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Abstract. We describe a method for 3D visual manipulator control using-
dundant camera system without explicit external or intecaéibration. Under the
assumption of a simple linear camera model, a fusion equétiderived for which
only three parameters have to be estimated, regardles® ofuimber of cameras.
Distributed sensor-units provide the necessary measunemehich are fused to-
gether in a Kalman filter. In simulations, as well as in regleiments, the feasi-
bility of our approach for a 3D positioning task of a six degd freedom (DOF)
Puma 200 to a target is demonstrated. It is shown that usthgndant views in-
creases positioning accuracy and fault tolerance. Theaetiaccuracy is sufficient
to perform an insertion task.
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1 Introduction

Using a robot manipulator for an assembly task requiresltiigyeto grasp different
parts. The common approach is to solve the 3D relationshiwedsn the robot
and the environment based upon 2D vision measurements. iff hatn requires
the internal and external camera parameters to be calibvaltéch is difficult and
cumbersome.

Recently, the idea of uncalibrated visual guidance haac#d more attention.
(Skaaret al., 1987) described camera space manipulation while (YoshimiAllen,
1996) demonstrated 2D alignment of an eye-on-hand manigulging rotational
epipolar motion. Both (Hageat al., 1995) and (Cipolla and Hollinghurst, 1994)
exploit a nearly uncalibrated stereo camera setup. Reaenktshows the feasibility
using the well known image Jacobian. In (Jagersetna., 1997) the usefulness
of adaptive differential feedback employing a visual malacobian was shown.
In (Sutantoet al., 1997) the idea of exploratory movements for dynamic image
Jacobian estimation was demonstrated.

This work describes a different way of uncalibrated hand-egordination. It
is based upon several redundant arbitrary camera viewstafedsin (Brooks and



lyengar, 1996) redundancy increases the sensor relighgliticiency and perfor-
mance. The problem is how to fuse the redundant multi-seresaltings properly.
We deal with this problem by assigning each camera to a ss®yisor-unit which
provides the specific measurement necessary to guide thigputator towards a
target. Using a parallel (and therefore linear) camera migdels to a simple lin-
ear fusion-equation. We show simulations and real experisn@emonstrating the
capability of a redundant uncalibrated camera system ieraalincrease position
accuracy and in case of different camera failures.

2 Distributed sensing and fusion

The key idea of our visual control is that for a Cartesian wothe image Jacobian is
equivalent to the assumption of a parallel-camera modefinibg an image-based
position error inj different views and exploiting the parallel projection canar-
model leads to a simple linear equation for a resulting Gatecorrection move-
ment — thefusion equation. The parameters in turn are estimated with a linear
Kalman filter (KF) using measurement obtained by distribgensors.

2.1 Fusion equation

Many researchers in the field of visual control (either witfcalibrated cameras or
not) exploit the so calletmage Jacobian .J introduced by (Weisst al., Oct. 1987)
in order to relate a (discrete and small) displace-movemehteither in joint- or
task-space) with a 2 dimensional image-feature displanethg:

Af=J Ad 1)

The problem is to invert the Jacobian, using a (pseudo) &welin order to cal-
culate the displacementd,, corresponding to an image displacemanf, defined
by an appropriate feature-space error function.

We chose a different approach of how to relate a featureespaor function with
a corresponding task-space displacement. This approaomiswhat related to the
image Jacobian. We use a quite rough approximation of thgeafi@rming process
— the parallel projection.

The parallel projectiol?? (see (Harris, 1984)) of a 3D world point in homoge-
neous coordinatesn® = (m,,m,, m.,1)T = (m,1)T onto thej'" camera plane
is

Fio= Mot Ty )
T"] ’I“] T"] t]
21 . 22 23 2 (2)
= (R] t]) . m'u)
= Pl.mv

P’ in eq. (2) is simply the first two rows of the corresponding lg@neous
transformatiorf’ T',, from the world to thej*" camera coordinate system.



The simplest error function for a linear point-to-point neawent of a manipulator
atm to a goalg is to define an appropriate error-displacement vectdy which
has to become (nearly) zero.

Ade =m—g—0 3)

For the corresponding displacement featnrﬁg in the j** camera using eq. (2)
follows:
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Eq. (4) shows additionally that the parallel projectid of a displacement is
equivalent to the image Jacobian in eq. (1).

Given a set of three Cartesian linear independentdisplanEmctoré{dl ,do,ds}
the error-displacement vectdg, can be calculated by their linear combination:

3
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Under the assumption of a parallel projectiBr the projected version of eq. (5)
is:
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Hence we can define the error function as the projection ofctireesponding
Cartesian displacemedt. Calculating an appropriate set of scalérsés, &3 in the
image space and inserting them into eq. (5) leads directhetdesired displacement-
vector in the Cartesian 3D space.

Unfortunately eq. (6) is under-determined. Therefore astéwo views are nec-
essary yielding an over-determined system. Assuming andaiit multi-camera
system withj different sensor-units, all views can be integrated sintpglysolving
the following over-determined system:
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1Because in the following only displacements are considéred is omitted.



Eq. (7) plays the central role in our approach and is calledfulsion equation.
Only three parameters have to be estimated independeritig oumber of cameras
and only three initial test movements are necessary (idsitéaeveral exploratory
movements when performing a repeated Jacobian acquirifg &utanto et al.,
1997)).

2.2 Didtributed sensing units

From each camera only the position-residjialbetween the goal and the manipu-
lator is necessary in Eg. (7). Therefore we can assign eaunereato a sensor-unit
which is able to calculate its Iocjlg' and send it back on request to a central fusion-
unit which in turn solve the parameters of the fusion-edurati

2.3 Solving the fusion equation

We use a linear discrete Kalman filter to solve the paramefdes). (7). Assuming
zero-mean, white-noise andw, the plant and measurement equation are:

Ek+1) = &(k)+v, v~N(0,Q) (8)
z(k) H(k)-&(k) +w, w~N(0,R)

The incremental prediction and update solutions can bedau(Bar-Shalom and
Li, 1993). In our approach the whole system dynamic is inetlith the system noise
v. We have chosen pure diagonal matrices@oR and the initial state covariance
P 9|0y With the diagonal elementsfg(om) = 01,03 = 0.01 andoy = 5.0. The
initial state-estimate is set ) = (1,1, nT.

For a point-to-point movement to a selected target the maaipr first makes
three Cartesian test movements. Each sensor-unit defeitsrhaged] and send
them back to the fusion-unit. With their corresponding fiosiresiduals an initial
down-scaled correction movemeaht = s - d.,0 < s < 1is calculated. After each
movement a neVf is estimated by asking each sensor-unit for the actualiposit
residual. This is iterated as long as the target is not rehche

3 Simulations

In the simulations the system-behaviour using redundanécas and its robustness
in potential failure situations is investigated. The taskoi position the manipulator
tool center point at a target position. The images of theg@pare generated using
a pin hole camera model for each view. However, for the atgorithe projected
points are used only and not the information of the simulagdera. This is still
an idealisation since in reality there is no guarantee thetteasured points in the
images are the projection of the same 3D point. At least tteylsl be closed
neighbours.

Each measurement of the target- and manipulator-posisicovérlayed with 2
dimensional Gaussian noise with a variance of 5 in both bate and vertical



direction. In the simulation setup each test move has a 5Cengtt aligned with
the robots coordinate system. The distance to be moved st @&&mm. Each
camera has a distance of approximately 2m from the scene. u3ée pin-hole
cameras have a uniform scaling of 70 pixel/mm and a focaltteaf20mm.

In order to show that even under the assumption of a paraigegtion our it-
erative approach still holds, the parallel camera modebisused to simulate the
feature generation. At present three different termimatigteria have been used:

e Maximum number of iterations,,,, = 200.

e Two dimensional minimal distanag,; the approach is stopped if in every
image the projection of the moved distance is less thapixel.

e Three dimensional minimal distandg; the approach is stopped if the last
three real motions have been less thiamm each.

The experiments were run 1000 times each with two cameraslserving the
zz-plane and the other one the-plane. Tab. 1 shows the results for different
termination criteria. The number of rums with successful termination due to the
criterion, the corresponding mean number of iteratiopand the mean 3D residual
distancel after termination are displayed. For those runs which wemainated by
exceeding the iteration limit the max-iteration residdalis shown, too.

Criterion
do ds ds ords
2p | 5p 3mm | 5mm 5p or 5nm
I 380 [1000 573]1000 1000
KF| n; 97 32 92| 28 22
d/d. ||6.4/7.5 6.9/6.0/8.3] 6.6 6.9

Table 1 Comparing different termination criteria.

For both termination criterid, andds the (trivial) observation is that the weaker
the criterion, the more it fires. However, weakening theecidt does not increase
the mean target-distaneesignificantly. In order to have a criterion that (nearly)
always fires and yields a (nearly) minimal number of itenasiand a (nearly) min-
imal residual distance we suggest a combined criterionwsha the last column
of Tab. 1. Although it does not produce the best residuabdist it provides the
minimal number of iterations.

An example of the end-positions distribution using a Kalrfitser with the com-
bined criterion 5p or 5mm is shown in Fig. 1. The target posithas been trans-
formed into the origin. Each ellipse is equivalent to thend&rd deviation calcu-
lated from the covariance of the appropriate distributidrhe ellipse is centered
at the mean value of the distribution and is oriented aloegpttincipal axis of the
covariance of the distribution. It can be seen in Fig. 1(d) @) that the distribution
around the z-axis is more compact than the distribution raddhe x- and y-axis.
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Figure 1 End position distribution using 2 cameras.

This is due to the fact that in this simulation the z-axis hadrbobserved by both
cameras.

Therefore we should expect better results (i.e. less itarat lessd and more
compact distributions) if a redundant third camera is idtroed observing they-
plane. This is shown in Fig. 2 using the same combined teitioimariterion. The
denser distribution is obvious — the deviation ellipsesrearly circles and have
become smaller. Comparing the results fgrandd for 1000 runs (as shown in
Tab. 2) it can be seen that both the mean residual distancéhamdean number of
iterations decreases fdg and the combined criterion.

Criterion
do d3 d> or d3
2o | 5 3mm|5mm 5p Or 5nm
2 Camerag 161| 32|138| 28 22
n; |3 Camerag| 196 84| 78| 19 19
Diff[ «] +22|+163| -43|-32 -14
2 Cameras| 7.1| 6.9] 7.0| 6.6 6.9
d[=m] | 3 Cameras| 6.0| 5.4| 5.0| 5.6 5.7
Diff[ «] -15| -22|-29|-15 -17

Table 2 Comparing; andd for a KF solution between 2 and 3 Cameras.

3.1 Defect smulation

Three different failure types of a single camera in a set&dlhave been simulated.
The first is that both the target and the manipulator haveyswlae same position.
In this situation no residual information from this camesabtained but the target
is reached (see Fig. 3(a)). The second failure is that tangétmanipulator have
always the same but different positions. The residual imgsithe same and non-
zero but the target is reached, too (see Fig. 3(b)). In theckse both the target
and manipulator position are very noisy. The problem is that(very important)
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Figure 2 End position distribution using 3 cameras.

test movements are detected with heavy noise, too. The woegeare detected, the
worse the positioning is (see Fig. 3(c)). If the test movetmare detected without
or with less noise (e.g. by a repetition of every move andutating the mean) the
result is improved (the target is reached after 16 iteratieee Fig. 3(d)). In order
to increase the robustness of the system in the case of aaaefect, these results
suggest the use of redundant cameras which are fairly eaisxcdoporate in our
approach.
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Figure 3 Different failure situations.

4 Experiment

In this section we demonstrate the quality of our approach neal experiment.
The manipulator is a 6 DOF Puma 200 using RCCL (Lloyd, 198&hascontrol
language.

The cameras are in approximately 1.5m distance. The tasgehole with radius
8mm in a wooden toy cube. The manipulator carries anothez with a peg which
has to be inserted. The center of the hole i6-&0, 340, 163)mm and the manipu-
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Figure 4 End points in reality.

lator is at(150, 250, 0)mm. Four test series containing 64 runs have been performed
using a combined termination criterialh = 2p andd; = 1mm.

Before running a test the fusion-unit requests an actuad@rieom each sensor-
unit. The target and the manipulator point to be tracked aaeked by the user
resulting in a template for both in each image. The trackisglf is performed by
each sensor-unit exploiting simple template matching. athenew control-cycle
the fusion-unit requests all the appropriate positionegals from each sensor-unit.
Due to the selection procedure and the different perspecidf each camera the
template centers are not the projection of the same poirDisfface.

For security reasons a point above the selected targetibesc¢he desired target
position. For our setup this relative correction vectais = (0, 0, —50)mm. This
relative distance is projected onto each image using thallpecamera model in
eq. (4). The six parameters are calculated based on the medagrojection of
the test movements. Despite these errors (noise, paratiglgtion, manual target
selection) the results shown in Tab. 3 for the mean targéduwatdistancel and
the mean iteration numbey; are satisfying. The hole was found in all runs and the
mean distance is approximately 2.6mm from the center of the lrig. 4 shows the
corresponding distribution of end positions of all 64 ruisch ellipse around the
mean value is equivalent to the distance standard deviafianest series. With the
achieved accuracy the peg was inserted successfully sinyphgoving downward
with a force-guarded motion.

The last series of images in Fig. 5 demonstrates the abfliiypapproach to fuse
several arbitrary positioned camera views even if some @sdtpve poor quality
due to high lens distortion (Fig. 5(c)) or blur (Fig. 5(f)).

5 Conclusions

This work presented an uncalibrated visual manipulatottrobmusing redundant
cameras. A parallel-camera model is used to calculate a@&aton. Instead of
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Figure 5 End positions and projected trajectory in six asbjt views.

exploiting the Jacobian directly, a linear combinationtoke linearly independent
test movements is performed. Independently of the numbeawferas only three
parameters have to be estimated. Using a redundant caystearsand exploiting

distributed sensing robustness and performance are sexlearlhe results of the
distributed sensing-process are fused together with a &mlfiter. The quality of

this approach is shown in simulations and real experiments.

The next step in this framework is to incorporate an autoomattion detection
and tracking ability. Another point is to apply the known oblmnotion in order to
estimate the pin-hole camera parameters without any fukimawvledge. Using this
model, an estimate of the epipolar geometry might be usefoitder to detect a tar-
get which has been selected in only one view. Orientatiotrobwill be examined
using additional track points on both the target and maaioul

More work will go into flexibilisation — instead of using a fideset of a priori
known sensor-units a dynamically self-configuring sensut-network could be
possible, using for instance a Contract Net Protocol (sedtf$ 1981)). Also the
autonomy of each sensor-unit could be increased exploitiegdea of a decen-
tralised Kalman filter as in (Brown et al., 1992).
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