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Abstract

We describe a method for 3D visual manipulator
control using a redundant camera system without ez-
plicit external or internal calibration. Under the as-
sumption of a simple linear camera model a fusion
equation is derived for which only three parameters
have to be estimated regardless the number of cameras.
In simulations as well as in real experiments the fea-
sibility of our approach for a 3D positioning task of
a siz degree of freedom (DOF) Puma 200 to a tar-
get is demonstrated. It is shown that using redundant
views increases positioning accuracy and fault toler-
ance. The achieved accuracy is sufficient to perform
an additional insertion task.

1 Introduction

Using a robot manipulator for an assembly task re-
quires the ability to grasp and insert different parts.
The common approach is to solve the 3D relationship
between the robot and the environment based upon
a 2D vision measurements. That in turn requires the
internal and external camera parameters to be cali-
brated which is difficult and cumbersome.

In the last years the idea of uncalibrated visual guid-
ance found more and more attention. Skaar et al. [9]
described camera space manipulation while Yoshimi
and Allen [11] demonstrated 2D alignment of an eye-
on-hand manipulator using rotational epipolar motion.

Both Hager [4] and Hollinghurst/Cipolla [2] exploits
a nearly uncalibrated stereo camera setup. Also Hager
introduced the ideas of projective invariance into the
field of uncalibrated visual control [3].

Recent work shows the feasibility using the well
known image Jacobian. In [6] the usefulness of adap-
tive differential feedback employing a visual motor Ja-
cobian was shown. In [10] the idea of exploratory
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movements for dynamic image Jacobian estimation
was demonstrated.

This work is a different way of uncalibrated hand-
eye coordination. It is based upon a simple parallel
(and therefore linear) camera model and uses several
redundant arbitrary camera views in a sensor fusion
approach. We show simulations and real experiments
demonstrating the capability of a redundant uncali-
brated camera system in order to increase position ac-
curacy and in case of different camera failures.

2 Visual control

The key idea of our visual control is that for a Carte-
sian motion the image Jacobian is equivalent to the
assumption of a parallel-camera model. Defining an
image-based position-error and exploiting the parallel
projection leads to a simple linear equation for a result-
ing Cartesian correction movement called the fusion
equation. The parameters in turn are estimated with
two different sensor-fusion methods — a least-square
solution (LS) and in comparison a Kalman-filter ap-
proach (KF).

2.1 Model

Many researchers in the field of visual control (ei-
ther with uncalibrated cameras or not) exploit the so
called image Jacobian J introduced by Weiss e.al. [8]
in order to relate a (discrete and small) displace-
movement Am (either in joint- or task-space) with
a 2 dimensional image-feature displacement A f:

Af=J Am (1)

The problem is to invert the Jacobian, using a
(pseudo) inversion in order to calculate the displace-
ment Am, corresponding to an image displacement
Afe defined by an appropriate feature-space error
function.



We chose a different approach of how to relate
a feature-space error-function with a corresponding
task-space displacement. This approach is somewhat
related to the image Jacobian. We use a quite rough
approximation of the image-forming process — the par-
allel projection.

The parallel projection P’ (see [5]) of a 3D
world point m in homogeneous coordinates m¥ =
(mz,my,m,,1)T = (m,1)T onto the jt" camera plane
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P’ in eq. (2) is nothing but the first two rows of
the corresponding homogeneous transformation ¢ T,
from the world to the j* camera coordinate system.

The simplest error function for a linear point-to-
point movement of a manipulator at m to a goal g
is to define an appropriate error-displacement vector
Ad,. which has to become (nearly) zero.

Ade=m—g —0 (3)

For the corresponding displacement feature A_fg in
the j' camera using eq. (2) follows:

AfL = f-
= Pm"-P’.g" (4)
= R-m+t/ -R -g-t/
= R’ Ad.

Eq. (4) shows additionally that the parallel projec-
tion R’ of a displacement is equivalent to the image
Jacobian in eq. (1).

Given a set of three Cartesian linear indepen-
dent displacement vectors' {di,d>,d3} the error-
displacement vector d. can be calculated by their lin-
ear combination:

3
d. = Z &id; (5)
i1

Under the assumption of a parallel projection R’
the projected version of eq. (5) is:

fi = . RJ“ -d, R . 2323:1 &id, (©)
= Zi:1 &R - d; Zi:1 fsz
Hence we can define the error-function as the pro-

jection of the corresponding Cartesian displacement

1Because in the following only displacements are considered
the A is omitted.

d.. Calculating an appropriate set of scalars &1, &5, &3
in the image space and inserting them into eq. (5)
leads directly to the desired displacement-vector in the
Cartesian 3D space!

Unfortunately eq. (6) is under-determined. There-
fore at least two cameras are necessary yielding an
over-determined system. But on the other hand this
is the way how to integrate several other camera views
as well simply by solving the following over-determined
system:
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Eq. (8) plays the central role in our approach and
is called the fusion equation. Only three parameters
have to be estimated independently of the number of
cameras and only three initial test moves are neces-
sary (instead of several exploratory movements when
performing a repeated Jacobian acquiring as in [10]).

2.2 Model solution

In the present work we used two different meth-
ods — the least-square solution and a Kalman-filter ap-
proach. The first is much simpler than the latter but
the Kalman filter is known as an optimal estimator
in the presence of Gaussian noise. In order to choose
the appropriate method both solutions were tested in
simulations as well as in real experiments.

Assuming that H is full rank (i.e rank(H) =
min(2j,3) = 3,7 > 2) a least-square solution is possi-
ble which gives a value for £ that minimises the norm
|2 — H -¢€]:

£min: (HTH)ilHT'z (9)

When using a linear discrete Kalman filter the
plant and measurement equation, assuming zero-
mean, white-noise v and w are:

Ek+1) E(k) + v, v~ N(0,Q)
z(k) H(k)-&k)+w, w~N(OR)
(10)

The incremental prediction and update solutions
can be found in [1]. In our approach the whole sys-
tem dynamic is included in the system noise v. The



problem with the Kalman-filter solution is that there
is no a priori information about “good” values for the
covariance matrices Q and R. Most of the time these
values are empirically determined. Only some qual-
itative considerations can be made about the choice
of R. The smaller the elements of R are, the more
the new measurements are trusted. For R — 0 the
Kalman filter degenerates to a least-square solution.
On the other hand larger elements of R should be se-
lected, the higher the expected measurement noise is —
the old measurements are trusted more and the system
will tend to converge slowly.

However, the choice of Q is less problematic in our
approach as the experiments have shown. We have
chosen pure diagonal matrices for Q, R and the ini-
tial state covariance P g|g) with the following diagonal
elements:

T = 0-1,05 = 0.01,0% = 5.0 (11)

The initial state-estimate is set to & g9y = (1,1, nT.

The algorithm for a point-to-point movement (in
order to reach a docking-position, for example) is the
following;:

1. Select a target, make 3 Cartesian test moves and
detect their image d] in each camera j

2. Calculate a new £ and a down-scaled correction
movement d., = s-d.,0 < s <1

3. Evaluate a termination criterion: if the target is
reached — stop, else proceed with step 2

The explicit down-scaling of every correction move-
ment in step 2 is done for security reasons.

3 Simulations

In the simulations the least-square solution is com-
pared with the Kalman filter in order to chose the
better one. Additionally, the system behaviour us-
ing redundant cameras and its robustness in potential
failure situations is investigated. Another benefit of
simulations is that in short time numerous iterations
without supervising are obtainable (e.g. for the exam-
ples below several thousand runs were evaluated).

The task is to position the manipulator tool center
point at a target position. The images of these points
are generated using a pin hole camera model for each
view. However, for the algorithm the projected points
are used only and not the information of the simulated
camera. This is still an idealisation since in reality
there is no guarantee that the measured points in the

images are the projection of the same 3D point. At
least they should be closed neighbours.

Each measurement of the target- and manipulator-
position is overlayed with 2 dimensional Gaussian
noise with a variance of 5 in horizontal and vertical
direction each.

In the simulation setup each test move has a 50mm
length aligned with the robots coordinate system. The
distance to be moved is about 375mm. Each camera
has a distance of approximately 2m from the scene.
The used pin-hole cameras have a uniform scaling of
70 pixel/mm and a focal length of 20mm.

In order to show that
even under the assump- Sart
tion of a parallel pro-
jection our iterative ap-
proach still holds, the
parallel camera model is
not used to simulate the
feature generation. Fig.
1 shows a performed
target-approach.  The
first three moves are the
initial test moves. At
present three different
termination criteria have been used:

measured point

noisy target
>eal point

\real target coordinate

Figure 1: Simulated point-
to-point move under noise.

e Maximum number of iterations I,,,., = 200

e Two dimensional minimal distance d»; the ap-
proach is stopped if in every image the projection
of the moved distance is less than dy pixel

e Three dimensional minimal distance dsz; the ap-
proach is stopped if the last three real motions
have been less than d3 mm each.

The experiments were run 1000 times each with two
cameras one observing the zz-plane and the other one
the yz-plane. Tab. 1 shows for both the least-square
solution and the Kalman filter the results for differ-
ent termination criteria. The number of runs n, with
successful termination due to the criterion, the corre-
sponding mean number of iterations n; and the mean
3D residual distance d after termination are displayed.
For those runs which were terminated by exceeding the
iteration limit the max-iteration residual d,, is shown,
too.

For both termination criteria dy and ds the (triv-
ial) observation is that the weaker the criterion, the
more it fires. However, weakening the criteria does
not increase the mean target-distance d significantly.
The best d is achieved with the LS and d3 = 3mm
but for nearly every simulation the KF gives the min-
imal number of iterations. In order to have a criterion



Criterion
d2 d3 d2 or d3
% | Bo| 3wm] B | Bo OF bum
Ny 371 1000 166 909 1000
LS| n; 97 34 106 57 29
d/d, || 7.2/85| 7.1|5.5/8.4|6.8/10.1 7.2
nr 380 | 1000 573 1000 1000
KF| n; 97 32 92 28 22
d/dn,||64/7.5| 6.9|6.0/8.3 6.6 6.9

Table 1: Comparing the quality of LS and KF for dif-
ferent termination criteria.

that (nearly) always fires and yields a (nearly) minimal
number of iterations and a (nearly) minimal residual
distance we suggest a combined criterion, shown in the
last column of Tab. 1. Although it does not produce
the best residual distance it provides the minimal num-
ber of iterations. Therefore this criterion was used in
the real experiment described below.
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Figure 2: End position distribution using 2 cameras.

An example of the end-positions distribution using
a Kalman filter with the combined criterion 5p or 5mm
is shown in Fig. 2. The target position has been trans-
formed into the origin. Each ellipse is equivalent to the
standard deviation calculated from the covariance of
the appropriate distribution. The ellipse is centered
at the distributions mean value and oriented along
the principal axis of the distributions covariance. It
can be seen in Fig. 2(c) and (d) that the distribution
around the z-Axis is more compact than the distribu-
tion around the x- and y-Axis. This is due to the fact
that in this simulation the z-Axis had been observed

by both cameras.

Therefore we should expect better results (i.e. less
iterations, less d and more compact distributions) if
a redundant third camera is introduced observing the
xy-plane. This is shown in Fig. 3 using the same com-
bined termination criterion. The densier distribution
is obvious — the deviation ellipses are nearly circles and
became smaller. Comparing the results for n; and d
for 1000 runs (as shown in Tab. 2) it can be seen that
both the mean residual distance and the mean num-
ber of iterations decreases for ds and the combined
criterion.

Criterion
d> ds dy or d3
2p | 5p [ 3mm [ bmm |[ 5p OF Hmm
2 Cameras || 161 32| 138 | 28 22
n; |3 Cameras || 196 84| 78| 19 19
Diff[%] +22 | +163| -43| -32 -14
2 Cameras || 7.1 69| 7.0| 6.6 6.9
d[mm] |3 Cameras || 6.0 54| 5.0 5.6 5.7
Diff[%] -15 =22 -29| -15 -17

Table 2: Comparing n; and d for a KF solution be-
tween 2 and 3 Cameras.
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Figure 3: End position distribution using 3 cameras.

3.1 Defect simulation

Three different failure types of a single camera in a
set of three have been simulated. The first is that both
the target and the manipulator have always the same
position. In this situation no residual information from



this camera is obtained but the target is reached (see
Fig. 4(a)).

The second failure is that target and manipulator
have always the same but different positions. The
residual is always the same and non-zero but the target
is reached, too (see Fig. 4(b)).

In the last case both the target and manipulator
position are very noisy. The problem is that the (very
important) test moves are detected with heavy noise,
too. The worse they are detected, the worse the posi-
tioning is (see Fig. 4(c)). If the test moves are detected
without or with less noise (e.g. by a repetition of every
move and calculating the mean) the result is improved
(the target is reached after 16 iterations, see Fig. 4(d)).

\
edoosi st measured target
measured positions .
mmnm
redl target \
(a) (b)
reached end position

(c) (d)

Figure 4: Different failure situations.

In order to increase the robustness of the system
in the case of a camera defect, these results suggest
the use of redundant cameras which are fairly easy to
incorporate in our approach.

4 Experiment

In this section we demonstrate the quality of our
approach in a real experiment. The manipulator is
mounted on a 6 DOF Puma 200 using RCCL [7] as
the control language. According to the simulation re-
sults the real experiment is shown only for the better
performing Kalman-filter method.

The cameras are in approximately 1.5m distance.
The target is a hole with radius 8mm in a wooden

toy cube. The manipulator carries another cube with
a peg which has to be inserted. The center of the
hole is at (—30,340,163)mm and the manipulator is
at (150,250, 0)mm. Four test series containing 64 runs
have been performed using a combined termination
criterion dy = 2p and d3 = 1mm.

Before running a test both the target and the ma-
nipulator point to be tracked are marked by the user
in each image. The tracking is performed using a tem-
plate matching. Due to the selection procedure and
the different perspectives of each camera the template
centers are not the projection of the same point in 3D
space.

d[mm
Criterion | without w[ith]new tests series | d | n;
2p 3.6 2.0 1 25|12
5p 3.7 0.6 2 2511
3mm 3.6 0.8 3 |25(9
S5mm 3.7 0.6 4 (3.0]9
5p/5mm 4.1 0.9 mean | 2.6 [ 10

Table 4: Mean real
end position resid-
ual and iterations.

Table 3: Simulation of end
position residual using new
test moves after 9 iterations.
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Figure 5: End point distribution in real experiment.
Each ellipse around the mean value is equivalent to
the distance standard deviation of a test series.

For security reasons a point above the selected tar-
get describes the desired target position. For our setup
this relative correction vector is Ae = (0,0, —50)mm.
This relative distance is projected onto each image us-
ing the parallel-camera model in eq. (4). The six pa-
rameters are calculated based on the measured pro-
jection of the test moves. This induces another error
source because the parallel projection (as the equiva-
lent image Jacobian) is only a good approximation in
a small area around the measured point. It is shown
in Tab. 3 that only one additional set of test moves



near the desired target reduces this error.

Despite these errors (noise, parallel projection,
manual target selection) the results shown in Tab. 4
for the mean target residual distance d and the mean
iteration number n; are satisfying. The hole was
found in all runs and the mean distance is approx-
imately 2.6mm from the center of the hole. Fig. 5
shows the corresponding distribution of end positions
of all 64 runs. With the achieved accuracy the peg
was inserted successfully simply by moving downward
with a force-guarded motion.

The last series of images in Fig. 6 demonstrates the
ability of our approach to fuse several arbitrary po-
sitioned camera views even if some images have poor
quality due to high lens distortion (Fig. 6(c)) or blur

(Fig. 6(f)).

Figure 6: End positions in six arbitrary views each
showing the projected trajectory.

5 Conclusions

This work presented an uncalibrated visual manip-
ulator control using redundant cameras. A parallel-
camera model is used to calculate a correction. In-
stead of exploiting the Jacobian directly a linear com-
bination of three linear independent test movements

is performed. Independently of the number of cam-
eras only three parameters have to be estimated using
sensor-fusion methods. The quality of this approach
is shown in simulations and real experiments.

The next step in this framework is to incorporate
an automatic motion detection and tracking ability.
Another point is to apply the known robot motion
in order to estimate the pin-hole camera parameters
without any further knowledge. Using this model an
estimate of the epipolar geometry might be usefull in
order to detect a target which has been selected in
only one view. Controlling the orientation as well will
be examined using additional track points on both the
target and manipulator.

More work will be on parallelising — each view could
be processed on a single computer and the result is
fused together with the Kalman filter to reduce the
overall computation time.
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