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Abstract— Many applications in the fields of Service Robotics
and Industrial Human-Robot Collaboration, require interaction
with a human in a potentially unstructured environment. In
many cases, a natural language interface can be helpful, but
it requires powerful means of knowledge representation and
processing, e.g., using ontologies and reasoning.

In this paper we present a framework for the automatic
generation of natural language grammars from ontological
descriptions of robot tasks and interaction objects, and their
use in a natural language interface. Robots can use it locally
or even share this interface component through the RoboEarth
framework in order to benefit from features such as referent
grounding, ambiguity resolution, task identification, and task
assignment.

I. INTRODUCTION

The following contribution discusses the design and im-
plementation of a human-machine interface for a cloud
robotics [1] system. The main advantage of relying on
cloud computing in robotics is that it removes the robots’
limitations with respect to “onboard computation, memory
or programming” [2]. In the growing area of service robotics
these limitations, and hence their removal, will be crucial as
robots encounter unstructured, only partially observable and
non-deterministic environments and are especially exposed
to contact with naive human users. Fig. 1 shows such a use-
case staged in a hospital environment within the RoboEarth
project.

Modern service robots thus depend on interaction with
humans in a natural environment. Several modalities can
be used for this, but in many cases, a natural language
interface is a requirement. For instance, if the human needs
to use his or her hands to manipulate objects in a physical
interaction scenario, or in the case of service robots for
elderly or disabled people, language might be the only way
to communicate with the robot.

As Steels [3] notes, natural communication with robots is
no longer an issue held back by the robot systems not having
the right capabilities, as was the case a few decades ago, but
a matter of developing natural language processing methods
which are suitable for use in robotics. However, such devel-
opments are now hindered because “many roboticists regard
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Fig. 1.
Amigo robot has been instructed by a human patient to serve a drink.

In the depicted scene a mock-up hospital use-case is shown. The

a speech-enabled interface as a somewhat independent, bolt-
on goody” [4].

Human-robot interaction via natural language requires a
powerful knowledge representation mechanism and strong
background knowledge. This includes the semantic descrip-
tion of objects, environments, possible actions, etc. An
explicit representation of their functional and non-functional
properties based on a formal specification can be used to
automatically process the knowledge and to allow for state-
of-the-art reasoning mechanisms.

In cloud-robotics systems, robots will share such knowl-
edge. However, once their knowledge base changes, the
interaction capabilities with respect to the robots’ language
need to also be amended. Therefore, it is desirable to have
mechanisms by which the linguistic abilities of robots can be
adjusted accordingly and also shared. We present a system
in which we address this problem. Our solution is a system
which fully automatically generates grammars based on the
current state of the knowledge base. New task descriptions
and all robots which share these semantic task descriptions
can also make use of the natural language interface once a
new grammar has been generated. The specific system is not
designed to cover all aspects of language but is specific to the
requirements of commanding robotic systems. However, it is
flexible as the grammar updates as soon as new knowledge
is acquired.

The remainder of the paper is organised as follows: After
a description of related work, a system overview explaining
the configuration and run-time phases is given. Then, the
implementation and experiments justifying the validation of
the concept are described. Finally, the results are summarised
and an outlook is offered.
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Fig. 2. Schematic overview showing how natural language commands
given by a human operator are processed by the system, so that they can
be mapped to known tasks. These identified tasks can then be assigned to
and executed on available and compatible robots.

II. RELATED WORK

Ontologies are a common way to represent knowledge and
can be shared easily with other suitably equipped systems,
for instance as a component of cloud robotics applications,
such as in the RoboEarth project [5].

The goal of the RoboEarth initiative [9] is the effective
sharing of knowledge [10], data [11], and processing re-
sources [12] among robots. This is often referred to as cloud
robotics, and has established advantages regarding memory
and processing limits. Additionally, models acquired by one
robot can be re-used by another one.

While this kind of sharing of knowledge is an effective
means of communication for robots, it is impossible to
access a human’s brain directly [13]. Therefore, an effective
system requires interfaces which translate knowledge into
communication channels which humans can access, thus
enabling robots to map the information contained in human
commands onto an appropriate representation.

Language is the primary means of information transmis-
sion both in human-human and human-machine interaction
[14]. Thus, language is often mentioned by experts in surveys
as one area of robotics research in which more work is
required [15].

The system presented here uses the OpenCCG' library.
This is based on the combinatory categorical grammar
(CCG) formalism [16]. OpenCCG has already been suc-
cessfully applied to robotics [17]. In particular, the CCG
formalism has been shown to be useful for the use in task
descriptions [18], [19].

III. SYSTEM OVERVIEW

While a complete system with different physical robots has
been implemented in RoboEarth, we will focus on its natural
language interface in this paper, which can also be used
independently from RoboEarth. This user interface consists
of two main components. One component is the dialogue
management component which handles speech input and

'OpenCCG: The OpenNLP CCG Library — http://openccg.
sourceforge.net/

output at run time, and the other component is the grammar
generation component which generates grammars at config-
uration time.

Accordingly, two different phases can be distinguished.

First, there is the configuration phase, in which a human
expert annotates the system’s action/object/environment on-
tologies [10] with links to concepts in the Wordnet ontology.
Upon updating the natural language annotations, the gram-
mar generation process is carried out once, resulting in an
OpenCCG grammar that serves as an input for the dialogue
component. Through the RoboEarth framework, all robots
connected to the system can reuse this grammar.
We employ the web ontology language (OWL) [6] for encod-
ing knowledge and annotations. OWL distinguishes between
classes, individuals (instances of classes), and properties
defined for classes or individuals. For persistently storing
OWL-based descriptions we use a Sesame repository [7]
which can evaluate SeRQL queries [8].

Next, during the runtime phase the generated grammar

is used to map spoken (or written) commands directed at a
robot back to concepts in the system’s ontologies and then
to interpret these correctly. This phase includes ambiguity
resolution as well as possible additional interactions with
the user preceding the execution of a task.
Fig. 2 shows a schematic overview of the system, with a
human operator providing spoken commands to a robot.
The dialogue component processes the input based on an
automatically generated grammar. If the given command
can directly be mapped to a task description available to
the robot, the respective task identifier is sent to a task
assignment component, which keeps track of robots and their
working states. Otherwise, the command is considered being
ambiguous or unknown, and further dialogue is initiated
to find a valid mapping. The physical and software-related
requirements of a task are modelled in an action recipe which
includes the required capabilities of the robots [10]. The
system can assign the identified task to a compatible robot,
which then starts to execute the action.

IV. CONFIGURATION PHASE

A. Annotation of action and object ontologies

Natural languages, unlike formal languages, are full of
ambiguities. A naive mapping of an action the robot can
perform to just one single verb would fail, if the user decided
to use a different verb for the action. For instance, the same
action can be described by the verbs fetch and bring. Ideally,

Declaration(Class (re:ServeBeverage) )

Declaration (AnnotationProperty (re:linkedSynset))

AnnotationAssertion (re:linkedSynset re:
ServeBeverage <http://www.w3.0rg/2006/03/wn/
wn20/instances#synset-serve-verb-6>)

Fig. 3. Excerpt of annotated action ontology in OWL functional syntax.
Task class ServeBeverage is linked with Wordnet’s synonym set individual
synset-serve-verb-6
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Fig. 4. Schematic overview of the grammar generation process during the
configuration phase. The static OpenCCG grammar template is dynamically
extended based on the annotations in the action and object ontologies and the
corresponding Wordnet synonym sets. A post-processing step transforms the
generated OpenCCG grammar from the DotCCG format to its XML based
representation and packages the created files into a JAR library.

one would link to all synonyms as an appropriate identifier
for an action or object.

To generate lexical entries from the knowledge base, a
mapping from the classes and individuals in the knowledge
base to words in natural language must be provided. This
mapping can be created in two ways: either by adding
explicit information about the mapping to the ontology, or
by giving a fixed set of rules, for instance by using the class
names as lexical forms in the grammar.

The second approach, however, has several disadvantages.
First of all, it is assumed that the ontology creator adhered
to a set of implicit rules, which can lead to hard-to-spot
errors during grammar generation if the creator violated
one of the rules. Furthermore, it can be hard to decide on
the word’s syntactic category using the name of an entity
in the ontology alone. On the other hand, if the ontology
requires explicit annotations for the mapping, entities in
the ontology lacking these annotations can be automatically
skipped without breaking the system.

For these reasons the classes in the ontology are annotated
explicitly with Wordnet synonym sets (synset), which capture
the classes’ meaning. Fig. 3 lists an excerpt of the action
ontology, which is comprised of the declaration of OWL
class ServeBeverage, the annotation property linkedSynset
and an annotation assertion which links the ServeBeverage
class with Wordnet’s synset synset-serve-verb-6. While this
approach causes additional work for the ontology maintainer
to annotate all classes correctly, it suffers from none of the
shortcomings described above.

Consequently, classes that describe actions are annotated
with verb synsets; classes that describe physical objects are
annotated with noun synsets; and classes that only serve as
fillers for other classes’ properties, e.g., colour or tempera-
ture, are annotated with adjective synsets.

B. Automatic generation of OpenCCG grammar

The actual grammar used by the dialogue component is
created using content from the knowledge base and a static
grammar template.

The grammar template is encoded in the DotCCG format.
This allows for the prior definition of the grammar’s static
part beforehand in a template file, in the form of functions,

SELECT Concept, Synset FROM

{Concept} re:linkedSynset {Synset}

USING NAMESPACE

re = <http://www.roboearth.org/kb/roboearth.owl#>

Fig. 5. SeRQL query for extracting all natural language annotations from
the action and object ontologies

<?xml version='1.0" encoding=’UTF-8’7?>
<sparqgl xmlns=’'http://www.w3.0rg/2005/sparql-
results#’>
<head>
<variable name='Concept’ />
<variable name=’Synset’ />
</head>
<results>
<result>
<binding name=’Concept’>
<uri>http://www.roboearth.org/kb/roboearth.owl#
Cold</uri>
</binding>
<binding name=’Synset’>
<uri>http://www.w3.0rg/2006/03/wn/wn20/
instances/synset-cold-adjective-1</uri>
</binding>
</result>

</results>
</spargl>

Fig. 6. List of found pairs of Ontology concepts and their natural language
annotation

macros and category definitions. These functions and macros
can then be used during the generation of the dynamic part
of the grammar. For example, when a verb is defined, there
has to be a definition for the verb in the singular, singular
third person and plural form. Since the building of the
verb’s singular third person and plural form follows a strict
rule, this can be automated by creating a function. Also,
definitions of frequently used words and functional words
that are not explicitly specified in the knowledge base, like
“a”, “the”, “and” or personal pronouns like “you”, “me” or
“ours”, are stored in the template. Additionally, the template
holds general information about which features are available
for words of different classes, like case, number, etc. The
complete template can be found online”.

In a first step, the annotations described in Section I'V-
A are searched for in the knowledge base. Every annotation
points to a Wordnet synset ID. Thus, the Wordnet database is
queried for the lexical form of all words which belong to the
specified synsets. We distinguish between nouns, verbs and
adjectives for all words, so that the correct representation for
each of the lexical items can be generated. Fig. 5 lists the
query in the SeRQL query language. The evaluation of the
query against the knowledge base results in a set of ontology
concepts and their Wordnet synset annotations, as can be seen
in Fig. 6.

The lexical categories for nouns are annotated with the
Uniform Resource Identifiers (URI) of their corresponding

2http://www6.in.tum.de/~perzylo/template.ccg
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SELECT DISTINCT Individual FROM
{Individual} rdf:type {re:bottle};
{Map} rdf:type {kr:SemanticEnvironmentMap},

kr:describedInMap {Map},
{Room} kr:describedInMap {Map},

{U} kr:properPhysicalParts {V} kr:properPhysicalParts {W} kr:properPhysicalParts

{X} kr:properPhysicalParts {Room},
{U} rdfs:label {City}, {V} rdfs:label
{W} kr:streetNumber {StreetNo},
WHERE

{Street},

{X} kr:floorNumber {FloorNo},

{Room} kr:roomNumber {RoomNo}

City="Munich"@en AND Street="Guerickestrasse"@en AND StreetNo="25" AND FloorNo="1" AND RoomNo="109"

USING NAMESPACE
kr=<http://ias.cs.tum.edu/kb/knowrob.owl#>,

re=<http://www.roboearth.org/kb/roboearth.owl#>

Fig. 7. SeRQL query for searching for all instances of the bottle concept in a specified environment. An environment is specified in a hierarchical manner

using room and floor numbers, street and city names.

classes in the ontology. This is possible, since every class in
the ontology that describes physical objects, can be mapped
to a certain meaning of a noun. Consequently, there is a
one-to-one mapping between classes and synsets. The same
is applicable for adjectives.

For verbs, however, there is no such one-to-one mapping,
because there may be many different tasks which are associ-
ated with the same verb sense. For example, the verb bring
to can refer to a task which describes how to serve a drink,
as well as to a task dealing with a spatial displacement in
any other context. This issue is tackled during runtime.

The extracted information is used to extend the static
grammar template. As a necessary post-processing step,
OpenCCG’s tool ccg2xml is invoked to generate an XML
representation that can be used by the OpenCCG parser. As
a final step, the generated XML files are packed into a JAR
file which serves as an input to the dialogue component. The
whole process is visualised in Fig. 4.

V. RUNTIME PHASE
A. Language parsing

A natural language interface requires that the robot can
understand the commands given to it by the user. For this,
the natural language sentences are parsed into a logical
form, which represents the meaning of a sentence before
any further processing takes place. A natural language parser
has to account for the fact that parts of the sentence may not
appear in their canonical position in the sentence. Moreover,
sentence elements that build a logical unit can be scattered
across the sentence.

The generated logical form is used to analyse the sen-
tence’s structure and how the different parts are semantically
related to each other, e.g., which noun is the subject of which
verb. This information is important for grounding it in the
knowledge base’s concepts in order to interpret the meaning
of the sentence.

B. Grounding the referents

Once a command is parsed into its logical form, the system
must identify a corresponding task to be executed by a robot.
In order to accomplish this mapping, the sentence’s referents
must be grounded in the system’s knowledge base.

This can be done by exploiting the sentence structure
and the annotations in the system’s ontologies. Every verb

phrase in the sentence is treated as a command to the robot,
and thus corresponds to a task it shall perform. Each of
these phrases has either one, two or three attached noun
or prepositional phrases, depending on whether the verb is
intransitive, transitive or ditransitive. These phrases are the
arguments to the verb. They specify the objects on which the
task must be carried out. Therefore, every argument must be
grounded to an individual in the knowledge base.

Every noun is mapped to a certain class in the knowledge
base. Thus all individuals in the knowledge base that are
instances of this class or instances of one of its subclasses are
possible referents of this noun phrase. An exemplary SeRQL
query used to find all bottles in a particular environment
is shown in Fig. 7. There may be further restrictions, on
which individuals are possible referents for the noun. An
adjective, that modifies a noun phrase, describes additional
requirements the referents must fulfil. Like nouns, every
adjective is mapped to exactly one class in the knowledge
base. If an adjective is attached to a noun, then all possible
referents must be not only instances of the noun’s class or
subclasses, but they must also be linked to another individual
that is an instance of the adjective’s class.

For example, the noun “bottle” in the noun phrase “the

red bottle” is grounded to individuals, which are instances
of the class Bottle and are linked to an individual, which
is an instance of the class Red.
Prepositional phrases attached to a noun are treated in a sim-
ilar manner, the only difference is, that the constituent of the
prepositional phrase might in turn have attached adjectives or
prepositional phrases. In such cases, the candidate individual,
to which the noun phrase’s referent could be mapped, must
be restricted by certain further individuals itself.

For verbs there is no such one-to-one mapping to classes in

SELECT ActionRecipe FROM

{ActionRecipe} re:linkedSynset {C}

WHERE

C in (wn:synset-bring_to-verb-1)

USING NAMESPACE

re = <http://www.roboearth.org/kb/roboearth.owl#>
wn = <http://www.w3.0rg/2006/03/wn/wn20/instances#>

Fig. 8. SeRQL query for searching for all action recipes that are associated
with the given verb’s synonym sets
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Fig. 9. Schematic overview of the run time phase. The human operator
provides a spoken command to the system. The dialogue manager utilises
the speech recognition component to receive the command in a textual repre-
sentation. Using the OpenCCG grammar generated during the configuration
phase and queries to the knowledge base the dialogue manager interprets
the command. Perception modules might constantly update the world state.
Unresolvable ambiguity is handled through posing questions to the operator,
which are rendered by the speech synthesizer. Finally, the recognised task
is sent to the task assignment component.

the knowledge base. Instead, for every verb in the sentence,
the Wordnet ontology is searched for all synsets that contain
a word sense associated with this verb. Then the knowledge
base is searched for task descriptions, which are annotated
with at least one of the previously found synsets. Fig. 8
shows a SeRQL query used to extract all task descriptions
associated with the bring-fo verb synset. Disambiguation of
task descriptions uses the grounded noun phrases and is
explained in more detail in Section V-C.

C. Ambiguity resolution

For every noun and verb phrase in a parsed sentence, a
matching entity from the knowledge base is searched for. But
there might be more than one individual acting as a candidate
for a possible match. A robust natural language interface has
to be capable of dealing with these kinds of ambiguities and
resolving them correctly. However, they cannot be dealt with
on a purely syntactical level; instead the robot’s knowledge
about the domain must be taken into account.

Nouns specify the class of the matching individual, and the
adjectives and prepositional phrases attached to noun phrases
describe further restrictions the individuals must fulfill. These
requirements are translated into a query to the knowledge
base. But it is not guaranteed that this query will yield

. Amigo, please bring me the cola g
Which one? The cold one
or the warm one? ]
The cold one!
OK. I can do that. Al @t

Fig. 10. Example dialogue between human operator and the Amigo robot.
Given that there are two instances of a cola bottle in the robot’s world model
— a warm one on the table and a cold one in the refrigerator — the robot
uses this information to resolve the ambiguity for the requested object.

!
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[ambiguities resolved]

(_ Find task description for user request )
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é

Fig. 11. Activity diagram of the ambiguity resolution process for mapping
a human operator’s command to a known task description.

only one individual, since there may be several matches
complying with the given description.

For every candidate object class in the ontology which
could be a referent of the noun, the knowledge base is
searched for task descriptions, that are annotated with a
Wordnet synset including the sentence’s verb operating on
objects of that class. Entities that cannot be used in such a
way are discarded. If there is still more than one candidate
after this elimination process, the user is asked for more
information about the object to which they are referring.
In order to speed up this process, the most discriminative
feature is computed and used to pose a question to the user,
as visualised in Fig. 10.

Similarly, a verb is likely to refer to several task descrip-
tions. This is due to the fact that verbs can have several
distinct meanings depending on the context in which they
are used. Thus it is necessary to incorporate the context into
the process of resolving ambiguities.

Once all nouns in a command are unambiguously
grounded to individuals from the knowledge base, the correct
task must be found. As described above, the context in
which a verb is used determines which semantic meaning
the speaker intended to express. Hence, it is necessary to
generate a grounding of the context, i.e. the arguments of
the verb, first, before an attempt to ground the verb itself
can be made.

For every task description in question, the knowledge base
is queried about the types of objects it operates on. This
yields a list of classes for every task description. These
lists can be matched with the individuals’ classes, that were
chosen as the noun phrases’ referents. Task descriptions
which differ in arity or act on objects of irrelevant classes
are discarded. If this information is not enough to find a
distinct task description, the user is asked explicitly which
task should be executed. An activity diagram of the complete
ambiguity resolution process is shown in Figure 11. The
whole run time phase is summarised in Fig. 9.



VI. IMPLEMENTATION

The software components described in this paper have
been implemented as ROS modules and integrated with
the RoboEarth framework. They have been successfully
showcased at the final demonstration of the RoboEarth
project in Eindhoven, Netherlands, in January 2014. The
natural language interface was used in a mock-up hospital
environment, as seen on Fig. 1, to command various robots
to assist human patients.

A video introducing the vision of RoboEarth and showing
footage of the final demonstration can be found online.?

VII. CONCLUSIONS & OUTLOOK

The natural language interface presented in this paper
shows a simple but flexible approach to dialogue handling
for cognition-enabled robots. The assignment of tasks to
robots and the local response by a given robot are leveraged
in our approach by moving resources intensive elements of
language processing and those elements which are useful for
other robots in the system into the cloud. This is a deliberate
choice, efficiently allowing a central system to react as well
as enabling short response times for a given robot in an
application context.

Theoretical approaches to dialogue handling emphasise the
role of embodiment in cognitive tasks for robots [20]. Despite
being simplistic, the central component handles dialogues in
a dis-embodied fashion. However, the task execution is, in a
sense, grounded in the knowledge the system has about the
robots and their perceived environment.

The dialogue system itself is designed to be flexible,
but in order to increase its effectiveness, a better mapping
between speech recognition and grammar generation needs
to be realised. One such approach, especially in the field
of robotics, is based on real-time spoken phrase recognition
[21]. A simpler solution would be a transformation be-
tween the OpenCCG framework and the speech recognition
grammar. Currently, the missing interface between the open-
ended grammar generation and the finite speech recognition
grammar is the main limitation of our system.
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