
Fully Automatic Real-Time 3D Object Tracking
using Active Contour and Appearance Models

Giorgio Panin, Alois Knoll
Chair for Robotics and Embedded Systems, Technical University of Munich

Boltzmannstrasse 3, 85748 Garching bei Muenchen, Germany
Email: {panin,knoll}@in.tum.de

Abstract— This paper presents an efficient, robust and fully
automatic real-time system for 3D object pose tracking in
image sequences. The developed application integrates two
main components: an extended and optimized implementa-
tion of a state-of-the-art local curve fitting algorithm, and a
robust global re-initialization module based on point feature
matching. By combining the two main components, together
with a trajectory coherence and image cross-correlation
check modules, our system achieves full automatic and
robust object tracking in real world situations, requiring
very small manual intervention from the user. The developed
application relies upon a few standard libraries available on
most platforms, and runs at video frame rate on a PC with
standard hardware equipment.

I. INTRODUCTION

This paper presents a novel real-time 3D object tracking
system. The system efficiently combines local 3D con-
tour estimation, in order to get fast and accurate frame-
to-frame tracking, with advanced feature matching and
object pose reconstruction, in order to obtain a robust
global re-initialization.

Object contour tracking in image sequences is, on its
own, a very interesting and important topic in computer
vision, that can alone provide crucial information for
many image understanding problems and, at the same
time, allows the development of efficient and useful
working applications in many fields of interest. We refer
the reader to [2] for a survey of these applications and
the related references.

Among the currently available methodologies, a very
interesting one is the Contracting Curve Density (CCD)
algorithm: this method has been developed and presented
in [3] as a state-of-the-art improvement over other ad-
vanced techniques such as the Condensation algorithm
[4], and it has been shown to overperform them in many
different estimation tasks. Nevertheless, its higher com-
plexity has been initially considered as an obstacle to an
effective real-time implementation, even in the simplified
form named Real-Time CCD from the same authors [5],
and a working online version still had to be investigated.

Moreover, in order to realize an autonomous and robust
tracking system, some important additional issues have
to be taken into account; one of them is the possi-
bility of automatic initialization and reinitialization of
the system, both at the beginning of the tracking, and
in case of tracking loss. Nevertheless, one also expects

that a “well-behaving” tracking system does not need
a global estimation procedure during most of the task,
or, in the ideal case, only at the beginning. The global
initialization module is computationally more demanding
than the online tracker, and a frequent reinitialization
would significantly slow down the performance of the
system.

Therefore, a considerable effort in realizing such a
system have been focused on better performances of the
local tracking module, in terms of speed, accuracy and
convergence area for the parameter search.

All of the above mentioned issues, and other relevant
aspects, constitute the main motivation of the present
work, which constitutes an extension and improvement of
a recently published work by the same Authors [1], and
contributes to the state-of-the-art in 3D tracking systems
with the following achievements:

• The local real-time CCD algorithm [5] has been
reimplemented with a significant number of critical
speedups with respect to the originally proposed
version.

• A global initialization and reinitialization module has
been developed and introduced into the system

• A coherence check module, and a trajectory predi-
cion module based on simple kinematic models,
provide the robust binding between the two main es-
timation modules, and give the possibility of reliably
checking for a tracking loss condition at any time.

By combining the global and local estimation modules
together with the check and prediction modules in a fully
automatic way, we thus achieve both robust and real-time
tracking performances; as a result, we were able to build
a working application, that runs at video frame rate on a
PC equipped with standard video hardware.

The present paper is organized as follows: in Section 2,
a general overview of the tracking system will be given;
Section 3 states the common geometric framework, used
by all of the system modules; Section 4 will then focus on
the local CCD tracking algorithm, and the most important
implementation speedups over the existing version will
be described; Section 5 describes the global initializa-
tion/search module; Section 6 deals with the image cross-
correlation check and the trajectory prediction modules;
experimental results are given in Section 7.

Figure 1. Overall system architecture

II. SYSTEM OVERVIEW

A general overview of the system is here given, par-
ticularly focusing on the main purpose and interactions
of the different modules involved, and the information
flow between them. Referring to Fig. 1, we can see the
interacting modules inside the system, exchanging online
and offline data.

A description of the system behavior is then given by
the following abstract procedure:

System Setup: At startup, the user needs to specify
a basic model description for the object contour; this
operation needs to be done only once for a given object to
be tracked. The base contour shape of the object is taken
by simply placing a few control points of a spline curve
on a reference image, in order to satisfactory match the
visible object contour. The result of this process is the
base contour shape model and the reference image itself,
that are both stored and used in the subsequent tracking
steps.

Global Estimation: When activating the tracking en-
gine, the system first searches for the object over the
whole incoming image, by means of robust feature
matching against the reference image. The obtained pose
parameters and their estimation uncertainty constitute the
absolute knowledge of the object pose, in absence of
reliable predictions from the contour tracker.

Local Estimation: The local estimation module holds

the given contour model, and receives as well the online
color image stream coming from the video camera. It
refines the pose estimation coming from the prior knowl-
edge (either the absolute or the predicted one) through fast
and accurate contour matching. The output parameters are
both given to the end user, and used by the system in order
to make a pose prediction and check for the next timestep.

Trajectory Prediction: The trajectory prediction is
accomplished by a simple but suitable kinematic model,
via a steady-state Kalman Filter. The filter uses the
current estimated pose from the CCD algorithm as state
measurement, and provides a prediction of the next state.

Coherence Check: After each pose estimation (either
global or local), a check for the coherence of the result
is performed. The coherence check module employs the
reference model appearance, by rendering the textured
model surface at the estimated pose onto the image, and
comparing them via a normalized cross-correlation index.
If the coherence index at the given timestep do not satisfy
a given treshold, the global estimation module will be
called in order to reinitialize the system. Otherwise, the
predicted pose will be accepted as prior knowledge for
the next frame local pose estimation.

III. THE COMMON GEOMETRIC TRANSFORMATION

FRAMEWORK

The overall geometric mapping between the object
space and the image plane consists of a rigid roto-
translation, followed by perspective projection on the
image screen; for this purpose, it is first necessary to
specify in advance the internal camera image acquisition
model, given by a set of fixed intrinsic parameters Ψ that
are obtained off-line via a common calibration procedure.
The extrinsic transformation parameters will instead be
denoted with a vector Φ, so that the overall transformation
from a space point x to a screen point q is given abstractly
by

q = T (x,Φ,Ψ) (1)

The general form of this 3D/2D rigid transformation is
in turn given, in homogeneous coordinates, by

T (x,Φ,Ψ) = P (Ψ) [R (Φ)x + t (Φ)] (2)

being P the (3× 3) intrinsic projection matrix of the cam-
era, and (R, t) the extrinsic rotation matrix and translation
vector.

The projection matrix P contains generally linear and
nonlinear calibration parameters, accounting for several
distortion effects, the video resolution of the system, and
so on; for sake of simplicity, the nonlinear distortion
effects have been here neglected. We assume a simple
camera calibration to be performed off-line with one of
the commonly available tools, e.g. the OpenCv camera
calibration functions in [6], so that the matrix P is given
off-line and considered as a constant parameter for the
system.

Regarding the extrinsic parameters in (2), we decided
in particular to represent rigid rotations by means of a
common Euler angles parametrization

R (α, β, γ) = Rz (γ)Ry (β)Rx (α) (3)

being Rx, Ry, Rz the elementary rotation matrices around
x, y, z axes, with angles α, β, γ.

In order to avoid singularities, the current frame rota-
tion parameters have been in our implementation referred
to the previous estimated frame attitude, instead of the
fixed camera frame, so that actually

Rt (α, β, γ) = Rt−1 (dRz (γ)dRy (β) dRx (α)) (4)

at timestep t.
After each successful estimation, the current rotation

matrix is updated

Rt−1 → Rt (5)

and the orthogonality constraint over the matrix is en-
forced, in order to avoid numerical drifts.

Finally, our 6-dof transformation vector will be given
by

Φ ≡ [α, β, γ, tx, ty, tz] ; Φ ∈ �6 (6)

The above defined transformation model is subse-
quently used by all of the system modules; therefore
the object contour, the individual feature points on the
surface, and the whole surface image itself, will be all
transformed and mapped to the image according to (1),
given the current parameters vector Φ in (6) and the
current rotation matrix Rt.

IV. LOCAL TRACKING: THE IMPROVED REAL-TIME

CCD ALGORITHM

This Section considers in some detail the main speed-
up improvements over the original CCD algorithm [3] [5],
starting from a hypothetical initial estimate with a given
uncertainty.

In order to describe the algorithm improvements, we
recall as well its main underlying principles.

A. Contour Model Parametrization

As already mentioned in Section 2, the object contour
model is defined as a parametric model, that describes the
shape of the object in terms of a base shape and a limited
number of degrees of freedom (dof), chosen in order to
specify the allowed displacements and deformations of
the base curve.

In this implementation, we consider planar rigid ob-
jects with a single contour, moving in 3D space, and
we model the contour as a continuous, differentiable
and open quadratic B-Spline in �3. The contour rep-
resentation is given by a set of NC control points
C = {c0, c1, ..., cNC−1} and a piecewise quadratic Basis
Function B (s), so that the curve equation is given by

q (s) =
NC−1∑
n=0

cnB (s− n) (7)

A set of K sample points {q10, ...,qK0}, and nor-
mal vectors {n1, ...,nK} which are uniformly distributed
w.r.t. the contour parameter s, is computed in advance by
using (7), being the parameter K off-line fixed.

In order to search for the best matching pose, the
contour points q are then transformed in 3D space ac-
cording to the 6-dof parametrized mapping (1), where the
parameters vector Φ can be regarded as the state-space
of the contour.

B. Step 1 of CCD: Learn Local Statistics

Once the model parameter space has been specified,
the optimization algorithm is initialized by setting the
global estimated parameter mean and covariance matrix
(mΦ,ΣΦ) to the prior knowledge (m∗

Φ,Σ∗
Φ), where the

statistics are modeled by multivariate Gaussian distribu-
tions.

The next step consists of taking a set of points along
the normal directions on both sides of the curve, for each
sample position k. We decided to set a fixed distance

h along the line segments on which the set of points
are collected and evaluated, according to the hypothetical
uncertainty of the current evaluation step, by following
the heuristic rule

h2 = [det (ΣΦ)]1/N (8)

with N = 6 the parameter space dimension. This idea,
which differs from the original CCD formulation, allows
a significant computational saving by giving a constant
shape for the local statistics weighting function at each
sample point, thus avoiding many expensive nonlinear
function evaluations. For a contour that encloses a limited
area, moreover, some attention has been paid to limit the
search distance on the internal side, in order to avoid
“crossing” the opposite boundary, thus sampling pixels
from the wrong area.

The normal segments are then uniformly sampled along
their length, by dividing each of them into an overall
number of L equally spaced sample points (L/2 for each
contour side)

qkl = qk0 + dlnk (9)

where dl = d (qkl,qk0) is the distance to the curve (with
sign) along the normal.

After the search distance h has been set, we proceed
by assigning two suitable weighting functions w1, w2 to
the pixels qkl along the normal for the two sides of the
curve. By following the suggested rules in [3], we decided
to define these functions as

w1/2 (dl) := Z

(
a1/2 (dl)− γ1

1− γ1

)6 [
e−d2

l /2σ̂2 − e−γ2

]+

(10)
where Z is a normalization factor ensuring that∑

l w1/2 (dl) = 1, and

a1 (d) :=
1
2

[
erf

(
d√
2σ

)
+ 1

]
; a2 := 1− a1 (11)

the smooth assignment functions to the two sides of the
curve, with γ1 = 0.5 (disjoint weight assignment) and
γ2 = 4 for the truncated Gaussian in (10). Moreover, the
standard deviation σ̂ has been chosen such as to cover the
specified distance h.

That means

σ̂ = max
[

h√
2γ2

, γ4

]
; σ =

1
γ3

σ̂ (12)

with the two additional constants γ3 = 6 (linear depen-
dence between σ and σ̂) and γ4 = 4 (minimum weighting
window width). The L distances dl, the assignment and
weighting function values are computed and stored as
well.

Afterwards, the sample points set qkl will be trans-
formed according to the current hypothesis Φ = mΦ, by
applying the geometric transformation (1).

The result is a set of local image positions vkl

vkl = T (qkl,Φ) (13)

The 2K local unnormalized RGB statistics up to the
second order, are then collected as specified in the original
CCD algorithm (see [3] and [5])

ν
(0)
ks =

L∑
l=1

wkls

ν
(1)
ks =

L∑
l=1

wklsIkl (14)

ν
(2)
ks =

L∑
l=1

wklsIklIT
kl

with s = 1, 2 (for each curve side), k = 1, ..., K , and Ikl

the observed pixel colors at the sample point locations.
In order to perform the space-blurring step along the

contour, as recommended in [3] with exponential filtering,
we managed to simplify the operation by using a constant
set of filtering coefficients for the whole contour, inde-
pendent from the current shape Φ: every contour point
k = 1, ..., K will receive a contribution from each other
point k1 given by a coefficient

b (k − k1) = (λ/2) exp (−λ |k − k1|) (15)

with λ = 0.4 in our implementation, so that

ν
(o)
ks ←

K∑
k1=1

b (k − k1) ν
(o)
k1s; o = 0, 1, 2 (16)

The space-filtered statistics are then also smoothed in
time, by means of a simple first-order exponential decay
rule

ν̃
(o)
ks (t) = τν

(o)
ks + (1− τ) ν̃

(o)
ks (t− 1) (17)

and finally, the resulting quantities are normalized, thus
giving a set of expected color values and covariance
matrices for each sample position k and each side of the
contour

Ī(s)
k =

ν̃
(1)
ks (t)

ν̃
(0)
ks (t)

; Σ̄(s)
k =

ν̃
(2)
ks (t)

ν̃
(0)
ks (t)

(18)

The complete normalized local statistics set will be
indicated with S :=

(
Ī(s)
k , Σ̄(s)

k

)
with 2K color mean

vectors Ī(1)
k , Ī(2)

k and (3× 3) positive definite covariance
matrices Σ̄(1)

k , Σ̄(2)
k , for each side of the curve and each

sample position k.

C. Step 2 of CCD: Compute the Cost Function and its
Derivatives

Here the collected local statistics are used in order to
obtain the matching function, its gradient and the Hessian
matrix, which will be used to update the pose parameters.

By following [3], we write the general cost function
formulation, with a slightly different notation:

E = E1 (Φ,m∗
Φ,Σ∗

Φ) + E2 (Φ, S) (19)

where

E1 :=
1
2

(Φ−m∗
Φ)T (Σ∗

Φ)−1 (Φ−m∗
Φ) + Z (Σ∗

Φ)
(20)

is the prior log-likelihood according to a Gaussian distri-
bution (with normalization factor Z) and

E2 := − log
∏
k,l

p (Ikl|Φ, S) =

=
∑
k,l

[
1
2

(
Ikl − Îkl

)T

Σ̂−1
kl

(
Ikl − Îkl

)
+ Z

(
Σ̂kl

)] (21)

with normalization Z
(
Σ̂kl

)
, is the log-probability of the

observed colors Ikl w.r.t. the pixel statistics
(
Îkl, Σ̂kl

)
,

with Îkl given by

Îkl = a1 (dl) Ī
(1)
k + (1− a1 (dl)) Ī

(2)
k (22)

and the local covariance matrices Σ̂kl

Σ̂kl = a1 (dl) Σ̄
(1)
k + (1− a1 (dl)) Σ̄

(2)
k (23)

as proposed in [3].
Regarding the derivatives, we decided instead to neglect

the dependence of (23) on Φ, because this leads to a high
computational cost for the overall derivatives of E2

1.
The last implementation choice allows to formulate the

cost function E2 in a standard weighted nonlinear least
squares form

E2 =
1
2

∑
k,l

(
Ikl − Îkl (Φ)

)T

Σ̂−1
kl

(
Ikl − Îkl (Φ)

)
(24)

where the only dependence on Φ has been put into
evidence, and the normalization term of the sum (21) has
therefore also been neglected for the optimization.

With this formulation, the Gauss-Newton approxima-
tion to the Hessian matrix can be adopted. First, the
gradient is computed as

∇ΦE2 = −
∑
k,l

JT
a1

Σ̂−1
kl

(
Ikl − Îkl

)
(25)

1In a previous implementation, as described in [1], a further approxi-
mation was introduced by substituting (23) with a hard 0/1 assignment
rule, therefore completely removing the dependence of Σ̂kl on Φ.
The present implementation, more faithful to the original formulation,
considers this dependence up to the 0− th order, that is, neglecting the
dependence only when computing the derivatives.

with

Ja1 (Φ,vkl) :=
(
Ī(1)
k − Ī(2)

k

)
(∇Φa1 (dl))

T (26)

Afterwards, the Gauss-Newton approximation to the Hes-
sian matrix is given by

HΦE2 =
∑
k,l

JT
a1

Σ̂−1
kl Ja1 (27)

The overall gradient and Hessian matrices for the
optimization are then obtained by adding the prior cost
function derivatives

∇ΦE1 = (Σ∗
Φ)−1 (Φ−m∗

Φ) (28)

HΦE1 = (Σ∗
Φ)−1

and the Newton optimization step can finally be per-
formed as

mnew
Φ = mΦ − (HΦE)−1∇ΦE (29)

The covariance matrix is updated as well by an expo-
nential decay rule (see [3])

Σnew
Φ = cΣΦ + (1− c) (HΦE)−1 (30)

with c = 0.25 in our implementation.
A confirmation check before every parameter update,

as recommended in [3], is here employed as follows.
We compute a confirmation value given by

Knew := g (mnew
Φ −mΦ,Σnew

Φ + ΣΦ) (31)

being

g (m,Σ) :=
1

(2π)d/2 |Σ|1/2
exp

(
−1

2
(
mTΣ−1m

))
(32)

the multivariate Gaussian function; if this parameter is
increasing over the previous evaluation K new > Kold,
the estimate mnew will be recorded as the current best
estimate

mok
Φ = mnew

Φ ; Σok
Φ = Σnew

Φ (33)

and kept for the output.
The optimization then restarts from step 1 with the

updated parameters

mnew
Φ → mΦ

Σnew
Φ → ΣΦ (34)

Knew → Kold

and the whole procedure is repeated until convergence; we
extensively verified that less than 10 iterations are always
sufficient to give satisfactory results.

At the end, the best recorded estimate
(
mok

Φ ,Σok
Φ

)
will

be given as output of the algorithm.
For sake of clarity, a sketch of the whole local tracking

algorithm is below given.

Algorithm 1 Local countour tracking algorithm (CCD)

Input: Contour points {q10, ...,qK0}, normal vectors
{n1, ...,nK} and prior information (m∗

Φ,Σ∗
Φ)

Initialize: set current estimate (mΦ,ΣΦ) = (m∗
Φ,Σ∗

Φ)
Main Loop: iterate until convergence

1: Compute uncertainty area h according to the current
estimate (Eq. 8)

2: Compute the KL sample points in space qkl (Eq. 9),
and the assignment weights (Eqs. 10, 11), according
to h

3: Project the sample points on the screen vkl (Eq. 13)
4: Compute 2nd order unnormalized local statistics ν

(o)
ks

(Eq. 14)
5: Compute space-time filtered statistics at time t,

ν̃
(o)
ks (t) (Eq. 17)

6: Get the normalized statistics set S =
(
Ī(s)
k , Σ̄(s)

k

)
(Eq. 18)

7: Compute Îkl and Σ̂kl (Eqs. 22 and 23)
8: Compute the gradient ∇ΦE2 and the Hessian HΦE2

(Eqs. 25 and 27) and add the prior terms (Eq. 28).
9: Perform Newton optimization step to compute mnew

Φ

and Σnew
Φ (Eqs. 29 and 30)

10: Compute confirmation parameter K new (Eq. 31), and
evtl. accept (mnew

Φ ,Σnew
Φ) as best estimate

11: Update estimation parameters and confirmation num-
ber (Eq. 34)

Output: Best estimated contour pose
(
mok

Φ ,Σok
Φ

)

V. GLOBAL POSE INITIALIZATION

For the (re-)initialization phase, a feature matching
approach is used to estimate the position of the object
(Fig. 2). In order to detect the object in the current image,
the reference image is required.

We employed an implementation of the well-known
SIFT algorithm [7] for keypoint detection and matching,
followed by least-squares pose estimation:

• Significant feature point descriptors are first off-line
extracted from the reference image, and stored in a
database.

• Subsequently, the keypoints are matched to features
found in the current image.

• Afterwards, the detected matches are used in order
to reconstruct (in a least-squares sense) the 3D pose
of the object, through the POSIT algorithm [8],
following the implementation of the OpenCv library
[6]. In order to perform this task, the reference
keypoint positions in the database are measured in
real-world units by knowing the conversion factor of
the reference image [pixel/mm].

The obtained transformation finally gives the absolute
estimate of the contour position, needed for the CCD
optimization algorithm.

Figure 2. Initial pose estimation with features matching

VI. PREDICTION AND CHECK MODULES

A. Image cross-correlation check

The coherence check module employs the model ap-
pearance information, by rendering the model surface at
the estimated pose onto the image, and comparing the
results via a normalized cross-correlation (NCC) index.
NCC has been employed because of its independence
from lighting, and relative smooth behavior with respect
to occlusions and noise in the real object image.

NCC between two grayscale images R and I , is defined
as

NCC =

∑
x,y

(
R (x, y)−R

) (
I (x, y)− I

)
√∑

x,y

(
R (x, y)−R

)2 ∑
x,y

(
I (x, y)− I

)2

(35)
where R and I are the mean values of R and I respec-
tively, and the sums are performed over the overlapping
pixel coordinates of the two images.

Our procedure would consist first in warping the ref-
erence image R onto the current image I according
to the mapping (1) and the parameters Φ, and then
computing (35), where the sums are performed over the
superimposing pixels. Instead, in order to keep a constant
number of pixels in the sums, independent of the pose
parameters, we equivalently perform an inverse warp of
the image I onto R, so that the sums extend over the
constant pixel set of R. By doing so, the NCC measure
(35) will be stable, and independent from the object pose
Φ.

Therefore, we compute the following overall index

NCC =

∑
x,y

(
R (x, y)−R

) (
I

(
T−1 (x, y,Φ)

)− I
)

√∑
x,y R (x, y)2

∑
x,y

(
I (T−1 (x, y,Φ))− I

)2

(36)

Figure 3. Results of the tracking on a simulated scenario

250 500 750 1000

-2

0

2

4

P
os

iti
on

s
[m

m
]

250 500 750 1000
-20

-10

0

10

20

250 500 750 1000

-2

0

2

250 500 750 1000

-3

-2

-1

0

1

R
ot

at
io

ns
 [d

eg
]

250 500 750 1000

-1

0

1

2

Frame
250 500 750 1000

-2

-1

0

1

2

Figure 4. Position and orientation errors

The coherence check is easily performed by setting a
suitable minimum treshold on (36), and calling for a re-
initialization in case of a too low image coherence.

B. Trajectory prediction

In order both to obtain a robust trajectory estimate,
and to be able to give a prediction over the next object
position, we employ a standard Kalman Filter, that in-
corporates a “reasonable” noisy kinematic model of the
trajectory, known as Discrete White Noise Acceleration
Model [9]. For this system, the steady-state estimation

filter (or alpha-beta filter) is employed, with suitable
covariance parameters for each state variable.

This module, moreover, allows to furtherly check the
tracking behavior by putting an upper threshold on the
measurement residuals between the predicted variables
and the estimated values (according to the CCD algo-
rithm); if the residual error exceeds the threshold, the
measured trajectory is considered as unreliable and a re-
initialization call is issued. The reader is referred to [9]
for more details on the topic.

Figure 5. Results of two real-time tracking experiments

VII. EXPERIMENTAL RESULTS

In order to evaluate the performance of the tracking sys-
tem, a simulated sequence was generated by superimpos-
ing a fictitious planar object onto a moving background
sequence taken from an office scenario. The object moves
w.r.t. the camera by following a 2nd-order random walk
motion model, obtained by adding Gaussian acceleration
noise to a linear AR state system, with independent
dynamics for each dof. In Fig. 3 some frames taken from
the simulation are shown, and both the estimated contour
and 3D object frame positions are displayed.

The results of the tracking are shown in Fig. 4, where
the 6 trajectory estimation errors w.r.t. the real values
are shown; the translation errors are measured in [mm],
and the orientation errors are expressed by using the
equivalent axis-angle representation, where the three com-
ponents of the rotation error vector are given in [deg]. The
rms estimation error over the whole sequence is lower
than 2mm for the 2 planar translations, 7mm for the depth
component, and 1deg for the rotations.

Subsequently, we tested the tracking system on real-

life scenarios, and in Fig. 5 a few pictures from two
real-time experiments are shown. The frames show the
online tracking performance after the initialization under
different conditions, such as partial occlusion, cluttered
background, changing lighting, and widely different ob-
ject positions; in particular, in the second sequence a
superimposed 3D car model shows a nice example of
Augmented Reality application, made possible by the
system.

For all the experiments, a standard webcam with a
resolution of 640x480 has been employed, without any
preprocessing of the input images. The tracking system
runs in real-time on a 3 GHz PC, and the processing
speed of the tracking loop provides an overall frame rate
of more than 30 fps.

VIII. CONCLUSIONS

We presented a robust real-time system for 3D object
pose tracking in image sequences, which integrates an
extended and optimized implementation of a powerful
local curve fitting algorithm, and a robust global re-
initialization module based on point feature matching.

The two main components were effectively combined
together with a trajectory coherence and image correlation
check modules, in order to achieve full automatic and real-
time object tracking in real world situations. Simulation
and experimental results have been presented, through a
stand-alone implementation running at video frame rate
on standard hardware.

Several available fields of interest have been considered
for this kind of application; we mention here a few
of them, like as: Augmented Reality (AR) applications,
visual-guided robot manipulation, games, robot naviga-
tion (self-localization) and target tracking (e.g. ball/robot
tracking in the RoboCup competition).

Future developments of the system include the inte-
gration into a more complex tracking framework, that
will allow more complex applications like as body parts
(faces, hands) or full-body tracking, automatic assembly
procedures for mechanical parts, and many others as well.

REFERENCES

[1] G. Panin, A. Ladikos, and A. Knoll, “An efficient and robust
real-time contour tracking system.” in 2006 IEEE Interna-
tional Conference on Computer Vision Systems (ICVS), New
York, NY, USA, 2006, p. 44.

[2] A. Blake and M. Isard, Active Contours: The Application
of Techniques from Graphics,Vision,Control Theory and
Statistics to Visual Tracking of Shapes in Motion. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 1998.

[3] R. Hanek and M. Beetz, “The contracting curve density
algorithm: Fitting parametric curve models to images using
local self-adapting separation criteria,” International Jour-
nal of Computer Vision (IJCV), vol. 59, no. 3, pp. 233–258,
2004.

[4] M. Isard and A. Blake, “Condensation – conditional density
propagation for visual tracking,” International Journal of
Computer Vision (IJCV), vol. 29, no. 1, pp. 5–28, 1998.

[5] R. Hanek, T. Schmitt, S. Buck, and M. Beetz, “Fast image-
based object localization in natural scenes,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS) 2002, ser. Lausanne, 2002, pp. 116–122.

[6] OpenCV Library.
http://www.intel.com/technology/computing/opencv/.

[7] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” Int. J. Comput. Vision, vol. 60, no. 2,
pp. 91–110, 2004.

[8] D. DeMenthon and L. S. Davis, “Model-based object pose
in 25 lines of code,” in ECCV ’92: Proceedings of the Sec-
ond European Conference on Computer Vision. London,
UK: Springer-Verlag, 1992, pp. 335–343.

[9] T. K. Y. Bar-Shalom, X. Rong Li, Estimation with applica-
tions to Tracking and Navigation. John Wiley and Sons,
Inc., 2001.

Giorgio Panin received the M.Sc. degree in Electronics
Engineering in 1998 and the Ph.D. degree in Robotics
in 2002 from the University of Genoa, Italy. He joined
the European IST Project Artesimit in 2002 as postdoc-
toral fellow at the Informatics Faculty of the Technical
University of Munich, Germany, funded under 5th FWP
(Fifth Framework Programme), IST-2000-29689. Since
January 2005 he is Assistant Professor at the Chair for

Robotics and Embedded Systems of TU Munich. His
current research interests include anthropomorphic robot
hands control, design and implementation of advanced
real-time computer vision systems and human-computer
interfaces (HCI) design.

Alois Knoll received the diploma (M.Sc.) degree in
Electrical Engineering from the University of Stuttgart,
Germany, in 1985 and his PhD (summa cum laude)
in computer science from the Technical University of
Berlin, Germany, in 1988. He served on the faculty of
the computer science department of TU Berlin until 1993,
when he qualified for teaching computer science at a
university (habilitation). He then joined the Technical
Faculty of the University of Bielefeld, where he was a full
professor, and the director of the research group Technical
Informatics until 2001. In March 2001 he was appointed
to the board of directors of the Fraunhofer-Institute for
Autonomous Intelligent Systems. Since autumn 2001 he
has been a professor of computer science at the Computer
Science Department of the Technical University of Mu-
nich. His research interests include sensor-based robotics,
multi-agent systems, data fusion, adaptive systems and
multimedia information retrieval. In these fields he has
published over eighty technical papers and guest-edited
international journals. He has been part of (and has coor-
dinated) several large scale national collaborative research
projects (funded by the EU, the DFG, the DAAD, the
state of North-Rhein-Westphalia). He initiated and was
the program chairman of the First IEEE/RAS Conference
on Humanoid Robots (IEEE-RAS/RSJ Humanoids2000),
which took place at the Mass. Inst. of Technology (MIT)
in September 2000. Prof. Knoll is a member of the
German Society for Computer Science (Gesellschaft fr
Informatik (GI)) and the IEEE.

