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In this paper, we propose a new algorithm for pairwise rigid point set registration with unknown point
correspondences. The main properties of our method are noise robustness, outlier resistance and global
optimal alignment. The problem of registering two point clouds is converted to a minimization of a non-
linear cost function. We propose a new cost function based on an inverse distance kernel that signifi-
cantly reduces the impact of noise and outliers. In order to achieve a global optimal registration
without the need of any initial alignment, we develop a new stochastic approach for global minimization.
It is an adaptive sampling method which uses a generalized BSP tree and allows for minimizing nonlinear
scalar fields over complex shaped search spaces like, e.g., the space of rotations. We introduce a new tech-
nique for a hierarchical decomposition of the rotation space in disjoint equally sized parts called spherical
boxes. Furthermore, a procedure for uniform point sampling from spherical boxes is presented. Tests on a
variety of point sets show that the proposed registration method performs very well on noisy, outlier cor-
rupted and incomplete data. For comparison, we report how two state-of-the-art registration algorithms
perform on the same data sets.
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1. Introduction and related work

Point set registration is a fundamental problem in computa-
tional geometry with applications in the fields of computer vision,
computer graphics, image processing and many others. The prob-
lem can be formulated as follows. Given two finite point sets
M ¼ fx1; . . . ;xmg � R3 and D ¼ fy1; . . . ; yng � R3 find a mapping
T : R3 ! R3 such that the point set T(D) = {T(y1), . . . ,T(yn)} is opti-
mally aligned in some sense to M. M is referred to as the model
point set (or just the model) and D is termed the data point set.
Points from M and D are called model points and data points,
respectively.

If T is a rigid transform, i.e., T(x) = Rx + t for a rotation matrix R
and a translation vector t, we have to solve a rigid point set regis-
tration problem. This special case is of major importance for the
tasks of object recognition, tracking, localization and mapping,
and object modeling, just to name a few. The problem is especially
hard when no initial pose estimation is available, the point sets are
noisy, corrupted by outliers and incomplete and no correspon-
dences between the points of the input sets are known. In Fig. 1,
a model and a data set are shown before and after rigid
registration.
ll rights reserved.
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1.1. Rigid point set registration

One class of rigid point set registration approaches consists of
methods designed to solve the initial pose estimation problem.1

These methods compute a (more or less) coarse alignment be-
tween the point sets without making any assumptions about their
initial position and orientation in space. Classic initial pose estima-
tors are the generalized Hough transform [2], geometric hashing
[3] and pose clustering [4]. These algorithms are guaranteed to find
the optimal alignment between the input point sets. However, be-
cause of their high computational cost and/or high memory
requirements, these methods are only applicable to small data sets.

Johnson et al. introduced in their work [5] local geometric
descriptors, called spin images, and used them for pose estimation
and object recognition. The presented results are impressive, but
no tests with noisy or outlier corrupted data were performed. Gelf-
and et al. [6] developed a local descriptor which performs well un-
der artificially created noisy conditions, but still, defining robust
local descriptors in the presence of significant noise and a large
amount of outliers remains a difficult task.

A more recent approach to the initial pose estimation problem
is the robust 4PCS algorithm introduced by Aiger et al. [7]. It is
an efficient randomized generate-and-test approach. It selects an
appropriate quadruple B (called a basis) of nearly coplanar points
from the model set M and computes the optimal rigid transform
1 Pose = position (translation) + orientation (rotation).
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Fig. 1. Pairwise rigid point set registration obtained with our method. The input point sets, model and data, are shown in (a) and (b), respectively. Although rendered as
meshes no surface information (like, e.g., normals) is used for the registration. Note that the scans are noisy and only partially overlapping. (c) and (d) Our registration result
(shown from two different viewpoints) obtained without noise filtering, local ICP refinement [1] or any assumptions about the initial pose of the input scans. (e) A closer view
of the part marked by the rectangle in (d). Observe the high quality of the alignment.

C. Papazov, D. Burschka / Computer Vision and Image Understanding 115 (2011) 1598–1609 1599
between B and each of the potential bases in the data set D and
chooses the best one. In order to achieve high probability for suc-
cess, the procedure is repeated several times for different bases
B �M. Note, however, that the rigid transform, found by the algo-
rithm, is optimal only for the two bases (i.e., for eight points). In
contrast to this, the rigid transform we compute is optimal for all
points of the input sets and thus we expect to achieve higher accu-
racy than the 4PCS algorithm. This is further validated in the exper-
imental results in Section 5 of this paper.

Since the accuracy of the pose computed by the above men-
tioned methods is insufficient for many applications, an additional
pose refinement step needs to be performed. The pose refining
algorithms represent another class of registration approaches.
The most popular one is the Iterative Closest Point (ICP) algorithm.
Since its introduction by Chen and Medioni [8], and Besl and
McKay [1], a variety of improvements has been proposed in the lit-
erature. A good summary as well as results in acceleration of ICP
algorithms have been given by Rusinkiewicz and Levoy [9]. A major
drawback of ICP and all its variants is that they assume a good ini-
tial guess for the pose of the data point set (with respect to the
model). This pose is improved in an iterative fashion until an opti-
mal rigid transform is found. The quality of the solution heavily de-
pends on the initial guess. Furthermore, the methods compared by
Rusinkiewicz and Levoy [9] use local surface features like surface
normals which cannot be computed very reliably in the presence
of noise.

Recently, a variety of registration algorithms based on robust
statistics has been proposed. Granger and Pennec [10] formulated
the rigid point set registration as a general maximum likelihood
estimation problem which they solved using expectation maximi-
zation principles. Tsin and Kanade [11] introduced the kernel cor-
relation approach as an extension of the well-known 2D image
correlation technique to point sets. The model and data sets are
represented by a collection of kernel functions each one centered
at a model/data point. If each point in the model set has a close
counterpart in the data set the kernel correlation value is large.
Thus the registration problem is converted to the maximization
of the kernel correlation of the input point sets. An extension of
this approach through a Gaussian mixture model was proposed
by Jian and Vemuri [12]. Instead of using one-to-one correspon-
dences between the points of the input sets, the above cited meth-
ods work with multiple, weighted correspondences. Although this
significantly widens the basin of convergence the resulting compu-
tational cost limits the applicability of the algorithms to small
point sets only [13].

A further class of rigid registration methods is based on particle
filtering. Ma and Ellis [14] pioneered the use of the unscented par-
ticle filter for registration of surfaces in the context of computer-
assisted surgery. A major limitation of the method is its running
time: it takes 1.5 s for a data set consisting of 15 points. Moreover,
outlier robustness was not addressed by the authors. Further inter-
esting approaches from this class are the algorithm of Moghari and
Abolmaesumi [15] which is based on the unscented Kalman filter
and the point set registration method via particle filtering and sto-
chastic dynamics introduced by Sandhu et al. [16]. Although these
algorithms have a band of convergence significantly wider than the
one of local optimizers, they still depend on the initial alignment of
the point sets.
1.2. Optimization-based point set registration

Solving the registration problem by minimizing a cost function
with a general-purpose optimizer has already been introduced in
the literature. Depending on the choice of either a global or a local
optimization procedure the corresponding registration approach
belongs to the class of initial pose estimators or pose refining
methods, respectively.

Breuel [17] used a deterministic branch-and-bound method to
globally maximize a quality measure which counts the number
of data points a given rigid transform brings within an �-neighbor-
hood of some model point. Although this method always finds the
global optimal solution its computational cost seems to be very
high since only planar rigid transforms (with three degrees of free-
dom) were considered.

Olsson et al. [18] also used a deterministic branch-and-bound
algorithm to globally minimize the sum of squared distances be-
tween corresponding entities (points, lines or planes) in M and D.
This method is guaranteed to find the global optimal solution,
however, at a high computational cost: a problem consisting of
10 point-to-plane, 4 point-to-line and 4 point-to-point correspon-
dences is solved in about 10 s. Furthermore, when applied in the
case of point set registration, the correspondences between the
points have to be known in advance which is seldom the case in
a real world setting.

Another deterministic solver based on Lipschitz global optimi-
zation theory was introduced by Li and Hartley [19]. On the
positive side, the method does not assume any known correspon-
dences across the point sets and it always solves the problem in
a globally optimal way. Unfortunately, the algorithm is very costly
(about 18 minutes for input sets consisting of 200 points each) and
it is based on some unrealistic assumptions: (i) the model and data
sets have exactly the same number of points, (ii) there are no out-
liers and (iii) there is no missing data, i.e., there is a 100% overlap
between model and data.

Mitra et al. [20], Pottmann et al. [21] and Fitzgibbon [22] also
formulated the registration problem as a minimization of a
geometric cost function. For its minimization, however, a local
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optimization method is used. This results in the already mentioned
strong dependence on a good initial transform estimation.

1.3. Stochastic optimization

Stochastic optimization has received considerable attention in
the literature over the last three decades. Much of the work has
been devoted to the theory and applications of simulated anneal-
ing (SA in the following) as a minimization technique [23–25]. A
comprehensive overview of this field is given in [26]. A major prop-
erty of SA algorithms is their ‘‘willingness’’ to explore regions
around points in the search space at which the objective function
takes values greater than the current minimum [27]. This is what
makes SA algorithms able to escape from local minima and makes
them suitable for global minimization. A known drawback of SA
algorithms is the fact that they waste a lot of iterations in generat-
ing candidate points, evaluating the objective function at these
points, and finally rejecting them [26]. In order to reduce the num-
ber of rejections, Bilbro and Snyder [28] select candidate points
from ‘‘promising’’ regions of the search space, i.e., from regions in
which the objective function is likely to have low values. They
achieve this by adapting a k-d tree to the objective function each
time a new candidate point is accepted. If, however, the current
point is rejected, the tree remains unchanged. This is a consider-
able waste of computation time since the information gained by
the (expensive) evaluation of the objective function is not used.
In contrast to this, our algorithm adapts a generalized BSP tree at
every iteration and thus uses all the information collected during
the minimization. Furthermore, the use of a generalized BSP tree
allows for a minimization over complex shaped spaces and not
only over rectangular regions as in the case of [28].

1.4. Contributions and overview

Our registration algorithm aims to robustly solve the initial
pose estimation problem in the case of noisy, outlier corrupted
and incomplete point sets with unknown correspondences be-
tween the points. Our main contributions are (i) a noise and outlier
resistant cost function, (ii) a stochastic approach for its global min-
imization, (iii) a technique for a hierarchical rotation space decom-
position in disjoint parts of equal volume and (iv) a procedure for
uniform sampling from spherical boxes. The work presented here
is a significant extension of the concept introduced in the confer-
ence paper [29].

The rest of the paper is organized as follows. In Section 2, we de-
fine the task of aligning two point sets as a nonlinear minimization
problem and define our cost function. In Section 3, a stochastic ap-
proach for global minimization is presented. In Section 4, we moti-
vate the choice of the rotation space parametrization we use in
combination with our minimization approach and introduce a
technique for a hierarchical rotation space decomposition. Further-
more, a procedure for uniform sampling from spherical boxes is
described. Section 5 presents experimental results obtained with
our registration algorithm as well as comparisons with two
state-of-the-art registration methods. The paper ends with some
conclusions in Section 6.
2. Registration as a minimization problem

Consider, we are given a model point set M ¼ fx1; . . . ;xmg � R3

and a data point set D ¼ fy1; . . . ; yng � R3. Suppose, we have a con-
tinuous function S : R3 ! R, called the model scalar field, which at-
tains small values at the model points xj, j 2 {1, . . . ,m} and
increases with increasing distance between the evaluation point
and the closest model point. Our aim is to find a rigid transform
T : R3 ! R3 of the form T(x) = Rx + t for a rotation matrix R and a
translation vector t 2 R3 such that the functional

FðTÞ ¼
Xn

i¼1

SðTðyiÞÞ; yi 2 D ð1Þ

is minimized. This definition of F is based on the following idea
common for most registration algorithms: we seek a rigid transform
that brings the data points as close as possible to the model points.

2.1. Definition of the model scalar field

Given the model point set M = {x1, . . . ,xm}, we want our model
scalar field S : R3 ! R to attain its minimal value at the model
points, i.e.,

SðxjÞ ¼ smin 2 R; 8xj 2 M; ð2Þ

and to attain greater values for all other points in R3, i.e.,

SðxÞ > smin; 8x 2 R3 nM: ð3Þ

Define

dMðxÞ ¼min
xj2M
kx� xjk ð4Þ

to be the distance between a point x 2 R3 and the set M, where k � k
is the Euclidean norm in Rn. If we set

SðxÞ ¼ dMðxÞ; ð5Þ

we get an unsigned distance field which is implicitly used by ICP
[1]. It is obvious that this choice for S fulfills both criteria (2) and (3).

Mitra et al. [20] and Pottmann et al. [21] considered in their
work more sophisticated scalar fields. They assumed that the mod-
el point set M consists of points sampled from an underlying sur-
face U. The scalar field S at a point x 2 R3 is defined to be the
squared distance from x to U. In this context, S is called the
squared distance function to the surface U. We refer to [20] for de-
tails on computing the squared distance function and its approxi-
mation for point sets.

The version of S given in (5) and the ones used by Mitra et al.
[20] and Pottmann et al. [21] are essentially distance fields. This
means that S(x) approaches infinity as the point x gets infinitely
far from the point set. This has the practical consequence that a
registration technique which minimizes a cost function based on
an unbounded scalar field will be sensitive to outliers in the data
set. This is because data points lying far away from the model point
set will have great impact on the sum in (1) and thus will prevent
the minimization algorithm from converging towards the right
alignment. A similar problem arises in the case of model and data
sets with low overlap. In this case, there will be a lot of data points
which have no corresponding model points and vice versa. The dis-
tance between such a data point and the closest model point will
be large and thus will deteriorate the sum in (1). A simple way
to overcome this is just to exclude data points which are too far
away from the model set. However, this strategy introduces dis-
continuities in the cost function which cause a problem for many
optimization methods.

Fitzgibbon presented in his work [22] a more convenient way to
alleviate these difficulties which does not lead to a discontinuous
cost function. He proposed to use either of the following two ro-
bust kernels:

SðxÞ ¼ log 1þ dMðxÞð Þ2

r

 !
ðLorentzian kernelÞ or ð6Þ

SðxÞ ¼ ðdMðxÞÞ2 if dMðxÞ < r
2rdMðxÞ � r2 otherwise

(
ðHuber kernelÞ: ð7Þ
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However, we still have limdMðxÞ!1SðxÞ ¼ 1 for both kernels as in the
case of (5). Thus a cost function based on (6) or (7) will still be sen-
sitive to outliers. We further validate this in the experimental re-
sults presented in Section 5 of the paper.

To avoid this sensitivity, we propose to use a bounded scalar
field satisfying (2) and (3) and having the additional property

lim
dMðxÞ!1

SðxÞ ¼ 0: ð8Þ

We set

SðxÞ ¼ �uðdMðxÞÞ; ð9Þ

where u : R� ! R�, for R� ¼ fx 2 R : x P 0g, is a strictly monotoni-
cally decreasing continuous function with

max
x2R�

uðxÞ ¼ uð0Þ and ð10Þ

lim
x!1

uðxÞ ¼ 0: ð11Þ

In our implementation, we use an inverse distance kernel of the
form

uðxÞ ¼ 1
1þ ax2 ; a > 0 ð12Þ

because it is computationally efficient to evaluate and can be con-
trolled by a single parameter a (see Fig. 2a). This results in the fol-
lowing model scalar field:

SM
a ðxÞ ¼ �

1

1þ aðdMðxÞÞ2
; a > 0: ð13Þ

It is easy to see that (2), (3) and (8) hold. Different values for a in
(13) lead to different scalar fields. The greater the value the faster
SM
a ðxÞ convergences to zero as dM(x) ?1 (see Fig. 2b). In Section

2.2, we will discuss how to choose a suitable value for a and why
this particular form of SM

a ðxÞ leads to an outlier robust cost function.

2.2. Cost function definition

The group of all rigid transforms in R3 is called the special
Euclidean group and is denoted by SE(3). At the beginning of Sec-
tion 2, we formulated the rigid point set registration problem as
a functional minimization problem over SE(3). Using a parametri-
zation of SE(3), the functional F in (1) can be converted to a
real-valued scalar field F : R6 ! R of the form

Fðu;w; h; x; y; zÞ ¼
Xn

i¼1

SM
a ðRu;w;hyi þ ðx; y; zÞÞ; ð14Þ

where y1, . . ., yn are the data points, SM
a is the model scalar field

defined in (13), Ru,w,h is a rotation matrix parametrized by u, w, h
and ðx; y; zÞ 2 R3 is a translation vector. In order to achieve good
optimization performance, it is very important to choose the right
parametrization of the rotation group. We employ an axis-angle
Fig. 2. (a) The inverse distance kernel (defined in (12)) for three different a values. (b) Th
(a) for a = 0.1 and a = 1. In this example, the Stanford bunny is used as the model set. SM

a ð
mapping the scalar values to gray levels.
based parametrization which is especially well suited for our
branch and ‘‘stochastic bound’’ minimization method. Furthermore,
we introduce a new technique for a hierarchical decomposition of
the rotation space in spherical boxes and describe a procedure for
uniform sampling from them. Since the advantages of these tech-
niques are best seen in the context of our minimization algorithm
we postpone the detailed discussion to Section 4 after the introduc-
tion of the minimization method in Section 3.

A global minimizer x� 2 R6 of F defines a rigid transform that
brings the data points as close as possible to the model points.
What makes the proposed cost function robust to outliers is the
fact that outlier data points have a marginal contribution to the
sum in (14) depending on a. More precisely, given a positive real
number d, we can compute a value for a such that SM

a ðxÞ
��� ��� is less

than an arbitrary d > 0, if dM(x) > d holds. In this way, the contribu-
tion of an outlier point to the sum in (14) can be made arbitrary
close to zero and F will behave like an outlier rejector. However,
too large values for a will lead to the rejection of data points which
do not have exact counterparts in a sparsely sampled model set,
but still are not outliers. In our implementation we set

d ¼ 1
4

minfbboxxðMÞ; bboxyðMÞ; bboxzðMÞg; ð15Þ

d ¼ 0:1; ð16Þ

where bbox(M) denotes the bounding box of the model point set
and bboxs(M), s 2 {x,y,z} is the extent of the bounding box along
the x, y or z axis. Using the absolute value of the right side of (13)
and solving for a yields

a ¼ 1� d

dd2 : ð17Þ

The cost function given in (14) is nonconvex and has multiple local
minima over the search space (see [19] where this is experimentally
verified for a similar cost function). Using a local optimization pro-
cedure—common for many registration methods—will lead in most
cases to a local minimizer of F and thus will not give the best align-
ment between model and data. To avoid this, we employ a new sto-
chastic approach for global minimization described in the next
Section.
3. Stochastic adaptive search for global minimization

Our stochastic minimization approach is inspired by the simu-
lated annealing (SA) method of Bilbro and Snyder [28]. The main
difference between their work and a typical SA algorithm is the
way how the minimizer candidates are generated. As we already
mentioned in Section 1.3, SA algorithms are known to waste many
iterations in sampling candidate points from the search space,
evaluating the cost function at these points and finally rejecting
them [26]. In order to reduce the number of rejections, Bilbro
e model scalar field SM
a ðxÞ (defined in (13)) based on the inverse distance kernel from

xÞ is visualized by evaluating it at a number of points lying on the three planes and
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and Snyder [28] sampled the points from a distribution which is
modified iteratively during the minimization such that its modes
are built around minimizers of the cost function. They achieved
this by building a k-d tree and sampling the candidates from those
leaves of the tree which cover ‘‘promising’’ regions of the search
space, i.e., regions in which the cost function is likely to attain
low values. Although this leads to fewer candidate rejections and
thus saves computation time the method in [28] still has two
drawbacks. First, the candidate points are sampled directly from
the tree leaves which are n-dimensional boxes of the form
[a1,b1] � � � � � [an,bn], where ½ai; bi� � R is a closed interval. This
strategy is based on the implicit assumption that the search space
can be covered efficiently by such boxes. This, however, is not the
case if we have a more complex shaped space, e.g., the space of
rotations (see Section 4). Second, the k-d tree used in [28] is up-
dated only if the generated candidate is accepted. In the case of a
rejection, the tree remains unchanged. This is a waste of computa-
tion time since the information gained by the expensive cost func-
tion evaluation is not used.

We account for the first drawback by formulating our minimi-
zation algorithm using a more general spatial data structure,
namely, a generalized binary space partitioning tree (we will call
it a G-BSP tree in the following). As opposed to the classic BSP trees
(see, e.g., [30]), we do not require that the subspaces represented
by the tree nodes are convex sets. Thus we can minimize efficiently
over more complex shaped search spaces like, e.g., the space of
rotations (see Section 4). To avoid the second drawback, i.e., to
use all the information gained by the cost function evaluation,
we update the tree at every iteration—even in the cases of bad min-
imizer candidates. This apparently minor modification leads to a
rather different algorithm (than [28]) and enables a faster rejection
of the regions in which the cost function is likely to have high (i.e.,
poor) values and thus speeds up the convergence.

3.1. Generalized BSP trees

A binary space partitioning tree (BSP tree) is a spatial data
structure which decomposes the real space Rn in a hierarchical
manner. At each subdivision stage, the space is subdivided by a
(hyper)plane in two disjoint parts of arbitrary size. Thus the result-
ing decomposition consists of arbitrarily shaped convex polygons
[30]. Each node of the tree has exactly two or zero child nodes. A
node with zero children is called a leaf. If we drop the assumption
that the space subdivision is performed by planes we get a general-
ized BSP tree (G-BSP tree). This results in a decomposition made up
of subspaces of arbitrary shape.

3.2. Problem definition

Given a set X (called the search space) and a function f : X! R

our aim is to find a global minimizer of f, i.e., an x� 2 X such that

f ðx�Þ 6 f ðxÞ 8x 2 X: ð18Þ

The following assumptions about X should hold:

� X � Rn is a bounded set of positive volume (Lebesgue measure
in Rn).
� There is an algorithm of acceptable complexity which can build

a G-BSP tree for X such that each two subsets of X at the same
level of the tree are of equal volume (have the same Lebesgue
measure in Rn).
� X is simple enough for sampling algorithms of acceptable

complexity to be able to sample uniformly from the G-BSP
tree nodes, i.e., from the subsets of X represented in the
G-BSP tree.
Furthermore, the cost function f is required to be bounded and
defined at each x 2 X.

3.3. Overall algorithm description

We use a G-BSP tree to represent the n-dimensional search
space X. The root g0

0 is at the 0th level of the tree and represents
the whole space X0 = X. g0

0 has two children, g1
00 and g1

01, which
are at the next level. They represent the subsets X00 and X01,
respectively, which are disjoint, have equal volume and their union
equals X0. In general, a node gk

s (where k P 0 and s is a binary
string of length k + 1) is at the kth level of the tree and has two chil-
dren, gkþ1

s0 and gkþ1
s1 , which are at the next, (k + 1)th, level. The vol-

ume of gk
s is 1/2k of the volume of X. This concept is easily

visualized in the case n = 2 and X and its subsets being rectangles
(see Fig. 3a).

During the minimization, the G-BSP tree is built in an iterative
fashion beginning at the root. The algorithm adds more resolution
to promising regions in the search space, i.e., the tree is built with
greater detail in the vicinity of points in X at which the objective
function attains low values. The overall procedure can be outlined
as follows:

1. Initialize the tree (see Section 3.4) and set an iteration counter
j = 0.

2. Select a ‘‘promising’’ leaf according to a probabilistic selection
scheme (see Section 3.5).

3. Expand the tree by bisecting the selected leaf. This results in the
creation of two new child nodes. Evaluate the objective function
at a point which is uniformly sampled from the subset of one of
the two children (see Section 3.6).

4. If a stopping criterion is not met, increment the iteration coun-
ter j and go to step 2, otherwise terminate the algorithm (see
Section 3.7).

3.4. Initializing the tree

For every tree node gk
s the following items are stored: (i) a set

Xs � X and (ii) a pair (xs, f(xs)) consisting of a point xs, uniformly
sampled from Xs, and the corresponding function value f(xs). The
tree is initialized by storing the whole search space X and a pair
(x0, f(x0)) in the root.

3.5. Selecting a leaf

At every iteration, the search for a global minimizer begins at the
root and proceeds down the tree until a leaf is reached. In order to
reach a leaf, we have to choose a concrete path from the root down
to this leaf. At each node, we have to decide whether to take its left
or right child as the next station. This decision is made probabilis-
tically. For every node, two numbers p0, p1 2 (0,1) are computed
such that p0 + p1 = 1. Arriving at a node, we choose to descend via
either its left or right child with probability p0 or p1, respectively.
We make these left/right decisions until we reach a leaf.

Computing the probabilities p0 and p1. The idea is to compute the
probabilities in a way such that the ‘‘better’’ child, i.e., the one with
the lower function value, has greater chance to be selected. We
compute p0 and p1 for each node gk

s based on the function values
associated with its children gkþ1

s0 and gkþ1
s1 . Let fs0 and fs1 be the func-

tion values associated with gkþ1
s0 and gkþ1

s1 , respectively. The follow-
ing criterion should be fulfilled:

fs0 < fs1 () p0 > p1: ð19Þ

If fs0 < fs1 we set

p0 ¼ ðt þ 1Þ=ð1þ 2tÞ; p1 ¼ t=ð1þ 2tÞ; ð20Þ



Fig. 3. (a) An example of a two-dimensional G-BSP tree and a rectangular search space X. In this case, the G-BSP tree is a two-dimensional k-d tree. (b) Expanding the leaf gk
s .

In this example, after the bisection of gk
s , the point xs lies in the box Xs1, hence gkþ1

s1 adopts the pair (xs, f(xs)) from gk
s . For the other child, gkþ1

s0 , a point xs0 is sampled uniformly
from Xs0 and the objective function is evaluated at that point.
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for a parameter t P 0. For t ?1we get p0 ¼ p1 ¼ 1
2 and our minimi-

zation algorithm becomes a pure random search. Setting t = 0
results in p0 = 1 and p1 = 0 and makes the algorithm deterministi-
cally choosing the ‘‘better’’ child of every node which leads to the
exclusion of a large portion of the search space and in most cases
prevents the algorithm from finding a global minimizer. For fs1 < fs0

we set

p0 ¼ t=ð1þ 2tÞ; p1 ¼ ðt þ 1Þ=ð1þ 2tÞ: ð21Þ

Updating the probabilities. From the discussion above it becomes evi-
dent that t should be chosen from the interval (0,1). For our algo-
rithm the parameter t plays a similar role as the temperature
parameter for a simulated annealing algorithm [23] so we will refer
to t as temperature as well. Like in simulated annealing, the search
begins at a high temperature level (large t) such that the algorithm
samples the search space quite uniformly. The temperature is de-
creased gradually during the minimization process so that promis-
ing regions of the search space are explored in greater detail. More
precisely, we update t according to the following cooling schedule:

t ¼ tmax expð�vjÞ; ð22Þ

where j 2 N is the current iteration number, tmax > 0 is the temper-
ature at the beginning of the search (for j = 0) and v > 0 is the cool-
ing speed which determines how fast the temperature decreases.

3.6. Expanding the tree

After reaching a leaf gk
s , the set Xs associated with it gets bi-

sected in two disjoint subsets Xs0 and Xs1 of equal volume. The cor-
responding child nodes are gkþ1

s0 and gkþ1
s1 , respectively. In this way,

we add more resolution in this part of the search space. Next, we
evaluate the new children, i.e., we assign to the left and right one
a pair (xs0, f(xs0)) and (xs1, f(xs1)), respectively.

Note that the parent of gkþ1
s0 and gkþ1

s1 , namely, the node gk
s ,

stores a pair (xs, f(xs)). Since Xs = Xs0 [ Xs1 and Xs0 \ Xs1 = ; it fol-
lows that xs is contained either in Xs0 or in Xs1. Thus we set

ðxs0; f ðxs0ÞÞ ¼ ðxs; f ðxsÞÞ if xs 2 Xs0 or ð23Þ
ðxs1; f ðxs1ÞÞ ¼ ðxs; f ðxsÞÞ if xs 2 Xs1: ð24Þ

To compute the other pair, we sample a point uniformly from the
appropriate remaining set (Xs0 or Xs1) and evaluate the function
at this point (see Fig. 3b for the case n = 2 and X and its subsets
being rectangles).

Updating the tree. During the search we want to compute the
random paths from the root down to a certain leaf such that prom-
ising regions—leaves with low function values—are visited more
often than non-promising ones. Thus, after evaluating a new
created leaf, we propagate its (possibly very low) function value
as close as possible to the root. This is done by the following updat-
ing procedure. Suppose that the parent point xs is contained in the
set Xs1 belonging to the new created child gkþ1

s1 . Therefore, we ran-
domly generate xs0 2 Xs0, compute f(xs0) and assign the pair
(xs0, f(xs0)) to the child gkþ1

s0 . Updating the tree consists of ascending
from gkþ1

s0 (via its ancestors) to the root and comparing at every
parent node gj

u the function value f(xs0) with the function value
of gj

u, i.e., with f(xu). If f(xs0) < f(xu) we update the current node
by setting (xu, f(xu)) = (xs0, f(xs0)) and proceed to the parent of gj

u.
The updating procedure terminates if we reach the root or no
improvement for the current node is possible.

Note that if f(xs0) is the lowest function value found so far, it will
be propagated to the root, otherwise it will be propagated only to a
certain level l 2 {1, . . . ,k + 1}. This means, that every node contains
the minimum function value (and the point at which f takes this
value) found in the subset associated with this node. Since the root
represents the whole search space, it contains the point we are
interested in, namely, the point at which f takes the lowest value
found up to the current iteration.

3.7. Stopping rule

We break the search if the following two criteria are fulfilled. (i)
The leaf gk

s selected in the current iteration has a volume which is
smaller than a user predefined value dv > 0. (ii) The absolute differ-
ence between the minimal function value found so far and the
function value computed in the current iteration is less than a user
specified df > 0.

The first condition accounts for the desired precision of the
solution and the second one assures that the algorithm makes no
significant progress any more.

3.8. Remark

We want to emphasize that it is very important that each two
nodes at the same tree level are of equal volume. Note that the
points are uniformly sampled within the tree nodes (see Section
3.2). In this case, if two differently sized nodes at the same tree le-
vel are selected equally often, the part of the search space repre-
sented by the smaller node will be sampled more densely than
the other part. Thus, the algorithm will possibly prefer parts of
the search space only because the G-BSP tree is constructed in a
particular way and not because of the cost function.

4. Processing in the space of rigid transforms

As already mentioned in Section 2.2, the choice of a parametri-
zation of SE(3) (the group of rigid transforms) is an important issue
since different parametrizations lead to different optimization
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performance. We decompose SE(3) into a translational and a rota-
tional part. While parametrizing translations is straightforward
special care is needed when dealing with rotations since the geom-
etry of the rotation space is more complex than the geometry of R3.
In the following, we concentrate on the rotation space.

In view of our branch and ‘‘stochastic bound’’ minimization
method, three specific problems have to be solved. (i) We need
to parametrize rotations. (ii) We have to hierarchically decompose
the rotation space in disjoint parts of equal volume. In other words,
a G-BSP tree has to be computed in which the nodes are represent-
ing equally sized parts of the rotation space. (iii) We need to sam-
ple points (i.e., rotations) uniformly from each leaf of the G-BSP
tree. These issues are discussed separately in the next three
subsections.

4.1. Parametrizing rotations

There are many ways how to parametrize 3D rotations. Discuss-
ing all of them is far beyond the scope of this paper. An excellent
introduction to this topic is included in the books by Kanatani
[31] and Watt and Watt [32] in the context of computer vision
and computer graphics, respectively. The set of all 3 � 3 rotation
matrices is a group (under matrix multiplication) which is referred
to as SO(3). A parametrization of SO(3) is a mapping R: U ? SO(3),
where U is a subset of R3 since every rotation has three degrees of
freedom.

Parametrizing rotation matrices using Euler angles is probably
the most widely used technique which is, however, inefficient in
conjunction with our minimization method. This is due to the fact
that Euler angles are a redundant representation of rotations. In or-
der to represent all elements in SO(3) the following range, E, for the
three Euler angles is needed: E = [0,2p) � [0,2p) � [0,p]. However,
the corresponding parametrization R: E ? SO(3), which is given in
[31], is not one-to-one. There are infinitely many combinations of
Euler angles (within the range E) which lead to the same rotation
matrix (see [32]). A minimization method like ours which consid-
ers the whole search space will waste computation time exploring
regions in E which should be completely ignored because they do
not lead to ‘‘new’’ rotation matrices. The same applies to determin-
istic branch-and-bound methods (see, e.g., [33]).

In order to avoid this difficulty, we employ a redundant-free
rotation space parametrization based on the axis-angle representa-
tion of SO(3). According to Euler’s theorem (see [31]), each rotation
in R3 can be represented by an axis specified by a unit vector n and
an angle h of rotation around it. n can itself be parametrized using
spherical coordinates u and w:

n ¼ ðsinðwÞ cosðuÞ; sinðwÞ sinðuÞ; cosðwÞÞ: ð25Þ

Fig. 4a visualizes this concept. In order to represent all rotation
matrices, we need to consider the following range for the spherical
coordinates (u,w) and the rotation angle h:

ðu;w; hÞ 2 ½0;2pÞ � ½0;p� � ½0;pÞ ¼ A: ð26Þ

The parametrization R: A ? SO(3), which can be found in [31], is a
one-to-one mapping between A and SO(3).

4.2. Hierarchical decomposition of the rotation space

According to the axis-angle representation and to (26), it is pos-
sible to express the set of rotations by the open ball in R3 with ra-
dius p which we will denote by B3(p) (see Fig. 4b). Thus a
straightforward way to decompose the rotation space is to enclose
B3(p) in the cube C3(p) = [�p,p]3 and to divide C3(p) into smaller
cubes by simply bisecting the x, y or z axis. Hartley and Kahl [33]
used this technique in conjunction with a deterministic branch-
and-bound minimization method to estimate the essential matrix
and to solve the relative camera pose problem. However, if com-
bined with our minimization algorithm, this technique leads to
two problems. First, the sub-cubes of C3(p) which do not lie within
B3(p) have to be ignored since the rotations they represent are in-
cluded in other cubes within B3(p). This gives rise to nodes in the
corresponding G-BSP tree which have only one ‘‘legal’’ child. Sec-
ond, the sub-cubes of C3(p) which are partially intersecting B3(p)
represent a smaller region of the rotation space than sub-cubes
at the same tree level which are fully enclosed in B3(p). Thus the
minimization algorithm will prefer rotations which are close to
the boundary of B3(p).

We solve these two problems by changing the shape of the
building blocks of the decomposition. Since we are dealing with
a three-dimensional ball the most natural shape is the shape of a
spherical box (see Fig. 4b). In ball coordinates, we define a spheri-
cal box S3 to be a point set of the form

S3 ¼ fðu;w; hÞ : ðu;w; hÞ 2 ½u1;u2Þ � ½w1;w2Þ � ½h1; h2Þg; ð27Þ

where [u1,u2) � [w1,w2) is the range of the spherical coordinates
and [h1,h2) limits the distance of the points to the origin. Decompos-
ing the rotation space means to hierarchically subdivide B3(p) into
disjoint spherical boxes of equal volume (see Fig. 5). Note that the
volume of S3 is given by

volS3 ðu1;u2;w1;w2;h1;h2Þ¼
Z u2

u1

Z w2

w1

Z h2

h1

h2 sinwdhdwdu ð28Þ

¼ðu2�u1Þðcosw1�cosw2Þ
h3

2�h3
1

3
: ð29Þ

Our aim is to consecutively cut S3 along the u, w or h axis such that
the resulting pieces have the same volume. Since volS3 depends in a
different way from each of the ball coordinates u, w and h we get a
different rule for cutting along each axis. We are looking for

u 2 ðu1;u2Þ; w 2 ðw1;w2Þ; h 2 ðh1; h2Þ ð30Þ

such that

volS3 ðu1;uÞ ¼ volS3 ðu;u2Þ; ð31Þ
volS3 ðw1;wÞ ¼ volS3 ðw;w2Þ; ð32Þ
volS3 ðh1; hÞ ¼ volS3 ðh; h2Þ; ð33Þ

where, for the sake of clarity, volS3 is expressed as a function of two
variables only, namely, the ones defining the interval which is
currently cut. Using (29) to solve the Eqs. (31)–(33) leads to

u ¼ u1 þu2

2
; w ¼ arccos

cos w1 þ cos w2

2

� �
;

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h3

1 þ h3
2

2
3

s
: ð34Þ

Thus we fully specified how to hierarchically decompose the space
of rotations in disjoint equally sized parts such that a G-BSP tree can
be built. Furthermore, the shape of the parts is optimally tailored to
our minimization algorithm.

4.3. Uniform sampling from spherical boxes

Our method for sampling points uniformly from a spherical box
is grounded on the following basic result from Statistics called the
inverse probability integral transform. Since it is proved in many
textbooks (like, e.g., in [34]) we state it here without a proof.

Theorem 1. Let F be a cumulative distribution function (c.d.f.) on R

and let U be a random variable uniformly distributed in [0,1]. Then the
random variable X = F(U)�1 has c.d.f. F.

Based on this result we perform the uniform sampling from a
spherical box S3 = [u1,u2) � [w1,w2) � [h1,h2) in three steps:



Fig. 4. (a) The axis-angle based parametrization of SO(3). The two bold dots in the figure represent a point before and after rotation by the angle h around the axis defined by
the unit vector n, which is itself parametrized using spherical coordinates (u,w). (b) The rotation space represented as the open ball in R3 with radius p. The spherical
coordinates (u,w) of the point (shown as a bold dot) define the rotation axis and the distance to the origin gives the angle of rotation h. The bold lines depict a spherical box.

Fig. 5. Decomposing the rotation space (represented as B3(p)) into spherical boxes of equal volume. In this example, only one spherical box at each splitting step is further
decomposed.
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1. Sample a u uniformly from [u1,u2).
2. Sample a w from [w1,w2) according to a c.d.f. F2 such that the

point in R3 with spherical coordinates (u,w) is uniformly dis-
tributed on the spherical patch S2 = [u1,u2) � [w1,w2).

3. Sample a h from [h1,h2) according to a c.d.f. F3 such that the
point in R3 with ball coordinates (u,w,h) is uniformly distrib-
uted in the spherical box S3.

Step 1 is easy to perform. In step 2, we need to compute the area
of a spherical patch (of the unit 2-sphere) as a function of an inter-
val [u1,u2) � [w1,w2):

areaS2 ðu1;u2;w1;w2Þ ¼
Z u2

u1

Z w2

w1

sin wdwdu ð35Þ

¼ ðu2 �u1Þðcos w1 � cos w2Þ: ð36Þ

Thus the c.d.f. we need in step 2 is given by

F2ðwÞ ¼
areaS2 ðu1;u2;w1;wÞ
areaS2 ðu1;u2;w1;w2Þ

ð37Þ

¼ cos w1 � cos w
cos w1 � cos w2

; ð38Þ

Analogously, we see that the c.d.f. in step 3 is given by

F3ðhÞ ¼
volS3 ðu1;u2;w1;w2; h1; hÞ
volS3 ðu1;u2;w1;w2; h1; h2Þ

ð39Þ

¼ h3 � h3
1

h3
2 � h3

1

; ð40Þ

where (40) follows from (29). Note that both F2 and F3 can easily be
inverted and we can use Theorem 1 to sample according to F2 and F3

and hence uniformly from the spherical box S3.
4.4. Computing the search space and the G-BSP tree

Now since all details regarding the parametrization and decom-
position of SO(3) and the sampling from spherical boxes are given,
we define the search space X and specify how to build the corre-
sponding G-BSP tree. We set

X ¼ A� bboxðMÞ; ð41Þ

where A is, according to (26), the domain of the axis-angle based
parametrization of SO(3) and bbox(M) (the bounding box of the
model M) represents the translational part of the search space.
Since bbox(M) is a rectangular box of the form ½x1; x2��
½y1; y2� � ½z1; z2� � R3 it can easily be broken up into smaller boxes
of the same size by simply bisecting it along the x, y or z axis.

The root g0
0 of the G-BSP tree represents the whole set X. The

child nodes of the root, namely, g1
00 and g1

01, represent the subsets
X0 and X1, respectively, resulting from cutting the 0th interval of
X—which is [0,2p) in (26)—using the rule (34)1. In general, a node
gk

s (where k P 0 and s is a binary string of length k + 1) is at the kth
level of the tree, represents a subset Xs of the 6D search space and
has two children, gk

s0 and gk
s1. The child nodes represent the sets Xs0

and Xs1, respectively, which are computed by cutting the (k mod
6)th interval of Xs according to (34) if 0 6 k mod 6 6 2 (rotational
part) or by dividing it in the middle if 3 6 k mod 6 6 5 (transla-
tional part).
5. Experimental results

In this Section, we test our registration method on a variety of
point sets. All tests presented in the paper are performed on a
laptop with a 3GHz CPU and 4GB RAM running a Linux operating



Table 1
The parameter values used in all experiments in this paper. The value of dv equals the
volume of a spherical box with side one degree times the volume of a box with sides
equal to one percent of the sides of the bounding box of the model point set.

Parameter Defined in Value

Cost d Eq. (15) 1/4 (min bbox side(M))
function d Eq. (16) 0.1

Cooling tmax Eq. (22) 50.0
schedule v Eq. (22) 0.00008

Stopping dv Section 3.7 1� rot. and 1% transl.
rule df Section 3.7 0.1
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system. The algorithm is implemented in C++. The parameter val-
ues used in all experiments presented here are given in Table 1.

Since our method is a probabilistic one, it computes each time a
(slightly) different result. In order to make a statistical meaningful
statement about its performance, we run 100 registration trials for
each pair of inputs and report the mean performance values. We
Fig. 7. (a) The success rate as a function of the percentage of outliers in the data sets sh
distance kernel (12) (our kernel) and the Huber kernel (7). Note that our kernel leads to an
outliers whereas at the level of 100% outliers the registration completely fails if the Hube
and the estimated pose is shown as a function of the percentage of outliers. Only the su
much more precise registration results which are almost independent of the amount of ou
local descriptor based approach (LD). A combination of a spin-image based descriptor a
corresponding to LD and 4PCS end by r = 4.0 and 40% outliers. This is because the author
we did. Observe that our algorithm is quite insensitive to noise and outliers and it outp
between the model and the data after registration. One unit corresponds to 1% of the b

Fig. 6. (Top row) The model set is shown as a blue mesh (note that only the mesh vertices
point clouds. The size of each point set and the number of outliers as percentage of the ori
sets are incomplete and sparsely sampled compared to the model. (Bottom row) Typica
based on the inverse distance kernel (12). Observe the high quality of the alignment even
9 and 17 s (depending on the number of points). (For interpretation of the references to
measure the success rate and the accuracy under varying amount
of noise and outliers in the input sets. The success rate gives the
percentage of registration trials in which a transform which is close
to the global optimal one is found. The accuracy is measured using
the RMS error (see [6]). The type of noise added to some of the
model and data sets is Gaussian and the outliers are simulated
by drawing points from a uniform distribution within the bound-
ing box of the corresponding point set. We report the number of
outliers as percentage of the original number of points and not
as percentage of the points in the corrupted set. For example,
100% means that there are so many outliers in the corrupted point
set as there are points in the outlier-free set. We did it so because
the results in [7], which we use for comparison, are reported in this
way.

We also measure the number of cost function evaluations and
the computation time for varying cooling speed v (defined in
(22)). We analyze the robustness of our method using two different
kernels in the cost function. Furthermore, we report how two
state-of-the-art registration approaches perform on the same point
own in Fig. 6. The success rate of the registration is shown when using the inverse
almost constant success rate of 100% even in the presence of a very large amount of

r kernel is used. (b) The RMS error between the ground truth pose for each data set
ccessful trials are used for computing the RMS error. Note that our kernel leads to
tliers. (c) and (d) We compare our method with the robust 4PCS algorithm [7] and a
nd integral invariants are used as local descriptors (see [7]). Note that the graphs

s in [7] did not test their methods on point sets with more noise or outliers whereas
erforms both other methods. The alignment error is measured using the RMS error
ounding box diagonal length of the model set.

are used for the registration). The outlier corrupted data sets are rendered as yellow
ginal number of input points are shown below each figure. Further note that the data
l registration results obtained with our algorithm using the model scalar field (13)
in the presence of a significant amount of outliers. A registration trial took between

colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 8. Registration of partially overlapping noisy and outlier corrupted point sets. The models are shown in blue whereas the data sets in yellow. (Top row) Partial scans of
the Coati model degraded by noise or outliers. The r of the Gaussian noise or the amount of outliers as percentage of the original number of input points is indicated below
each figure. One r unit equals 1% of the bounding box diagonal length of the corresponding point set. (Bottom row) Typical registration results computed with our algorithm.
5,000 (randomly sampled) points from each point set are used for the registration. The results are obtained without any noise or outlier removal, ICP refinement [1] or
assumptions about the initial pose of the point sets. Each registration trial took about 33 s. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 9. (Left) Computation time comparison between our algorithm and the box-and-ball (b&b) registration algorithm of Li and Hartley [19] which is based on globa
deterministic Lipschitz optimization theory. The processing time is given in seconds. In the case of 200 input points, our algorithm outperforms [19] by three orders o
magnitude. (Right) Runtime of our algorithm as a function of the number of input points. The figure clearly indicates a linear time complexity. Model and data used in this tes
case are downsampled copies of the outlier-free version of the data set shown in the top row of Fig. 6. In all tests, our method achieved a success rate of 100%.

Fig. 10. From left to right: success rate, RMS error, number of cost function evaluations and computation time of our registration algorithm as a function of the cooling speed
v (defined in (22)). Model and data used in this test case consist of 100 points randomly sampled from the outlier-free version of the data set shown in the top row of Fig. 6.
One RMS error unit equals 1% of the bounding box diagonal length of the point set.

C. Papazov, D. Burschka / Computer Vision and Image Understanding 115 (2011) 1598–1609 1607
sets and compare the runtime of our algorithm with the one of a
deterministic branch-and-bound method. In the following, we de-
scribe each test scenario in detail.

First, the success rate and the accuracy of our method are tested
with two different kernels, namely, the inverse distance kernel (12)
used in our cost function and the Huber kernel (7) used in [22]. The
point sets used in this test together with some typical registration
results are shown in Fig. 6. Note that outliers are added only to the
data set and it is a subset of the model. This case occurs in real
world scenarios in which one has a complete (relatively clean)
model of an object and wants to align it to a low quality data set
l
f
t

which only partially represents the object (due to visibility issues
like, e.g., occlusion and scene clutter). As already mentioned in Sec-
tion 2.1, we expect a registration method which minimizes a cost
function based on the (unbounded) Huber kernel to have difficul-
ties with outlier corrupted data sets. This is confirmed by the re-
sults of this test case which are summarized in the Fig. 7a and b.

In the second test case, we align two partially overlapping parts
of the Coati model under varying conditions. This time, noise and
outliers are added to both the model and the data set. This situa-
tion occurs in practice when building a complete object model
out of multiple partially overlapping scans. We compare our



Fig. 11. (Left) The complete model of a box (shown in green; 236,089 points) and three views of the very low quality data set (shown in red; 5000 out of 9623 points were
randomly sampled and used for the registration). The data was obtained with a correlation based stereo algorithm under poor lighting conditions. (Right) Our method
robustly achieved the right alignment in 10 out of 10 trials. Each registration trial took about 30 s. The high amount of noise and outliers which almost completely destroy the
shape of the object makes this a challenging example. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 12. Registration result in the case of a noisy and very sparsely reconstructed data set (shown by the red ‘‘curve’’) and a complete noise-free model (transparent green
mesh). Note that in this case the state-of-the-art integral volume descriptor (used in [6]) will fail since the curve which represents the data set does not enclose a volume in
R3. Local descriptors which use surface normals like, e.g., spin images [5] will fail as well since in general the normal of a curve which lies on a surface does not match the
surface normal. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Registration of noisy point sets with low overlap. Although rendered as meshes only points are used for the registration. Note that the input scans, (a) and (b),
represent different parts of the face and the model set, shown in (a), contains no parts of the neck. (c)–(e) A typical registration result obtained with our method shown from
three different viewpoints.

Fig. 14. Point sets leading to a cost function which has two almost equally low
minima. The nearly optimal solution differs from the optimal one by a rotation of
the data set by 180� about the axis which corresponds to the upright orientation of
the bottle.
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results with the ones reported in [7] which are obtained with the
robust 4PCS algorithm and a state-of-the-art local descriptor based
approach. We perform the tests on the same point sets which are
used in [7]. This allows for a precise comparison without the need
of re-implementing neither of the two algorithms. The model and
data sets together with some typical registration results obtained
with our method are shown in Fig. 8. In the Fig. 7c and d, we plot
our results together with the ones reported in [7].

In the third test scenario, we measure the computation time of
our algorithm and compare it with the one of the deterministic
registration method of Li and Hartley [19]. Since we run the tests
on a similar (i.e., not more powerful) hardware as the one used
in [19] an accurate comparison is possible. The results are summa-
rized in Fig. 9.

Next, we measure the performance of our method for varying
cooling speed v defined in (22). We report the results in Fig. 10.
Our algorithm achieves a success rate of 100% and an RMS error be-
low 0.5 for less than 2.5 s (for point sets consisting of 100 points).
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Finally, we demonstrate the ability of our method to deal with
partially overlapping and very sparsely sampled point sets cor-
rupted by noise and outliers which are not artificially generated
but originate in scan device imprecision. In Fig. 11, we show that
our method successfully computes the right registration even in
the case of an extremely degraded data set which represents only
a subset of the model. Fig. 12 illustrates the stability of our algo-
rithm when dealing with very sparsely sampled data sets. Figs. 1
and 13 show typical registration results for partially overlapping
points sets.

Note that our registration method could lead to incorrect results
for a class of shapes for which several almost equally good align-
ments exist and the registration ambiguity can be dissolved by
small scale features only. An example of such a shape is a large
cup with a small handle. In this case, the corresponding point sets
lead to a cost function with several local minima which are almost
as ‘‘good’’ as the global one (see Fig. 14).

6. Conclusions

We introduced a new technique for pairwise rigid registration
of point sets. Our method is based on a noise robust and outlier
resistant cost function which itself is based on an inverse distance
kernel. One of the main messages of the paper is that a registration
method which minimizes an objective function based on an un-
bounded kernel will be sensitive to outliers in the point sets. This
was fully validated by comparisons between our kernel and the
Huber kernel which were presented in the experimental part of
the paper.

A further property of our algorithm is that it does not rely on
any initial estimation of the globally optimal rigid transform. This
was achieved by employing a new stochastic algorithm for global
optimization. In order to minimize efficiently over complex shaped
search spaces like the space of rotations we generalized the BSP
trees and introduced a new technique for hierarchical rotation
space decomposition. Furthermore, we derived a new procedure
for uniform point sampling from spherical boxes.

Tests on a variety of point sets showed that the proposed meth-
od is insensitive to noise and outliers and can cope very well with
sparsely sampled and incomplete data sets. Comparisons showed
that our algorithm is by three orders of magnitude faster than a
deterministic branch-and-bound method and that it outperforms
a recently proposed generate-and-test approach and a state-of-
the-art local descriptor based method in terms of accuracy and
robustness.
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