
Uncalibrated Hand-Eye Coordination with a Redundant CameraSystem�Christian Scheering, Bernd KerstingTechnical Computer Science, Faculty of Technology,University of Bielefeld, 33501 Bielefeld, GermanyAbstractWe describe a method for 3D visual manipulatorcontrol using a redundant camera system without ex-plicit external or internal calibration. Under the as-sumption of a simple linear camera model a fusionequation is derived for which only three parametershave to be estimated regardless the number of cameras.In simulations as well as in real experiments the fea-sibility of our approach for a 3D positioning task ofa six degree of freedom (DOF) Puma 200 to a tar-get is demonstrated. It is shown that using redundantviews increases positioning accuracy and fault toler-ance. The achieved accuracy is su�cient to performan additional insertion task.1 IntroductionUsing a robot manipulator for an assembly task re-quires the ability to grasp and insert di�erent parts.The common approach is to solve the 3D relationshipbetween the robot and the environment based upona 2D vision measurements. That in turn requires theinternal and external camera parameters to be cali-brated which is di�cult and cumbersome.In the last years the idea of uncalibrated visual guid-ance found more and more attention. Skaar et al. [9]described camera space manipulation while Yoshimiand Allen [11] demonstrated 2D alignment of an eye-on-hand manipulator using rotational epipolar motion.Both Hager [4] and Hollinghurst/Cipolla [2] exploitsa nearly uncalibrated stereo camera setup. Also Hagerintroduced the ideas of projective invariance into the�eld of uncalibrated visual control [3].Recent work shows the feasibility using the wellknown image Jacobian. In [6] the usefulness of adap-tive di�erential feedback employing a visual motor Ja-cobian was shown. In [10] the idea of exploratory�The work described in this paper has been funded by theGerman Research Foundation (DFG) in the project SFB 360.

movements for dynamic image Jacobian estimationwas demonstrated.This work is a di�erent way of uncalibrated hand-eye coordination. It is based upon a simple parallel(and therefore linear) camera model and uses severalredundant arbitrary camera views in a sensor fusionapproach. We show simulations and real experimentsdemonstrating the capability of a redundant uncali-brated camera system in order to increase position ac-curacy and in case of di�erent camera failures.2 Visual controlThe key idea of our visual control is that for a Carte-sian motion the image Jacobian is equivalent to theassumption of a parallel-camera model. De�ning animage-based position-error and exploiting the parallelprojection leads to a simple linear equation for a result-ing Cartesian correction movement called the fusionequation. The parameters in turn are estimated withtwo di�erent sensor-fusion methods { a least-squaresolution (LS) and in comparison a Kalman-�lter ap-proach (KF).2.1 ModelMany researchers in the �eld of visual control (ei-ther with uncalibrated cameras or not) exploit the socalled image Jacobian J introduced by Weiss e.al. [8]in order to relate a (discrete and small) displace-movement �m (either in joint- or task-space) witha 2 dimensional image-feature displacement �f :�f = J ��m (1)The problem is to invert the Jacobian, using a(pseudo) inversion in order to calculate the displace-ment �me corresponding to an image displacement�fe de�ned by an appropriate feature-space errorfunction.



We chose a di�erent approach of how to relatea feature-space error-function with a correspondingtask-space displacement. This approach is somewhatrelated to the image Jacobian. We use a quite roughapproximation of the image-forming process { the par-allel projection.The parallel projection P j (see [5]) of a 3Dworld point m in homogeneous coordinates mw =(mx;my;mz; 1)T = (m; 1)T onto the jth camera planeis fj = �rj11 rj12 rj13 tj1rj21 rj22 rj23 tj2� �mw= (Rj tj) �mw= P j �mw (2)P j in eq. (2) is nothing but the �rst two rows ofthe corresponding homogeneous transformation cjTwfrom the world to the jth camera coordinate system.The simplest error function for a linear point-to-point movement of a manipulator at m to a goal gis to de�ne an appropriate error-displacement vector�de which has to become (nearly) zero.�de =m� g ! 0 (3)For the corresponding displacement feature �f je inthe jth camera using eq. (2) follows:�f je = f jm � f jg= P j �mw �P j � gw= Rj �m+ tj �Rj � g � tj= Rj ��de (4)Eq. (4) shows additionally that the parallel projec-tion Rj of a displacement is equivalent to the imageJacobian in eq. (1).Given a set of three Cartesian linear indepen-dent displacement vectors1 fd1;d2;d3g the error-displacement vector de can be calculated by their lin-ear combination: de = 3Xi=1 �idi (5)Under the assumption of a parallel projection Rjthe projected version of eq. (5) is:f je = Rj � de = Rj �P3i=1 �idi= P3i=1 �i �Rj � di = P3i=1 �if ji (6)Hence we can de�ne the error-function as the pro-jection of the corresponding Cartesian displacement1Because in the following only displacements are consideredthe � is omitted.

de. Calculating an appropriate set of scalars �1; �2; �3in the image space and inserting them into eq. (5)leads directly to the desired displacement-vector in theCartesian 3D space!Unfortunately eq. (6) is under-determined. There-fore at least two cameras are necessary yielding anover-determined system. But on the other hand thisis the way how to integrate several other camera viewsas well simply by solving the following over-determinedsystem: 0BBB@f1ef2e...f je1CCCA| {z }z = 0BBB@f 11 f12 f13f 21 f22 f23... ... ...f j1 f j2 f j31CCCA| {z }H �0@�1�2�31A| {z }� (7)
z =H � � (8)Eq. (8) plays the central role in our approach andis called the fusion equation. Only three parametershave to be estimated independently of the number ofcameras and only three initial test moves are neces-sary (instead of several exploratory movements whenperforming a repeated Jacobian acquiring as in [10]).2.2 Model solutionIn the present work we used two di�erent meth-ods { the least-square solution and a Kalman-�lter ap-proach. The �rst is much simpler than the latter butthe Kalman �lter is known as an optimal estimatorin the presence of Gaussian noise. In order to choosethe appropriate method both solutions were tested insimulations as well as in real experiments.Assuming that H is full rank (i.e rank(H) =min(2j; 3) = 3; j � 2) a least-square solution is possi-ble which gives a value for � that minimises the normkz �H � �k: �min = (HTH)�1HT � z (9)When using a linear discrete Kalman �lter theplant and measurement equation, assuming zero-mean, white-noise v and w are:�(k + 1) = �(k) + v; v � N(0;Q)z(k) = H(k) � �(k) +w; w � N(0;R)(10)The incremental prediction and update solutionscan be found in [1]. In our approach the whole sys-tem dynamic is included in the system noise v. The2



problem with the Kalman-�lter solution is that thereis no a priori information about \good" values for thecovariance matrices Q and R. Most of the time thesevalues are empirically determined. Only some qual-itative considerations can be made about the choiceof R. The smaller the elements of R are, the morethe new measurements are trusted. For R ! 0 theKalman �lter degenerates to a least-square solution.On the other hand larger elements of R should be se-lected, the higher the expected measurement noise is {the old measurements are trusted more and the systemwill tend to converge slowly.However, the choice of Q is less problematic in ourapproach as the experiments have shown. We havechosen pure diagonal matrices for Q, R and the ini-tial state covariance P(0j0) with the following diagonalelements: �2P(0j0) = 0:1; �2Q = 0:01; �2R = 5:0 (11)The initial state-estimate is set to �(0j0) = (1; 1; 1)T .The algorithm for a point-to-point movement (inorder to reach a docking-position, for example) is thefollowing:1. Select a target, make 3 Cartesian test moves anddetect their image dji in each camera j2. Calculate a new � and a down-scaled correctionmovement dc = s � de; 0 < s < 13. Evaluate a termination criterion: if the target isreached ! stop, else proceed with step 2The explicit down-scaling of every correction move-ment in step 2 is done for security reasons.3 SimulationsIn the simulations the least-square solution is com-pared with the Kalman �lter in order to chose thebetter one. Additionally, the system behaviour us-ing redundant cameras and its robustness in potentialfailure situations is investigated. Another bene�t ofsimulations is that in short time numerous iterationswithout supervising are obtainable (e.g. for the exam-ples below several thousand runs were evaluated).The task is to position the manipulator tool centerpoint at a target position. The images of these pointsare generated using a pin hole camera model for eachview. However, for the algorithm the projected pointsare used only and not the information of the simulatedcamera. This is still an idealisation since in realitythere is no guarantee that the measured points in the

images are the projection of the same 3D point. Atleast they should be closed neighbours.Each measurement of the target- and manipulator-position is overlayed with 2 dimensional Gaussiannoise with a variance of 5 in horizontal and verticaldirection each.In the simulation setup each test move has a 50mmlength aligned with the robots coordinate system. Thedistance to be moved is about 375mm. Each camerahas a distance of approximately 2m from the scene.The used pin-hole cameras have a uniform scaling of70 pixel/mm and a focal length of 20mm.In order to show that
real point

noisy target

measured point

start

real target coordinateFigure 1: Simulated point-to-point move under noise.
even under the assump-tion of a parallel pro-jection our iterative ap-proach still holds, theparallel camera model isnot used to simulate thefeature generation. Fig.1 shows a performedtarget-approach. The�rst three moves are theinitial test moves. Atpresent three di�erenttermination criteria have been used:� Maximum number of iterations Imax = 200� Two dimensional minimal distance d2; the ap-proach is stopped if in every image the projectionof the moved distance is less than d2 pixel� Three dimensional minimal distance d3; the ap-proach is stopped if the last three real motionshave been less than d3 mm each.The experiments were run 1000 times each with twocameras one observing the xz-plane and the other onethe yz-plane. Tab. 1 shows for both the least-squaresolution and the Kalman �lter the results for di�er-ent termination criteria. The number of runs nr withsuccessful termination due to the criterion, the corre-sponding mean number of iterations ni and the mean3D residual distance d after termination are displayed.For those runs which were terminated by exceeding theiteration limit the max-iteration residual dm is shown,too.For both termination criteria d2 and d3 the (triv-ial) observation is that the weaker the criterion, themore it �res. However, weakening the criteria doesnot increase the mean target-distance d signi�cantly.The best d is achieved with the LS and d3 = 3mmbut for nearly every simulation the KF gives the min-imal number of iterations. In order to have a criterion3



Criteriond2 d3 d2 or d32p 5p 3mm 5mm 5p or 5mmnr 371 1000 166 909 1000LS ni 97 34 106 57 29d=dm 7.2/8.5 7.1 5.5/8.4 6.8/10.1 7.2nr 380 1000 573 1000 1000KF ni 97 32 92 28 22d=dm 6.4/7.5 6.9 6.0/8.3 6.6 6.9Table 1: Comparing the quality of LS and KF for dif-ferent termination criteria.that (nearly) always �res and yields a (nearly) minimalnumber of iterations and a (nearly) minimal residualdistance we suggest a combined criterion, shown in thelast column of Tab. 1. Although it does not producethe best residual distance it provides the minimal num-ber of iterations. Therefore this criterion was used inthe real experiment described below.
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y [mm](d) zy-planeFigure 2: End position distribution using 2 cameras.An example of the end-positions distribution usinga Kalman �lter with the combined criterion 5p or 5mmis shown in Fig. 2. The target position has been trans-formed into the origin. Each ellipse is equivalent to thestandard deviation calculated from the covariance ofthe appropriate distribution. The ellipse is centeredat the distributions mean value and oriented alongthe principal axis of the distributions covariance. Itcan be seen in Fig. 2(c) and (d) that the distributionaround the z-Axis is more compact than the distribu-tion around the x- and y-Axis. This is due to the factthat in this simulation the z-Axis had been observed

by both cameras.Therefore we should expect better results (i.e. lessiterations, less d and more compact distributions) ifa redundant third camera is introduced observing thexy-plane. This is shown in Fig. 3 using the same com-bined termination criterion. The densier distributionis obvious { the deviation ellipses are nearly circles andbecame smaller. Comparing the results for ni and dfor 1000 runs (as shown in Tab. 2) it can be seen thatboth the mean residual distance and the mean num-ber of iterations decreases for d3 and the combinedcriterion. Criteriond2 d3 d2 or d32p 5p 3mm 5mm 5p or 5mm2 Cameras 161 32 138 28 22ni 3 Cameras 196 84 78 19 19Di�[%] +22 +163 -43 -32 -142 Cameras 7.1 6.9 7.0 6.6 6.9d[mm] 3 Cameras 6.0 5.4 5.0 5.6 5.7Di�[%] -15 -22 -29 -15 -17Table 2: Comparing ni and d for a KF solution be-tween 2 and 3 Cameras.
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y [mm](d) zy-planeFigure 3: End position distribution using 3 cameras.3.1 Defect simulationThree di�erent failure types of a single camera in aset of three have been simulated. The �rst is that boththe target and the manipulator have always the sameposition. In this situation no residual information from4



this camera is obtained but the target is reached (seeFig. 4(a)).The second failure is that target and manipulatorhave always the same but di�erent positions. Theresidual is always the same and non-zero but the targetis reached, too (see Fig. 4(b)).In the last case both the target and manipulatorposition are very noisy. The problem is that the (veryimportant) test moves are detected with heavy noise,too. The worse they are detected, the worse the posi-tioning is (see Fig. 4(c)). If the test moves are detectedwithout or with less noise (e.g. by a repetition of everymove and calculating the mean) the result is improved(the target is reached after 16 iterations, see Fig. 4(d)).
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(d)Figure 4: Di�erent failure situations.In order to increase the robustness of the systemin the case of a camera defect, these results suggestthe use of redundant cameras which are fairly easy toincorporate in our approach.4 ExperimentIn this section we demonstrate the quality of ourapproach in a real experiment. The manipulator ismounted on a 6 DOF Puma 200 using RCCL [7] asthe control language. According to the simulation re-sults the real experiment is shown only for the betterperforming Kalman-�lter method.The cameras are in approximately 1.5m distance.The target is a hole with radius 8mm in a wooden

toy cube. The manipulator carries another cube witha peg which has to be inserted. The center of thehole is at (�30; 340; 163)mm and the manipulator isat (150; 250; 0)mm. Four test series containing 64 runshave been performed using a combined terminationcriterion d2 = 2p and d3 = 1mm.Before running a test both the target and the ma-nipulator point to be tracked are marked by the userin each image. The tracking is performed using a tem-plate matching. Due to the selection procedure andthe di�erent perspectives of each camera the templatecenters are not the projection of the same point in 3Dspace. d[mm]Criterion without with new tests2p 3.6 2.05p 3.7 0.63mm 3.6 0.85mm 3.7 0.65p/5mm 4.1 0.9Table 3: Simulation of endposition residual using newtest moves after 9 iterations.
series d ni1 2.5 122 2.5 113 2.5 94 3.0 9mean 2.6 10Table 4: Mean realend position resid-ual and iterations.
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Figure 5: End point distribution in real experiment.Each ellipse around the mean value is equivalent tothe distance standard deviation of a test series.For security reasons a point above the selected tar-get describes the desired target position. For our setupthis relative correction vector is �c = (0; 0;�50)mm.This relative distance is projected onto each image us-ing the parallel-camera model in eq. (4). The six pa-rameters are calculated based on the measured pro-jection of the test moves. This induces another errorsource because the parallel projection (as the equiva-lent image Jacobian) is only a good approximation ina small area around the measured point. It is shownin Tab. 3 that only one additional set of test moves5



near the desired target reduces this error.Despite these errors (noise, parallel projection,manual target selection) the results shown in Tab. 4for the mean target residual distance d and the meaniteration number ni are satisfying. The hole wasfound in all runs and the mean distance is approx-imately 2.6mm from the center of the hole. Fig. 5shows the corresponding distribution of end positionsof all 64 runs. With the achieved accuracy the pegwas inserted successfully simply by moving downwardwith a force-guarded motion.The last series of images in Fig. 6 demonstrates theability of our approach to fuse several arbitrary po-sitioned camera views even if some images have poorquality due to high lens distortion (Fig. 6(c)) or blur(Fig. 6(f)).
(a) (b)
(c) (d)
(e) (f)Figure 6: End positions in six arbitrary views eachshowing the projected trajectory.5 ConclusionsThis work presented an uncalibrated visual manip-ulator control using redundant cameras. A parallel-camera model is used to calculate a correction. In-stead of exploiting the Jacobian directly a linear com-bination of three linear independent test movements
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