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Abstract— Human motion is fast and hard to predict. To im-
plement a provably safe collision-avoidance strategy for robots
in collaborative spaces with humans, an overapproximative
prediction of the occupancy of the human is required, which
needs to be calculated faster than real time. We present a
method for computing volumes containing the entire possible
future occupancy of the human, given its state, faster than real
time. The dynamic model of the human is built from analysing
a set of archetypal movements performed by test subjects. The
occupancy prediction is tested on a publicly available database
of motion capture data, and shown to be overapproximative for
all movements relating to everyday activities, sport and dance.
Our novel algorithm is useful to guarantee safety in human-
robot collaboration scenarios.

I. INTRODUCTION

As robots working near humans gain ground in industry,
particularly in Small and Medium Enterprises (SMEs), pre-
diction of the movement of nearby humans is paramount
to ensuring safe interaction or avoidance. Current safety
measures such as speed and separation monitoring, and cages
[1], [2] are inflexible or do not guarantee safety. Therefore
much research has focussed on predicting human motion to
avoid collisions [3]. We present a novel concept to formally
bound the spatial occupancy of the human arm based on
sensor data in real time, using a model built from analysis
of archetypal movements. In contrast to previous work on
human motion prediction, this occupancy would cover all
potential human occupancies for an uncertain model of
human movement given sensor data, at any time up to a
prediction horizon. Such real-time prediction may be used
in dynamic online obstacle-avoiding trajectory planners e.g.
[4].

Humans move fast and have different shapes and sizes;
a trajectory planner which plans around all possible human
motion is in danger of being overly conservative and pro-
hibiting any robot motion at all. On the other hand, though
human motion is often foreseeable, methods which aim to
infer the intended motion may not account for an unforeseen
movement such as a reflex action, and a collision may occur.
A two-stage planner as in Fig. 1 is therefore proposed. A
long-term plan is generated around the expected human mo-
tion. A continuously updating short-term plan then accounts
for all possible motion and consists of the first section of the
long term plan followed by a safe stop. A safety controller
as described in [5] generates these plans and guarantees that

1The authors are with the Department of Informatics,
Technische Universität München, 85748 Garching, Germany.
aaron.pereira@tum.de, althoff@in.tum.de

a short-term plan always exists, though the safe stop is only
executed if the human performs an unexpected movement
and the subsequent section of the long-term plan is unsafe.
This approach is tested in simulation in [6].
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Fig. 1. (a) Long-term planning around expected human movement; (b)
short-term failsafe manoeuvre in case of unexpected motion, based on
reachable occupancies enclosing all possible motion.

Human motion prediction can be classified into 1) predict-
ing a single trajectory and 2) predicting a set or probability
distribution of trajectories. In the former case, natural human
movements are assumed optimal with respect to an as yet
unknown cost function of the dynamics [7]. In point-to-point
movements, Morassi et al. [8] observe straight-line spatial
hand trajectories and deduce that the human control system
operates in Cartesian space. Flash and Hogan [9] show that
movements minimise jerk and in [10], the authors predict
natural movement of human arms using a muscle-effort
minimisation criteria in a Digital Human Model (DHM).

However, we cannot reliably predict the intention of the
human, hence several researchers use probabilistic models
to predict movement. Koppula and Saxena [11] anticipate
intended reaching goals using a temporal conditional random
field. Mainprice and Berenson [12] predict future motion
using a Gaussian Mixture Model and compute a voxel map of
occupancy probabilities, which is used in a human-avoidance
cost function to plan trajectories. Ding et al. predict human
occupancy with a Hidden Markov Model (HMM) [13]. The
latter authors note that unusual or previously unobserved
movements would not be accounted for by an HMM and
propose that this probabilistic method be supplemented by
reachability analysis. Finally, instead of tracking human
motion for a prediction model, first principles modeling is
used in [14] to obtain a Markov chain to predict human
movement around a mobile robot probabilistically.

What happens when humans do not behave as expected?
Our short-term prediction must account for all movement
of humans of all shapes and sizes. Reachability analysis can
provide formal guarantees in systems where the environment
is uncertain, e.g. automated driving [15], though to the
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Fig. 2. Above: offline, we capture archetypal movements and fit to a kinematic model; from the resulting joint positions, velocities and accelerations we
obtain a dynamic model. Below: online, sensor data (not necessarily motion capture) is fitted to the kinematic model to obtain the state in joint space; we
calculate the reachable set at a future time with the dynamics obtained offline, then convert this to a reachable occupancy in Cartesian space

authors’ best knowledge, reachability analysis has not yet
been used to predict human movement for human-robot co-
working. Our overapproximative prediction uses reachability
analysis techniques to predict and enclose the entire possible
reachable set in space after a given time.

In the following section we define the problem and our
approach. In Sec. III we detail the model kinematics, how the
archetypal movement data is captured and how this results
in the dynamic parameters of the model. In Sec. IV we show
how to convert a set of states in joint space to a potential
occupancy in Cartesian space. We validate our approach on
publicly available data in Sec. V and conclude in Sec. VI.

II. PROBLEM STATEMENT AND APPROACH

Our proposed approach has offline and online elements.
Offline, we fit motion capture data of archetypal movements
(Fig. 2a) to a kinematic model (Fig. 2b) to obtain relevant
parameters for a dynamic model (Fig. 2c). Online in real

time, sensor data is fit to the same kinematic model (Fig. 2d–
e), taking into account uncertainty to obtain an initial set
of states for the kinematic model. From the dynamics, the
reachable set of states after a certain time is calculated
(Fig. 2f) and mapped to Cartesian space to determine an
overapproximative, reachable occupancy (Fig. 2g). This is
then forwarded to a trajectory planner as described in the
introduction. Note that the sensors in Fig. 2d need not be
infrared motion capture: as we account for sensing error, less
accurate pose estimation methods may be used as in [16].
The more uncertain the sensor data, the larger the reachable
occupancy, and the more conservative the path planning. We
define the reachable set of a system:

Definition 1 (REACHABLE SET). Given a system with state

x(t), input u(t) and dynamics ẋ(t) = f(x(t),u(t)), where

t is time. The possible initial states x(0) and inputs u(t) are

bounded by sets, x(0) ∈ X0,u(t) ∈ U(t). The reachable set

of states x at t = tf is (see Fig. 2f):

Rx(tf )=
{

x(tf ) =
∫ tf
0 f(x(t),u(t))dt

∣

∣

∣

∣

x(0)∈X0,u(t)∈U(t)

}

The human arm is a complex mechanical structure with
unknown dynamics and actuation. We obtain knowledge
about the position of the arm either directly though sensors
or through an observer. As the internal structure of the arm
is unknown and complex, we find the state of a simplified
kinematic model from the inverse kinematic mapping:

mapIK(s) : S → P(X ),

which maps an instantaneous sensor reading s(t) to a set of
states X (t) to account for noisy sensor data, where P(X ) is
the power set of X . From the sensor reading at t = 0, we ob-
tain the model’s initial set of states Rx(0) = mapIK(s(0)).
We then define the occupancy mapping, which maps states
to a subset of space occupied by the arm, as:

mapOCC(x) : X → P(R3).

Offline, we analyse our motion capture data (Fig. 2a–c) and
obtain dynamic parameters for computing the reachable set
Rx(t) online (Fig. 2f) From this, we obtain the reachable

occupancy, defined as Γ(t) ⊇ {mapOCC(x)|x ∈ Rx(t)}.
We require that:

• Γ(t) enclose the actual arm for any motion of any hu-
man which could possibly occur in a HRI environment;

• the computation time of Γ(t) be less than t, so that it
can be used in a collision-avoiding path planner;

• Γ(t) be as tight as possible, to minimise false-positive
collisions detected.

We next describe how the arm model is derived.

III. MODEL

Humans can be modelled as a tree of kinematic chains,
e.g. [17]. As an initial demonstration of formally verified
occupancy prediction, this work focusses only on the human
arm: the arm can achieve high velocities compared to other
body parts. Although models of torso and lower body move-
ment exist, whose movement must eventually be integrated
into the occupancy prediction (e.g. by adapting approaches
from computer vision such as [18]) the purpose of this
paper is to demonstrate the validity of the overapproximative
prediction, hence we limit our scope to arm movement. In



this section, we describe the motion data collection and show
how a well-known 4-degree-of-freedom (DOF) arm model
can be reduced to 3-DOF, simplifying the calculation of
Rx(t) and Γ(t) by reducing dimensionality. We then detail
how collected data is used to find dynamic parameters of the
human arm.

A. Motion data

The validity of our prediction is based on accounting
for the physical capabilities of a wide demographic of test
subjects. Our 38 test subjects are 12 female and 26 male and
range in age from 18 to 49 with a median age of 24. 50% do
3 hours or more of sport per week. Since the arm’s scope of
movement is infinite, 6 distinct archetypal movements were
chosen which encompassed lateral, vertical and horizontal
movements and ranged from one end of the arm workspace
to another, to try and cover the arm’s entire workspace.
Subjects performed the motions (shown below and in the
accompanying video) as fast as possible.

A B C D E

Fig. 3. From left to right: Positions A–E.

1) Punch2 to the front then recover to position E.
2) Punch to the front, ending in position A.
3) Position A to position B, elbow allowed to bend.
4) Position A to position B, elbow not allowed to bend.
5) Position C to position D, via position A.
6) Position C to position D, via position B.

A 6-camera Vicon Motion Capture system captures move-
ments at 120Hz. These are then filtered with a 4th order
Butterworth filter as in [17] to remove noise. A lower order
filter does not sufficiently remove noise, whereas a higher
order filter gives artificially attenuated joint accelerations;
using this filter, accelerations match well with those observed
in [19] from camera footage. Inverse kinematics based on
the kinematic model in Sec. III-B are applied to the filtered
data to obtain a time series of joint positions. Markers on
the right arm are illustrated in Fig. 4. The base coordinate
system of the arm is oriented with the clavicle coordinate
system recommended in [20] and the origin is 40mm below
(in negative y-direction from) the shoulder marker (RSHO),
as we do not consider movement of the shoulder complex
in this low degree of freedom model. The elbow was taken
at the RELB marker and the wrist as the midpoint of RWRA

and RWRB (the left arm was similarly defined). The upper

arm is between shoulder and elbow and the forearm between
elbow and wrist.

2Punching movements were performed with and without a punchbag, in
case subjects moved faster against a punchbag due to its familiarity.
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Fig. 4. Markers and local base coordinate system for the right arm. The
base coordinate system has its origin 40mm below RSHO and the markers
CLAV, C7, T10 and STRN (latter 2 not shown), define its orientation. Note
that the z-axis is collinear to RSHO and CLAV. Markers RFIN, RFRM and
RUPA are not used for inverse kinematics.
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Fig. 5. (a) A well-known 4-DOF model, (b) a simplified 3-DOF model.

B. Kinematic Model

Arm models with 4-DOF are widely used in modelling
arm movement, e.g. for determining arm workspace [21] or
predicting position during movements [10]. Wrist movement
and forearm rotation are relatively limited and do not greatly
affect the occupancy, hence we can account for all movement
of the hand in a sphere SH around the wrist, see Fig. 5a; the
elbow and shoulder are enclosed in spheres SE and SS , and
the upper arm and forearm are capsules swept from shoulder
to elbow and from elbow to wrist respectively. The radius of
SH is the 95th percentile hand length from anthropometric
studies [22], 0.205m; that of SS and SE is 0.08m, which
is larger than the radius of human upper or lower arms but
intended to account for clothing. We call the position of the
ith joint qi.

The 4-DOF arm contains a singularity in the elbow when
fully extended: as shown in Fig. 6, the inverse kinematics
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Fig. 6. (a) positions X near singularity, and Y , away from singularity
(b) q̈3 plotted against q4 during one movement. At X , extremely high
accelerations in are observed, at Y the range is smaller.
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Fig. 7. Determining the radius of SF from the maximum length forearm,
so as to enclose smaller forearms, and thus determining the relative position
of the end effector between elbow and wrist. lF is forearm length.

2

PSfrag

x x

yz

q1

q2

q3

(a) (b) (c)

Fig. 8. (a) oblique view (b) lateral view and (c) top view of the 3-DOF
model kinematics. q1 and q2 are joint angles of the first two rotational
joints; q3 is the extension of the prismatic joint. x, y and z is the base
(clavicle) coordinate system.

to determine the 3rd joint are undefined at singularity, and
in the vicinity of the singularity q3 is highly susceptible
to noise and small task-space movements. We identify two
possible solutions: 1) create a hybrid dynamic model with
one dynamic regime near the elbow singularity and another
away from it, or 2) make a kinematic parameterisation of the
arm which avoids the elbow singularity.

As reachable sets of hybrid systems are time-consuming to
calculate and often introduce large overapproximations [23],
we opt for the latter option, see Fig. 5b. We enclose the
forearm and hand in a sphere SF and the shoulder in a sphere
SS as shown in Fig. 7. The occupancy of the arm is then
taken as the convex hull of SF and SS , which encloses the
upper arm also by the property of convexity. The diameter
of SF is 0.627m, calculated from maximum forearm length
observed over our entire dataset, 0.342m, plus the radius
of SH , plus the radius of SE . This accounts for parametric
uncertainty in the forearm and hand, as smaller length hands
and forearms will be enclosed in the largest. In the maximal-
length forearm and hand, the centre of SF , enclosing the

forearm, hand and SE , is a point 0.627/2−0.08
0.342 = 0.68

of the distance from elbow to wrist. We call this point
the end effector and choose its position at 0.68 of the
distance from elbow to wrist, for all humans. As both elbow
and shoulder are enclosed, by convexity, the upper arm is
enclosed regardless of its length.

C. Placement of 1st Joint Axis to Avoid Shoulder Singularity

Consider Fig. 8. If the end effector lies on the axis of
joint 1, the inverse kinematics cannot give a value for q1.
This second singularity is only a coordinate singularity: the
shoulder is a spherical joint and hence the axis of joint 1 can
be freely chosen. We choose it such that it does not intersect
the workspace of the end effector (i.e. the end effector can
never lie on the joint 1 axis). Fig. 9 shows the sampled
workspace over all our data and the chosen joint 1 axis.

Fig. 9. Sampled workspaces of 3-DOF model end effector, and first joint
axis in red. The axis does not intersect the workspace. Coordinate system
is that of the shoulder; scale in metres.

The alignment of the joint 1 axis is along the long axis of
the clavicle3.

D. Dynamics of the Arm

Having described the kinematics of the arm model, we
now consider its dynamics. The human arm is actuated
by antagonistic pairs of muscles exerting torque on one
or more joints; this torque is dependent on the moment
arm of muscles about the joint, muscle length, and inter-
muscular force transmission [24]. Maximum muscle torques
are well studied and are used in several digital human models
(DHMs), e.g. [25]. These can accurately model human body
dynamics so that sensor data may be fit to a DHM to accu-
rately reconstruct body part positions [17]. A model based
on maximum torques is impractical as: 1) mass and inertia
parameters are uncertain, 2) external torques are unknown,
3) the direction of the gravity force depends on shoulder
orientation and 4) the relationship between torque, and joint
angles and velocities, is highly nonlinear. Though reachable
sets for nonlinear systems with parametric uncertainty can be
calculated, such methods (described in e.g. [26]) enlarge the
overapproximation and are not real-time compatible. Instead,
we use a simple model based on extreme joint positions,
speeds and accelerations. To the best knowledge of the
authors, a complete study of maximum accelerations of all
human arm joints does not exist. Our dynamic model ignores
dependencies on joint position or velocity and considers each
joint as independent. This is overapproximative: we may
include states that are unreachable due to dependencies, but
we never exclude any reachable state.

The intersection of three simple models for joint position,
velocity and acceleration limits is faster to compute than a
complex model which accounts for all limits simultaneously.
As in [15, Prop. 1], where the reachable sets R1, ...Rn of
n models M1, ...Mn are all overapproximative sets which
enclose the exact reachable set Re, then Re ⊆

⋂n
i=1 Ri.

We define the Minkowski sum, over two sets A and B, as
A⊕B = {a+ b | a ∈ A, b ∈ B}.

Letting Q(0), Q̇(0) be the sets of initial positions and
initial velocities in joint space respectively, and using the

3The reader may verify with a little gymnastics that it is impossible
to align the humerus with the clavicle, as it is hindered by the Acromial
Process.



maximum and minimum accelerations q̈min, q̈max, velocities
q̇min, q̇max and positions qmin,qmax from the archetypal
movements, the reachable sets our models predict are:

1) a 0th order model: R(0)
q (t) = [qmin,qmax]

2) a 1st order model: R(1)
q (t) = Q(0)⊕ [q̇mint , q̇maxt]

3) a 2nd order model:

R(2)
q (t) = Q(0)⊕ Q̇(0)t⊕

[

q̈min
t2

2
, q̈max

t2

2

]

The intersection Rq(t) = R(0)
q (t) ∩ R(1)

q (t) ∩ R(2)
q (t)

yields a tighter overapproximation than any one model
alone, and joint position, velocity and acceleration limits
are not exceeded. Q(0), Q̇(0) are box-shaped (we add an
independent margin of error based on sensing uncertainty
for each joint) hence each of the above models is a product
of intervals, whose intersection is fast to compute. As min-
imising spatial jerk is observed in human trajectory planning
[9], adding higher order models would be intuitive; this
requires, however, that the model state include acceleration,
i.e. x = [q⊤, q̇⊤, q̈⊤]⊤. Currently, instantaneous velocity is
interpolated from consecutive state readings, which is noisy,
but accuracy is adequate. Interpolating acceleration is even
noisier, which would eradicate any advantages gained with
a 3rd or higher order model.

IV. REPRESENTATION IN SPACE

This section concerns the function mapOCC from Sec. II,
i.e. translating the joint space reachable set Rx(t) into the
occupancy Γ(t). The approach by Täubig et al. [27] is
promising, and is applied to human models in [28]. It is
overapproximative (as opposed to sampling-based methods
e.g. [29]) yet tight, and computes a sphere-swept volume
enclosing the occupancy of a link, when the joint angles lie
within a product of intervals. A sphere-swept volume is the
Minkowski sum of a polytope and a sphere. Our model is the
convex hull of two spheres of different radii, which itself is
not a sphere-swept volume. As the link must be enclosed in
a sphere-swept volume, we create, for this method, a capsule
CFS , enclosing both SF and SS ; see Fig. 10.

SF

SS

CFS

Fig. 10. 3-DOF model enclosed in capsule CFS for using method in [27].

Polytopes can be represented as a set of intersect-
ing halfspaces (H-representation) or a set of vertices (V-

representation), and the representation of polytopes deter-
mines the method of collision checking used. The polytopes
obtained in [27] are in V-representation and consequently,
the collision check is performed with the GJK algorithm
[30]. Collision checking between H-representations, on the
other hand, is a simple matter of determining whether a

solution exists to a linear system of equations, and can
use methods such as Fourier-Motzkin elimination, which
allows for parallelisation [30]. Although conversion between
representations is possible [31], in order to save computation
time, it is advantageous to obtain the polytope in the repre-
sentation required. We therefore present a method for quickly
obtaining the H-representation of the human arm occupancy
in the next section.

A. H-Representations

The H-representation for enclosing the occupancy of the
3-DOF model is found as follows. Recall from Fig. 5b that
arm occupancy is the convex hull of the spheres SS around
the origin and SF around the end effector. The origin is
fixed; the end effector position depends on joint positions
q. Let f(q) be the forward kinematic function which gives
the Cartesian position of the end effector. We first bound the
occupancy of the end effector f(Rq) = {f(q)|q ∈ Rq} with
planes (which define a H-representation polytope), then shift
these planes outwards by the radius of SF , so all positions
of SF are enclosed. If this polytope does not contain SS ,
the relevant plane is shifted further out until SS is enclosed
(see Fig. 13). As the polytope is convex, if SF and SS are
enclosed, so is their convex hull. From the kinematics in
Fig. 8, we see that the second rotary joint is orthogonal to
the first, the axes of all joints go through the origin, and the
prismatic joint is zero at the origin, hence we observe the
following:

Observation 1 (Spherical coordinate–joint position corre-
spondance). The joint positions (q1, q2, q3) correspond to the

spherical coordinates of the end effector position (θ,ψ, r) in

a coordinate system where the z-axis is aligned with the first

joint axis.

Since Rq is the product of joint positions intervals
[q1,min, q1,max]× [q2,min, q2,max]× [q3,min, q3,max], the spher-
ical coordinates of the end effector position f(Rq) satisfy
q1,min ≤ θ ≤ q1,max, q2,min ≤ ψ ≤ q2,max, q3,min ≤ r ≤
q3,max. This is illustrated in Fig. 11, where p1−8 are the
vertices of f(Rq).
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p5 p8
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p1 p4
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q1,max

q1,minθ

ψ rp′
5 p′
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Fig. 11. The joint space reachable set (a) Rq and (b) the corresponding
end effector occupancy f(Rq). Vertices p1−8 of f(Rq) correspond to
vertices p′

1−8
of the reachable set.

The surfaces B1−6 bound f(Rq). Letting (θ,ψ, r) be
the point defined by spherical coordinates θ ∈ (−π,π],
ψ ∈ [0,π], and r ∈ R≥0, each of these surfaces is a subset



of a level set:

B1 ⊆ {(θ,ψ, r)|θ = q1,min}; B2 ⊆ {(θ,ψ, r)|θ = q1,max}

B3 ⊆ {(θ,ψ, r)|ψ = q2,min}; B4 ⊆ {(θ,ψ, r)|ψ = q2,max}

B5 ⊆ {(θ,ψ, r)|r = q3,min}; B6 ⊆ {(θ,ψ, r)|r = q3,max}

To build the H-representation, we require a set of bounding
planes rather than surfaces of arbitrary shape. We observe
that each set of 4 vertices from p1−8 defining each surface
Bi are coplanar, as f(Rq) is symmetrical in the plane

θ = q1,min+q1,max

2 . The planes defined by these sets of
4 vertices, however, do not necessarily bound f(Rq), as
explained below.

Observation 2 (Level sets of spherical coordinates). The

locus of points with constant θ is a plane; that with constant

ψ is a cone; that with constant r is a sphere. [32]

Given that q2,max − q2,min < π, each surface Bi is either
locally concave, convex or planar. Convex surfaces can be
bounded by one or more planes tangent to them. Concave
surfaces can be bounded by a plane through extreme points
of the surface. From Obs. 2, B1 and B2 are planes, hence
our first two bounding planes H1, H2 are simply these.

p6 p2 p3 p7 p1

p∗1

p5

p∗5

p4

p∗4

p8

p∗8
ψ = 0

H4

H3

B3B4

Fig. 12. Shaded areas are level sets of ψ. H3 is defined by the plane through
points p2,3,6,7 as the surface is locally concave. However, if p1,4,5,8 are
in the same hemisphere as p2,3,6,7, the surface is locally convex and the
plane through p1,4,5,8 (right, dashed line) does not bound f(Rq). Thus
we find p∗

1,4,5,8 such that the plane (dot-dashed line) is tangent to f(Rq).

Without loss of generality, the surface B4 lies in the
top hemisphere as in Fig. 12. We see that B4 is locally
concave, so the plane passing through the extreme points
p2,3,6,7 bounds f(Rq); we take this to be H4. However, if
q2,max is the same sign as q2,min, then B3 is convex and the
plane passing through the extreme points does not bound
f(Rq) but intersects it. We therefore generate some new
points p∗1, p

∗
4, p

∗
5, p

∗
8 (Fig. 12) such that the plane H3 through

these is tangent to B3 and the θ and r values of pi and p∗i
are the same (i.e., pi and p∗i lie on the same level sets of
θ and r). Analytically4, the ψ values of these points are
tan−1(tan(q2,min) cos(

q1,max−q1,min

2 )).
Finally, we bound radially, from above and below. Let the

surfaces defined by p∗5, p6, p7, p
∗
8 and p∗1, p2, p3, p

∗
4 be called

B′
5 and B′

6, as they are extensions of B5 and B6 respectively
(they lie on the same level sets, which are boundaries of
spheres). B′

5 is concave, so we take H5 defined by its
endpoints. B′

6 is convex so we take H6,7,8,9,10 tangent to it
at points p∗1, p2, p3, p

∗
4 and in the middle. The more tangent

planes we take, the tighter the overapproximation, but the
more complex the polytope. H1−10 are illustrated in Fig. 13.

4The proof is omitted for brevity.
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Fig. 13. All planes H1−10 bound the occupancy; front and back views.

Thus the reachable occupancy of the end effector is
bounded. To enlarge this to Γ(t) we shift each halfspace
outwards by the radius of the forearm sphere SF and, if need
be, move the halfspace H5 outward to enclose the shoulder
sphere SS , see Fig. 14.

H5 moved to include radius of SF

H5 moved to include shoulder SS

Original position of H5

SS

Fig. 14. A 2-D projection showing how to account for SF and SS . Planes
bounding f(Rq) (dashed) are moved outward to account for radius of SF

(solid). If SS is not enclosed, we move H5 to enclose it.

B. ISO-compliant model

For comparison, we introduce an ISO-based representation
ΓISO(t). The Hand Speed Constant v = 1.6m/s is given in
[1] as the maximum speed of a non-walking human’s body
parts. We take the 4-DOF model from Sec. III-B and enlarge
it by v · t as shown in Fig. 15.

v · t

after
time t

HEADHEAD

Fig. 15. Prediction ΓISO(t) based on Hand Speed Constant from [1].

V. VALIDATION

In Sec. III-A we choose the archetypal movements such
that a wide range of human motion is covered, and they
are performed as fast as possible to obtain maximum accel-
erations and velocities for the model dynamics. To ensure
that the parameters obtained from this subset of motion are
valid for all motion encountered in an HRI scenario, we
validate the dynamic model built from our test data against
publicly available motion capture data from Carnegie Mellon
University5. We group these motions, of lengths from 1

2s–
30s, into the following categories:

• Everyday motions e.g. construction work, machining
work, manipulating objects, stumbling; expected to be

5Available at mocap.cs.cmu.edu, accessed on 11.08.15. The authors
will happily provide details of which data files were used.

http://mocap.cs.cmu.edu/


exemplary of the behaviour of humans comfortable
working in the vicinity of robots (96 motions)

• Sports-related motions e.g throwing, catching and bat-
ting balls, boxing. (67 motions)

• Dance-related motions e.g Indian dance, modern dance
and swing dance. (58 motions)

• Acrobatic motions – motions where both feet are simul-
taneously in the air, e.g. jumps, cartwheels, backflips
and swings from a trapeze. (68 motions)

We check, for both arms, whether the arm at time t (in
this case, all markers on the arm) is entirely contained in
Γ(t), for t = 16.7, 25.0 and 33.3ms6 (Tab. I); this is shown
in the video attachment. We evaluate the volume of the
reachable occupancy (Tab. II) and computation times. As
the calculations have no iterative step, hard real-time can be
achieved, though for this verification a non-real-time OS run-
ning MATLAB R2016a on a 2.8GHz i7 processor with 16GB
RAM is used. Polytope visualisation and volume calculation
are performed by the MPT toolbox [33]. In case markers are
lost or incorrectly tracked by the software, we validate the
sensor data using distance checks, i.e. markers on rigid links
cannot move relative to each other, and disregard data where
markers violate these checks. We account for sensor noise
with an uncertainty of ±0.05 rad and 0.02 m added to the
revolute and prismatic joint positions respectively.

TABLE I

PUBLIC DATABASE MOVEMENTS FULLY CONTAINED IN REACHABLE

OCCUPANCY (NO. CONTAINED/TOTAL, FOR t = 16.7, 25 AND 33.3ms)

Category Everyday Sport Dance Acrobatics

Γ(t) (Swept Volume) 96/96 67/67 58/58 60/68

Γ(t) (H-representation polytope) 96/96 67/67 58/58 60/68

ΓISO(t) (ISO-based) 93/96 44/67 19/58 17/68

In all cases for the Everyday, Sport and Dance motions,
the markers at each prediction horizon were within the
respective reachable occupancy, in contrast to the occupancy
based on the maximum arm speeds from ISO Standards
[1], where only 71% of these motions were within ΓISO(t)
at all times. The dynamic model could be extended by
including Acrobatic motions in the archetypal motions used
to determine the model parameters. In this case, the reachable
occupancy would be enlarged, making the path planner extra
cautious at the expense of performance. As behaviour guide-
lines in workshops typically prohibit running and acrobatic-
like movements, one may argue that such movements would
not occur in a factory setting and this range of human
motion can be safely ignored in a certifiably safe robot
motion planner; injuries resulting from such behaviour on
the workshop floor would not be the fault of the robot.

Volume calculation of the ISO-based and swept-volume
representations uses the method from [27], which underesti-
mates the true volume. Fig. 16 and Tab. II show the growth

6since the data is captured at 120Hz, these are simply 2, 3 and 4
timesteps in the future respectively.

TABLE II

VOLUME OF OCCUPANCIES (m3)

Time t ISO-based Swept Volume H-Rep Polytope

16.7ms 0.06 0.28 0.41

25.0ms 0.07 0.38 0.51

33.3ms 0.09 0.54 0.66

Fig. 16. Left to right: reachable occupancies at 16.7, 25.0 and 33.3ms.
Scale in metres; origin at shoulder. Inner (blue) outline is arm at t = 0,
and outer outline (yellow) is arm at aforementioned times.

of the reachable occupancy over time. Beyond 33ms, the
occupancy grows quite large (e.g. at 50ms, around 1.5m3).
If the robot and human are in close proximity, therefore,
shorter update cycles for the prediction are required. [21]
gives the workspace of the wrist of an average-height person
as 0.667±0.055m3; as the hand is perhaps 25% of the length
of the arm, the workspace of the whole arm may be estimated
as 0.667

0.753 ≈ 1.6m3. For short time intervals, therefore, our
prediction is tight.

TABLE III

COMPUTATION TIME (ms)

Process Inverse kinematics
and reachability

Calculating
swept volume

Calculating
H-representation

Av. time 0.38ms 0.31ms 0.08ms

Computation time is shown in Tab. III – for both rep-
resentations Γ(t) is calculated within 1ms. Although the
H-representation is slightly larger, there is no expensive
convex hull computation and it is therefore faster. As time
is of the essence, a coarser, faster overapproximation may
be an acceptable time-accuracy trade-off, alternatively, a
hierarchical or anytime algorithm can be envisaged where
collisions detected in the H-representation are checked for
false positivity only if computation time remains. To en-
sure the entire system, i.e. sensing, prediction and path
planning/verification, is within real time, fast algorithms
must be used. In [6] fast verification and path planning is
demonstrated. Infrared motion capture has latencies in the
range of 2− 4ms7, although in industrial scenarios, cameras
with larger latencies are more likely.

VI. CONCLUSIONS

We present a method to formally bound the future potential
occupancy of a human arm in real time based on sensor

7see e.g. vicon.com/products/software/tracker

https://www.vicon.com/products/software/tracker


data. Mean computation times of less than 1ms demonstrate
its suitability for use in an online dynamic path planner.
The arm model parameters are generated from archetypal
movements of test subjects and are used to predict, in real
time and overapproximatively, the subset of space that may
be occupied by the arm after a given time. We present two
methods for converting joint angles to convex sets: a fast
method yielding H-representation polytopes and a slower
but tighter method yielding sphere-swept volumes from the
literature. The prediction is tested on publicly available
motion capture data and found to correctly overapproximate
the occupancy of movements in a factory setting. In contrast
to probabilistic methods, our technique can be used to certify
safety in human-robot interaction and co-working, a goal
long unattainable due to insufficient guarantee of safety.
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