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Abstract. This paper is devoted to the “Discovery of Slowness.” The
archetypical perversely awful algorithm bogo-sort, which is sometimes
referred to as Monkey-sort, is analyzed with elementary methods. More-
over, practical experiments are performed.

1 Introduction

To our knowledge, the analysis of perversely awful algorithms can be tracked
back at least to the seminal paper on pessimal algorithm design in 1984 [2]. But
what’s a perversely awful algorithm? In the “The New Hacker’s Dictionary” [7]
one finds the following entry:

bogo-sort: /boh‘goh-sort’/ /n./ (var. ‘stupid-sort’) The archetypical perversely
awful algorithm (as opposed to ➞ bubble sort, which is merely the generic
*bad* algorithm). Bogo-sort is equivalent to repeatedly throwing a deck of
cards in the air, picking them up at random, and then testing whether they
are in order. It serves as a sort of canonical example of awfulness. Looking at a
program and seeing a dumb algorithm, one might say ”Oh, I see, this program
uses bogo-sort.” Compare ➞ bogus, ➞ brute force, ➞ Lasherism.

Among other solutions, the formerly mentioned work contains a remarkably slow
sorting algorithm named slowsort achieving running time Ω

(
nlog n/(2+ǫ)

)
even

in the best case. But the running time, still being sub-exponential, does not
improve (i.e., increase) in the average case, and not even in the worst case. On
the contrary, the analysis of bogo-sort carried out here shows that this algo-
rithm, while having best-case expected running time as low as O(n), achieves
an asymptotic expected running time as high as Ω(n · n!) already in the average
case. The pseudo code of bogo-sort reads as follows:



Algorithm 1 Bogo-sort

1: Input array a[1 . . . n]
2: while a[1 . . . n] is not sorted do

3: randomly permute a[1 . . . n]
4: end while

The test whether the array is sorted as well as the permutation of the array
have to be programmed with some care:

1: procedure sorted: {returns
true if the array is sorted and
false otherwise}

2: for i = 1 to n − 1 do
3: if a[i] > a[i + 1] then
4: return false
5: end if
6: end for
7: return true
8: end procedure

1: procedure randomly permute:
{permutes the array}

2: for i = 1 to n − 1 do
3: j := rand[i . . . n]
4: swap a[i] and a[j]
5: end for
6: end procedure

The second algorithm is found, e.g., in [5, p.139]. Hence the random permu-
tation is done quickly by a single loop, where rand gives a random value in the
specified range. And the test for sortedness is carried out from left and right.

In this work we present a detailed analysis, including the exact determination
of the expected number of comparisons and swaps in the best, worst and average
case. Although there are some subtleties in the analysis, our proofs require only a
basic knowledge of probability and can be readily understood by non-specialists.
This makes the analysis well-suited to be included as motivating example in
courses on randomized algorithms. Admittedly, this example does not motivate
coursework on efficient randomized algorithms. But the techniques used in our
analysis cover a wide range of mathematical tools as contained in textbooks such
as [4].

We will analyze the expected running time for bogo-sort under the usual
assumption that we are given an array x = x1x2 . . . xn containing a permutation
of the set of numbers {1, 2, . . . , n}. In a more abstract fashion, we are given a
list containing all elements of a finite set S with |S| = n and an irreflexive,
transitive and antisymmetric relation ⊏. To analyze the running time of the
algorithm, which is a comparison-based sorting algorithm, we follow the usual
convention of counting on one hand the number of comparisons, and on the other
hand the number of swaps. An immediate observation is that the algorithm isn’t
guaranteed to terminate at all. However, as we will prove that the expectation
of the running time T is finite, we see by Markov’s inequalityP[T ≥ t] ≤

E[T ]

t
, for t > 0,

that the probability of this event equals 0. There are essentially two different
initial configurations: Either the list x is initially sorted, or it is not sorted. We



have to make this distinction as the algorithm is smart enough to detect if the
given list is initially sorted, and has much better running time in this case. This
nice built-in feature also makes the running time analysis in this case very easy:
The number of total comparisons equals n − 1, and the total number of swaps
equals zero, since the while-loop is never entered.

We come to the case where the array is not initially sorted. Note that the
first shuffle yields a randomly ordered list, so the behavior of the algorithm does
no longer depend on the initial order; but the number of comparisons before the
first shuffle depends on the structure of the original input.

2 How long does it take to check an array for sortedness?

2.1 The basic case

We make the following important

Observation 1 If the kth element in the list is the first one which is out of order,
the algorithm makes exactly k − 1 comparisons (from left to right) to detect that
the list is out of order.

This motivates us to study the running time of the subroutine for detecting
if the list is sorted on the average:

Theorem 2. Assume x is a random permutation of {1, 2, . . . , n}, and let C
denote the random variable counting the number of comparisons carried out in
the test whether x is sorted. ThenE[C] =

n−1∑

i=1

1

i!
∼ e − 1.

Proof. For 1 ≤ k < n, let Ik be the random variable indicating that (at least)
the first k elements in x are in order. A first observation is that Ik = 1 ⇔ C ≥ k.
For on one hand, if the first k elements are in order, then at least k comparisons
are carried out before the for-loop is left. On the other hand, if the routine
makes a minimum of k comparisons, the kth comparison involves the elements xk

and xk+1, and we can deduce that x1 < x2 < · · · < xk−1 < xk.
Thus, we have also P[C ≥ k] = P[Ik]. This probability computes asP[Ik] =

(
n
k

)
· (n − k)!

n!
.

The numerator is the product of the number of possibilities to choose k first
elements to be in correct order and the number of possibilities to arrange the
remaining n−k elements at the end of the array, and the denominator is just the
total number of arrays of length n. Reducing this fraction, we obtain P[Ik] = 1

k! .
As the range of C is nonnegative, we obtain for the expected value of C:E[C] =

∑

k>0

P[C ≥ k] =
∑

k>0

P[Ik] =
n−1∑

k=1

1

k!
=

n−1∑

k=0

1

k!
−

1

0!
.



And it is a well-known fact from calculus that the last sum appearing in the
above computation is the partial Taylor series expansion for ex at x = 1. ⊓⊔

Wasn’t that marvelous? Theorem 2 tells us that we need only a constant
number of comparisons on the average to check if a large array is sorted, and
for n large enough, this number is about e − 1 ≈ 1.72. Compare to the worst
case, where we have to compare n − 1 times.

2.2 A detour: Random arrays with repeated entries

In a short digression, we explore what happens if the array is filled not with n
distinct numbers. At first glance we consider the case when n numbers in different
multiplicities are allowed. Then we have a look at the case with only two distinct
numbers, say 0 and 1. In the former case the expected number of comparisons
remains asymptotically the same as in the previous theorem, while in the latter
the expected number of comparisons jumps up dramatically.

Theorem 3. Assume x is an array chosen from {1, 2, . . . , n}n uniformly at ran-
dom, and let C denote the random variable counting the number of comparisons
carried out in the test whether x is sorted. ThenE[C] =

n−1∑

k=1

(
n − 1 + k

k

)(
1

n

)k

∼ e − 1.

Proof. The random variable C takes on a value of at least k, for 1 ≤ k ≤ n− 1,
if the algorithms detects that the array is out of order after the kth comparison.
In this case x is of the form that it starts with an increasing sequence of numbers
chosen from {1, 2, . . . , n} of length k, and the rest of the array can be filled up
arbitrarily. Thus, the form of x can be illustrated as follows:

1t12t2 . . . ntn

︸ ︷︷ ︸

k

∗ . . . ∗
︸ ︷︷ ︸

n−k

with t1 + t2 + . . . + tn = k and ti ≥ 0, for 1 ≤ i ≤ n.

Hence we have to determine how many ways an integer k can be expressed as
sum of n non-negative integers. Image that there are k pebbles lined up in a
row. Then if we put n − 1 sticks between them we will have partitioned them
into n groups of pebbles each with a non-negative amount of marbles. So we
have basically n − 1 + k spots, and we are choosing n − 1 of them to be the
sticks—this is equivalent to choosing k marbles. Therefore the number of arrays

of this form is
(

n−1+k
k

)
nn−k, and P[C ≥ k] =

(
n−1+k

k

) (
1
n

)k
, as there is a total

of nn arrays in {1, 2, . . . , n}n. But thenE[C] =

n−1∑

k=1

P[C ≥ k] =

n−1∑

k=1

(
n − 1 + k

k

)(
1

n

)k

(1)

=

(
∞∑

k=0

(
n − 1 + k

k

)

· xk

)

x= 1

n

−

(
∞∑

k=n

(
n − 1 + k

k

)

· xk

)

x= 1

n

− 1. (2)



Next let us consider both infinite sums in more detail. By elementary calculus
on generating functions we have for the first sum

∞∑

k=0

(
n − 1 + k

k

)

· xk =
1

(1 − x)n
, (3)

which in turn gives ( n
n−1 )n because x = 1

n and by juggling around with double
fractions. It remains to consider the second sum. Shifting the index n places left
gives us a more convenient form for the second sum:

∞∑

k=0

(
2n − 1 + k

k + n

)

· xk+n = xn
∞∑

k=0

(
2n − 1 + k

k + n

)

· xk (4)

Doesn’t look that bad. As the coefficients of this power series are binomial
coefficients, there might be quite a good chance that this sum can be expressed as
a (generalized) hypergeometric function. In general, a hypergeometric function
is a power series in x with r + s parameters, and it is defined as follows in terms
of rising factorial powers:

F

[
a1, a2, . . . , ar

b1, b2, . . . , bs

∣
∣
∣
∣
x

]

=
∑

k≥0

ak
1a

k
2 . . . ak

r

bk
1b

k
2 . . . bk

s

·
xk

k!
.

In order to answer this question we have to look at the ratio between consec-

utive terms—so let the notation of the series be
∑

k≥0 tk · xk

k! with t0 6= 0. If the
term ratio tk+1/tk is a rational function in k, that is, a quotient of polynomials
in k of the form

(k + a1)(k + a2) . . . (k + ar)

(k + b1)(k + b2) . . . (k + bs)

then we can use the ansatz

∑

k≥0

tk ·
xk

k!
= t0 · F

[
a1, a2, . . . , ar

b1, b2, . . . , bs

∣
∣
∣
∣
x

]

.

So let’s see whether we are lucky with our calculations. As tk =
(
2n−1+k

k+n

)
· k!,

the first term of our sum is t0 =
(
2n−1

n

)
, and the other terms have the ratios

given by

tk+1

tk
=

(2n + k)!(k + n)!(n − 1)!(k + 1)!

(n + k + 1)!(n − 1)!(2n − 1 + k)!k!
=

(k + 2n)(k + 1)

(k + n + 1)
,

which are rational functions of k, yeah . . . . Thus, the second sum equals

∞∑

k=0

(
2n − 1 + k

k + n

)

· xk =

(
2n − 1

n

)

· F

[
2n, 1
n + 1

∣
∣
∣
∣
x

]

=
1

2
·

(
2n

n

)

· F

[
2n, 1
n + 1

∣
∣
∣
∣
x

]

, (5)



because
(
2n−1

n

)
= (2n−1)!

n!(n−1)! = n
2n · (2n)!

n!n! = 1
2 ·
(
2n
n

)
. This looks much nicer, and

it’s even a Gaussian hypergeometric function, i.e., r = 2 and s = 1. What about
a closed form for F ( 1, 2n; n + 1 | x )? Supercalifragilisticexpialidoceous1 . . . .
That’s fresh meat for the Gosper-Zeilberger algorithm. Next the fact

2Sx(n)x(x − 1)(2n − 1) + nSx(n − 1) = 0,

where Sx(n) is the indefinite sum
∞∑

k=−∞

(2n)k(1)k

(n+1)k
· xk

k! , can be easily verified with a

symbolic computation software at at hand.2 Hence the sum is Gosper-Zeilberger
summable. Ah, . . . Maybe it’s worth a try to check whether the original sum
given in Equation (1) is Gosper-Zeilberger summable as well. Indeed, with a
similar calculation as above we obtain

(x − 1)Sx(n) + Sx(n − 1) = 0,

where Sx(n) now equals
∞∑

k=−∞

(
n−1+k

k

)
· xk. That’s even nicer than above. Since

we don’t remember all details of the Gosper-Zeilberger algorithm by heart, we
peek into a standard book like, e.g., [4]. Wow, . . . our sum (with slight modifica-
tions) from Equation (1) is already “solved”—[4, page 236]: The recurrence for

the definite sum sx(n) =
∑n−1

k=0

(
n−1+k

k

)
·xk—note that E[C] = s1/n(n)−1—reads

as

sx(n) =
1

1 − x

(

sx(n − 1) + (1 − 2x)

(
2n− 3

n − 2

)

· xn−1

)

.

Because sx(1) = 1, we can solve the recurrence and obtain

sx(n) =
1

(1 − x)n−1
+ (1 − 2x)

n−1∑

k=1

(
2k − 1

k − 1

)

·
xk

(1 − x)n−k
. (6)

1 According to Pamela L. Travers’ “Mary Poppins” it is a very important word every-
body should know—see, e.g., [6]:

Jane: Good morning, father. Mary Poppins taught us the most wonderful word.
Michael: Supercalifragilisticexpialidocious.
George W. Banks: What on Earth are you talking about? Superca - Super - or what-

ever the infernal thing is.
Jane: It’s something to say when you don’t know what to say.
George W. Banks: Yes, well, I always know what to say.

2 The actual computation is done by Maple’s hsum-package as follows:

> read "hsum10.mpl";

Package "Hypergeometric Summation", Maple V - Maple 10

Copyright 1998-2006, Wolfram Koepf, University of Kassel

> sumrecursion(hyperterm([1, 2*n], [n + 1], x, k), k, S(n));

2 (2 n + 1) (x - 1) x S(n + 1) + (n + 1) S(n) = 0

Here S(n) plays the role of Sx(n). Moreover, we have shifted the index n one to the
right to obtain the above mentioned recurrence.



Unfortunately this “closed form” is more complicated than the original sum.3

So we are happier with Equation (1) as a solution.
What about the asymptotic behaviour for x = 1

n and growing n. For both
Equations (5) and (6) taking limits is no fun at all, in particular for the re-
spective second terms! But still we are lucky, because it is not too hard to
give an estimate for xn

∑∞

k=0

(
2n−1+k

k+n

)
· xk from Equation (4) by noting that

(
2n−1+k

k+n

)
≤ 22n−1+k. So this sum is upper-bounded by a geometric series:

xn22n−1
∑∞

k=0(2x)k = xn22n−1 1
1−2x , which is valid for x < 1/2. For n > 2,

we can plug in x = 1/n, and get
∑∞

k=n

(
2n−1+k

k+n

)
(1/n)n+k ≤ 1

2

(
4
n

)n
, and this

even holds for n ≥ 2. Thus we have
(

n

n − 1

)n

−
1

2

(
4

n

)n

− 1 ≤ E[C] ≤

(
n

n − 1

)n

− 1. (7)

Since
(

4
n

)n
tends to 0 as n grows and

(
n

n−1

)n

∼ e, we see that E[C], the

expectation of C, is asymptotically e − 1. ⊓⊔

The behavior of (the analytic continuations of) these two functions is com-
pared in Figure 1. We turn to the binary case, which again turns out to be
easier.

Theorem 4. Assume x is an array chosen from {0, 1}n uniformly at random,
and let C denote the random variable counting the number of comparisons carried
out in the test whether x is sorted. ThenE[C] = 3 − (2n + 4)2−n ∼ 3.

Proof. Assume k ∈ {1, 2, . . . , n−2}. If C takes on the value k, then the algorithm
detects with the kth comparison that the array is out of order. Thus x must be of
a special form: it starts with a number of 0s, then follows a nonempty sequence
of 1s, which is again followed by a 0 at index k + 1. The rest of the array can be
filled up arbitrarily with zeroes and ones. This can be illustrated as follows:

0 . . . 0
︸ ︷︷ ︸

ℓ

1 . . . 1
︸ ︷︷ ︸

k−ℓ>0

0 ∗ . . . ∗
︸ ︷︷ ︸

n−k−1

.

Counting the number of arrays of this form, we obtain:
∑k−1

ℓ=0 2n−k−1 = k2n−k−1,

and P[C = k] = k
(

1
2

)k+1
, as there is a total of 2n arrays in {0, 1}n.

The remaining case is that the number of comparisons equals n − 1. In this
case, either the array is sorted, or x has the following form:

0 . . . 0
︸ ︷︷ ︸

ℓ

1 . . . 1
︸ ︷︷ ︸

n−1−ℓ>0

0.

3 Our detour on hypergeometric functions was not useless because by combining Equa-
tions (2), (5), and (6) and evaluating at x = 1

2
results in the quaint hypergeometric

identity
`

2n

n

´

F

»

2n, 1
n + 1

˛

˛

˛

˛

1

2

–

= 22n, for integers n ≥ 2.



Theorem 2:
n−1∑

k=1

1
k! (dotted line)

Theorem 4:
n−1∑

k=1

(
n−1+k

k

) (
1
n

)k
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Fig. 1. The functions on the number of expected number of comparisons from Theo-
rems 2 and 3 compared with the constant e − 1.

The set {0, 1}n contains exactly n + 1 sorted arrays, and the number of arrays
of the second form clearly equals n − 1. Thus we have P[C = n − 1] = 2n2−n.
Now we are ready to compute the expected value asE[C] =

n−2∑

k=1

k2

(
1

2

)k+1

+ (n − 1)P[C = n − 1] =
1

2

(
n−2∑

k=1

k2xk

)

+ (2n2 − 2n)2−n,

for x = 1
2 . Next, the fact

(x − 1)3 ·
m∑

k=1

k2xk = m2xm+3 − 2m(m − 1)xm+2 + (m + 1)2xm+1 − x2 − x

can be easily verified if we have a symbolic computation software at hand. Then

we briskly compute
∑n−2

k=1 k2
(

1
2

)k
= 6− (4n2 + 8)2−n, and finally get it: E[C] =

3 − (2n + 4)2−n. ⊓⊔



We can use a similar approach to determine the expected value in the setup
where the array is drawn uniformly at random from all arrays with a fixed
number of zeroes, but it apparently cannot be expressed in a neat form as above.
As we feel that ugly expressions are outside the scope of this conference, we refuse
to further report on this here.

2.3 The expected number of swaps in bogo-sort

When computing the expected number of iterations in bogo-sort, we concentrate
on the case where the input x is not sorted; for the other case it equals 0, because
of the intelligent design of the algorithm. In each iteration, the array is permuted
uniformly at random, and we iterate until we hit the ordered sequence for the
first time. As the ordered sequence is hit with probability 1

n! in each trial, the
number of iterations I is a random variable withP[I = i] =

(
n! − 1

n!

)i

·
1

n!
.

That is, I is a geometrically distributed random variable with hitting probability
p = 1

n! , and E[I] = p−1 = n!

In each iteration, the array is shuffled; and a shuffle costs n−1 swaps. As the
algorithm operates kind of economically with respect to the number of swaps,
these are the only swaps carried out while running the algorithm. If S denotes
the random variable counting the number of swaps, we have S = (n− 1) · I. By
linearity of expectation, we derive:

Theorem 5. If S denotes the total number of swaps carried out for an input x
of length n, we have E[S] =

{

0 if x is sorted

(n − 1)n! otherwise.

Corollary 6. Let S denote the number of swaps carried out by bogo-sort on a
given input x of length n. ThenE[S] =

{

0 in the best case,

(n − 1)n! in the worst and average case.

2.4 The expected number of comparisons in bogo-sort

Now suppose that, on input x, we iterate the process of checking for sortedness
and shuffling eternally, that is we do not stop after the array is eventually sorted.
We associate a sequence of random variables (Ci)i≥0 with the phases of this
process, where Ci counts the number of comparisons before the ith shuffle. Recall



the random variable I denotes the number of iterations in bogo-sort. Then the
total number of comparisons C in bogo-sort on input x is given by the sum

C =

I∑

i=0

Ci.

Wait . . . This is a sum of random variables, where the summation is eventually
stopped, and the time of stopping is again a random variable, no? No problem.
We can deal with this rigorously.

Definition 7. Let (Xi)i≥1 be a sequence of random variables with E[Xi] < ∞
for all i ≥ 1. The random variable N is called a stopping time for the sequence
(Xi)i≥1, if E[N ] < ∞ and, 1(N≤n) is stochastically independent from (Xi)i>n,
for all n.

For the concept of stopping times, one can derive a useful (classical) theorem,
termed Wald’s Equation. For the convenience of the reader, we include a proof
of this elementary fact.

Theorem 8 (Wald’s Equation). Assume (Xi)i≥1 is a sequence of indepen-
dent, identically distributed random variables with E[X1] < ∞, and assume N is
a stopping time for this sequence. If S(n) denotes the sum

∑n
i=0 Xi, thenE[S(N)] = E[X1] · E[N ].

Proof. We can write S(n) equivalently as
∑∞

i=1 Xi · 1(N≥i) for the terms with
i > N are equal to zero, and the terms with i ≤ N are equal to Xi. By linearity
of expectation, we may write E[S(n)] as

∑∞

i=1 E[Xi · 1(N≥i)]. Next, observe that
Xi and 1(N≥i) are stochastically independent: Since N is a stopping time, Xi

and 1(N≤i−1) are independent. But the latter is precisely 1 − 1(N≥i). Thus we
can express the expectation of Xi · 1(N≥i) as product of expectations, namely
as E[Xi] · E[1(N≥i)]. And finally, as the Xi are identically distributed, we haveE[Xi] = E[X1]. Putting these together, we getE[S(n)] =

∞∑

i=1

E[X1] · E[1(N≥i)] =

∞∑

i=1

E[X1]P[N ≥ i] = E[X1] · E[N ],

as E[1(N≥i)] = P[N ≥ i] and E[N ] =
∑∞

i=1 P[N ≥ i]. ⊓⊔

Now we have developed the tools to compute the expected number of com-
parisons:

Theorem 9. Let C denote the number of comparisons carried out by bogo-sort
on an input x of length n, and let c(x) denote the number of comparisons needed
by the algorithm to check x for being sorted. ThenE[C] =

{

c(x) = n − 1 if x is sorted

c(x) + (e − 1)n! − O(1) otherwise.



Proof. The random variable C0 has a probability distribution which differs from
that of Ci for i ≥ 1, but its value is determined by x, that is P[C0 = c(x)] = 1.

By linearity of expectation, E[C] = c(x) + E[
∑I

i=1 Ci]. For the latter sum, the
random variables (Ci)i≥1 are independent and identically distributed. And I is
indeed a stopping time for this sequence because the time when the algorithm
stops does not depend on future events. Thus we can apply Wald’s equation and
get E[

∑I
i=1 Ci] = E[C1] · E[I]. After the first shuffle, we check a random array

for being sorted, so with Theorem 2 and the following remark holds E[C1] =
e− 1−O

(
1
n!

)
. The left inequality follows by an easy induction. And recall from

Section 2.3 that E[I] = n!. ⊓⊔

Corollary 10. Let C denote the number of comparisons carried out by bogo-sort
on a given input x of length n. ThenE[C] =







n − 1 in the best case,

(e − 1)n! + n − O(1) in the worst case, and

(e − 1)n! + O(1) in the average case.

Proof. In the best case, the input array x is already sorted, and thus the total
number of comparisons equals n− 1. In the worst case, x is not initially sorted,
but we need n − 1 comparisons to detect this. Putting this into Theorem 9, we
obtain E[C] =

(
e − 1 − O

(
1
n!

))
n!+n−1. For the average case, recall in addition

that c(x) = e − 1 − O
(

1
n!

)
holds for an average input x by Theorem 2. ⊓⊔

3 Variations and optimizations

3.1 A variation: bozo-sort

We can generalize the template of repeated testing and shuffling by using other
shuffling procedures than the standard shuffle. For instance, the set of trans-
positions, or swaps, generates the symmetric group Sn. Thus one can think of
the following variation of bogo-sort, named bozo-sort: After each test if the ar-
ray is ordered, two elements in the array are picked uniformly at random, and
swapped. The procedure is iterated until the algorithm eventually detects if the
array is sorted.

Algorithm 2 Bozo-sort

1: Input array a[1 . . . n]
2: while a[1 . . . n] is not sorted do

3: randomly transpose a[1 . . . n]
4: end while

We note that this specification is ambiguous, and two possible interpretations
are presented in pseudo-code:



1: procedure rand. transpose:
{swaps two elements chosen
independently}

2: i := rand[1 . . . n]
3: j := rand[1 . . . n]
4: swap a[i] and a[j]
5: end procedure

1: procedure rand. transpose:
{swaps a random pair }

2: i := rand[1 . . . n]
3: j := rand[1 . . . i − 1, i + 1, . . . n]
4: swap a[i] and a[j]
5: end procedure

We refer to the variant on the left as bozo-sort and to the right variant
as bozo-sort+. Note the apparent difference to bogo-sort: This time there are
permutations of x which are not reachable from x with a single exchange, and
indeed there are inputs for which the algorithm needs at least n − 1 swaps, no
matter how luckily the random elements are chosen.

We conclude that the respective process is not stateless. But it can be suitably
modeled as a finite Markov chain having n! states. There each state corresponds
to a permutation of x. For bozo-sort+, transition between a pair of states hap-
pens with probability 1/

(
n
2

)
if the corresponding permutations are related by a

transposition. The expected hitting time of the sorted array on n elements for
this Markov chain was determined using quite some machinery in [3]. Translated
to our setup, the relevant result reads as:

Theorem 11 (Flatto/Odlyzko/Wales). Let S denote the number of swaps
carried out by bozo-sort+ on an input x of length n. ThenE[S] = n! + 2(n − 2)! + o((n − 2)!)

in the average case.

The expected number of swaps in the best case is clearly 0, but we do not
know it in the worst case currently. The expected number of comparisons is still
more difficult to analyze, though it is easy to come up with preliminary upper
and lower bounds:

Theorem 12. Let C denote the number of comparisons carried out by bozo-
sort+ on an input x of length n. Then

n! + 2(n − 2)! + o((n − 2)!) ≤ E[C] ≤ (n − 1)n! + 2(n − 1)! + o((n − 1)!)

in the average case.

Proof. We can express the number of comparisons as a sum of random variables
as in Section 2.4: If I denotes the number of iterations on an input x chosen
uniformly at random, and Ci the number of iterations before the ith swap, then
the total number C of comparisons equals C =

∑I
i=0 Ci. Obviously 1 ≤ Ci ≤

n − 1, and thus E[S] ≤ E[C] ≤ (n − 1)E[S] by linearity of expectation. ⊓⊔

The results obtained in Section 2.4 even suggest that the expected total
number of comparisons on the average is as low as O(n!). This would mean
that the running time of bogo-sort outperforms (i.e. is higher than) the one of



bozo-sort on the average. In particular, we believe that bozo-sort has the poor
expected running time of only O(n!) in the average case. Compare to bogo-sort,
which achieves Ω(n · n!).

Conjecture 13. For arrays with n elements, the expected number of comparisons
carried out by bozo-sort+ is in Θ(n!) in the average case, as n tends to infinity.

3.2 Comments on optimized variants of bogo-sort

Though optimizing the running time seems somewhat out of place in the field
of pessimal algorithm design, it can be quite revealing for beginners in both
fields of optimal and pessimal algorithm design to see how a single optimization
step can yield a dramatic speed-up. The very first obvious optimization step
in all aforementioned algorithms is to swap two elements only if this makes
sense. That is, before swapping a pair, we check if it is an inversion: A pair of
positions (i, j) in the array a[1 . . . n] is an inversion if i < j and a[i] > a[j]. This
leads to optimized variants of bogo-sort and its variations, which we refer to as
bogo-sortopt, bozo-sortopt, and bozo-sort+opt, resp. As there can be at most

(
n
2

)

inversions, this number gives an immediate upper bound on the number of swaps
for these variants—compare, e.g., to Ω(n · n!) swaps carried out by bogo-sort. It
is not much harder to give a similar upper bound on the expected number of
iterations. As the number of comparisons during a single iteration is in O(n), we
also obtain an upper bound on the expected total number of comparisons:

Lemma 14. The expected number of iterations (resp. comparisons) carried out
by the algorithms bogo-sortopt, bozo-sortopt, and bozo-sort+opt on a worst-case

input x of length n is at most O
(
n2 log n

)
(resp. O

(
n3 log n

)
).

Thus a single optimization step yields polynomial running time for all of
these variants. The proof of the above lemma, which is based on the coupon
collectors’ problem, is elementary and well-suited for education. A very similar
fact is shown in [1], so the details are omitted. Besides, variations of bozo-sort
based on this optimization have been studied in [1]: A further optimization step
is to run the procedure sorted only after every nth iteration, which results in
the algorithm guess-sort, designed and analyzed in the mentioned work.

4 Experimental results

We have implemented the considered algorithms in C and have performed some
experiments. The source code as well as the test scripts are available on request
by email to one of the authors. The experiments were conducted on our lab
pool, roughly 10 PCs AMD Athlon XP 2400+ and Intel Pentium 4 CPU 3.20
GHz with 3 to 4 GB RAM. It took quite some time to collect our results, but
this was no problem, since the lab courses start in late February and the PCs
were idle anyway. The results are shown in Figure 2, for the number swaps
and comparisons for the bogo-sort and both bozo-sort variants. For the values
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Fig. 2. Expected number of swaps (left) and comparisons (right) for the three consid-
ered randomized sorting algorithms—both axes are logarithmically scaled. The factorial
function is drawn as a solid line, while the factorial times (e − 1) is drawn as dotted
line.

n = 2, 3, . . . , 6 all n! permutations were sorted more than 1000 times. For the
remaining cases n = 7, 8, 9, 10 only 6! · 1000 randomly generated permutations
were sorted. The average values depicted in the diagrams nicely fit the theoretical
results. Moreover, our conjecture on the number of comparisons carried out by
bozo-sort+ is supported by the given data. We can also conclude from the data
that in practice bogo-sort outperforms, i.e., is slower than, the bozo-sort variants
w.r.t. the number of swaps by a linear factor, whereas all variants perform equally
good w.r.t. the number of comparisons. This is somehow counter-intuitive since
one may expect at first glance that the bozo-sorts are slower.

Finally, we have evaluated the performance of optimized variants of bogo-
sort and bozo-sort empirically on the same data-set as described above. The
data in Figure 3 suggests that the upper bounds on the expected running time
we obtained are probably not sharp and can be improved. In particular, we
experience that the optimized variant of bogo-sort performs considerably less
comparisons than the appropriate counterparts bozo-sortopt and bozo-sort+opt.

5 Conclusions

We contributed to the field of pessimal algorithm design with a theoretical and
experimental study of the archetypical perversely awful algorithm, namely bogo-
sort. Remarkably, the expected running time in terms of the number of swaps
and comparisons can be determined exactly using only elementary methods in
probability and combinatorics. We also explored some variations on the theme:
In Section 2.2, we determined the number of comparisons needed to detect sort-
edness on the average in different setups. And in Section 3, we introduced two
variants of bogo-sort which are based on random transpositions. The analysis of
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these variants seems to bear far more difficulties. There our results essentially
rely on a technical paper on random walks on finite groups. Quite opposed,
we showed that the expected running time becomes polynomial for all variants
by a simple optimization. We contrasted our theoretical study with computer
experiments, which nicely fit the asymptotic results already on a small scale.
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