uncouikgabodel such as the
real numbers also has a countable model.) Generally spgd&imal descriptions
of non-computable objects dmwt at all present a fundamental problem—they may
still allow for finding a strategy that provably maximizeslitt. If so, a Godel
machine can exploit this. If not, then humans will not haveredamental advantage
over Godel machines.

5. Q: Isn't automated theorem-proving very hard? Current Al syt cannot prove

nontrivial theorems without human intervention at cruaakision points.
A: More and more important mathematical proofs (four colootken etc) heavily
depend on automated proof search. And traditional theomraveps do not even
make use of our novel notions of proof techniques@fdoptimal proof search. Of
course, some proofs are indeed hard to find, but here humdrGa&atel machines
face the same fundamental limitations.

6. Q: Don't the “no free lunch theorems” [56] say that it is impob# to construct
universal problem solvers?

A: No, they do not. They refer to the very special case of problsampled from
i.i.d. uniform distributions orfinite problem spaces. See the discussion of no free
lunch theorems in an earlier paper [46].

7. Q: Can't the Gdel machine switch to a prograswitchprogthat rewrites the util-
ity function to a “bogus” utility function that makes unfoded promises of big
rewards in the near future?

A: No, it cannot. It should be obvious that rewrites of the gytilunction can happen
only if the Godel machine first can prove that the rewritedsful according to the
presentutility function.

8. Q: Aren’tthere problems with undecidability? For exampleggio't Rice’s theorem
[30] or Blum'’s speed-up theorem [3, 4] pose problems?

A: Not at all. Of course, the Godel machine cannot profit fromadthetical useful
self-improvement whose utility is undecidable, and wikitbfore simply ignore it.
Compare Section 2.5 on fundamental limitations of Godatmrees (and humans,
for that matter). Nevertheless, unlike previous methodSpdel machine can in
principle exploit at least the provably good improvementd apeed-ups adiny
part of its initial software.

7 Conclusion

In 1931, Kurt Gddel used elementary arithmetics to buildi@ersal programming lan-
guage for encoding arbitrary proofs, given an arbitraryreerable set of axioms. He
went on to constructelf-referentiaformal statements that claim their own unprovabil-
ity, using Cantor’s diagonalization trick [5] to demonsgrahat formal systems such
as traditional mathematics are either flawed in a certaisesen contain unprovable
but true statements [10]. Since Gddel's exhibition of thedamental limits of proof
and computation, and Konrad Zuse’s subsequent constnuztithe first working pro-
grammable computer (1935-1941), there has been a lot of moerkpecialized algo-
rithms solving problems taken from more or less generallprolzlasses. Apparently,



however, one remarkable fact has so far escaped the att@ittmmputer scientists: it
is possible to use self-referential proof systems to bygltinsally efficient yet concep-
tually very simple universal problem solvers.

The initial softwarep(1) of our machine runs an initial problem solver, e.g., one
of Hutter’s approaches [15, 16] which have at least an optorder of complexity, or
some less general method. Simultaneously, it run@@roptimal initial proof searcher
using an online variant of Universal Search to f@sbf techniqueswvhich are programs
able to compute proofs concerning the system’s own futuropeance, based on an
axiomatic systemd encoded irp(1), describing a formaltility function, the hard-
ware andp(1) itself. If there is no provably good, globally optimal way k&writing
p(1) at all, then humans will not find one either. But if there is ptheenp(1) itself
can find and exploit it. This approach yields the first clasthebretically sound, fully
self-referential, optimally efficient, general problenivs&ss.

If we equate the notion of “consciousness” with the abilibyeixecute unlimited
formal self-inspection and provably useful self-changdi(nited except for the limits
of computability and provability), then the Godel machama its Global Optimality
Theorem 1 do provide the first technical justification of ciassness in the context of
general problem solving [29].
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