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Abstract At the Institute of Robotics and Mechatronics of the German Aerospace
Center (DLR Oberpfaffenhofen), a robotic hand-arm system is being developed,
which will consist of a 19 active degree-of-freedom (DoF) hand and a 7 active DoF
flexible arm based on antagonistic drive principles. It is targeted to mimic human
hand and arm motion as closely as possible, taking kinematic as well as dynamic
ranges into account. In the development of such a highly anthropomorphic hand-
arm system, the motion of the human arm plays a key role. While the study of
kinematic and dynamic ranges in humans has been done in various sources in litera-
ture, none of these are however directly applicable to the developed robotic system.
We approached this problem by using RAMSIS data recorded at the Department of
Ergonomics at the technical university of Munich. By creating a three-dimensional
multi-mode visualisation tool, these data were made available for laying out the
dimensions and localisations of the 52 actuators that control the hand-arm system.

1 Introduction

At the Institute of Robotics and Mechatronics of the German Aerospace Center
(DLR Oberpfaffenhofen), an effort is underway to construct a robotic system mim-
icking the kinematics and dynamics of the human arm using modern mechatronic
approaches, a model of which is shown in Figure 1. This system is based on a co-
contractive (antagonistic) drive system with joint structures as close to the biological
counterpart as possible [3]. In order to construct this system, detailed knowledge of
the human hand and arm is required. Much of these data can be obtained by studying
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corpses; the larger part of these information is available in medical literature. Natu-
rally, dynamics data of the arm can only be obtained in vivo. Creating a human-like

Fig. 1 Model of the DLR integrated hand-arm system.

hand-arm system means imparting it the same abilities and skills that a human arm
can perform. Obviously, an important point is the force or torque, respectively, that
the arm is able to exceed; hence the performance of the arm must be examined.
Due to the kinematics of the robot arm and the anatomy of the human arm, how-
ever, this maximum load varies with the joint position or the alignment of the arm,
respectively. In consequence, instead of measuring a single force or torque value,
one has to study the capacity of the human arm in much detail in order to be able
to state information on how much the arm can render in a given position. This was
the very goal of the RAMSIS human model [1] (although RAMSIS should predict
maximum loads upon the whole body, not only the arm), that has now been used for
the purpose of a robot arms construction.

The human arm is a seven degree of freedom (DoF) kinematic chain. It consists
of a three-DoF ball joint at the shoulder which, in combination with a two-DOF
shoulder girdle, allows an impressive motion range. The second and third part is a
single-DoF elbow and a rather complex three-DoF wrist for forearm rotation as well
as non-cardanic pitch and yaw motion for the hand.

2 Construction of a biomimetic hand-arm system

When constructing a robotic system with mechanical variable impedance, all joints
are governed by the same principle: a joint must have an inherent mechanical flexi-
bility with variable, nonlinear spring, and be biactuated to realise that. The develop-
ment of antagonistic robot joints is a multi-disciplinary challenge rather than a me-
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chanical problem. Therefore, a large antagonistic system requires a complete system
design, including control strategies for the most important control modes. Due to the
elastic elements, every motor action in an antagonistic system will induce vibration.
Flexibility at the joint level requires the inclusion of a nonlinear spring between the
actuator and the joint. Two different principles can be distinguished in the literature:
those based on linear springs, and those based on nonlinear (typically rubber-based)
elements.

Due to their compact size and high force-to-weight ratio, dc motors are a more
optimal candidate for actuation in anthropomorphic systems. Most approaches con-
sist of two motors working against (to increase stiffness) or with (to change posi-
tion) each other, and are connected over gear boxes via elastic elements. In most
cases, these elastic elements consist of springs. Since springs are linear, however,
these alone do not suffice: increasing the force of a linear spring does not increase
its stiffness. Therefore, such solutions have to include a mechanism changing the
linear properties of the spring into a nonlinear behaviour.

There have been different approaches towards obtaining nonlinear springs in the
literature. Morita and Sugano [5] used a spring leaf with varying length in order
to induce nonlinearities on the spring. The construction, however, was difficult and
error-prone, and lead to a complex nonlinear transfer function. Migliore et al. [4]
used a special spring device inducing a force-length relationship which can be de-
termined by the curvature of a bar extending two springs. The construction is rela-
tively large and may suffer from nonlinear friction and wear-and-tear. Tonietti et al.
[6] introduced a variable stiffness actuator, a rather complex and large structure ac-
tuating three springs with tendons over rollers. English and Russell [2] construct an
antagonistic elbow joint using similar approaches as presented in this paper. How-
ever, in our approach the elbow actuators cannot be placed in the lower arm, since
that space is needed for the hand actuators. Also, they assume that arm stiffness is
independent of joint position, but that would lead to linear springs and remove the
requirement of robustness against collisions, since the stiffness near the joint limit
would not increase, as it does in our case.

Fig. 2 Setup for a biarticulate joint with a nonlinear spring. Height / of the triangle relative to 7/2
determines the stiffness constant.
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The antagonistic concept, that we use to control the fingers of the hand, follows
the approach by Tonietti et al., but in a significantly simplified form. In our setup,
each motor is equipped with a nonlinear spring element (see Figure 2). Each element
consists of a linear spring which pushes the tendon, forming it into a triangle. The
height & of this triangle relative to half base / determines the stiffness constant of
the construction. Two motors, each of which is equipped with a nonlinear spring
element, then can be used to increase the total stiffness (up to infinite stiffness) by
pulling in counter directions, since their tendons are stiffly connected to each other
via the joint that they are controlling.

Motor 2

ANAN

Link 1

Motor 1 |

Fig. 3 Setup for a variable impedance joint with a preloadable spring.

The arm dynamics are more prominent than hand dynamics, due to the higher
masses that have to be moved. To get an optimal performance at minimal weight, it
was chosen to use a large motor (Motor 1 in Figure 3) for joint positioning, and a
small motor (Motor 2) for adapting the spring characteristics of the joint. Thus the
antagonistic approach was only used to control the fingers of the hand; a variable
impedance approach for the arm. In order to obtain nonlinearity in the spring proper-
ties, the joint is connected to the link via a cam disk, which preloads the spring when
the joint is moved (see Figure 4). The form of the cam disk can be freely chosen,
in order to get different nonlinearity properties of the spring; normally, however, it
will be circular as depicted below.

Linear Bearing

Roller Position
of Undeflected Link

/

(a) Deflection (®)

Fig. 4 Cam disk for nonlinearlising the spring. The deflection, due to joint movement, preloads
the spring during movement.
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Considering the construction of the full arm, the actuators must be parameterised
with respect to their moment and position, so as to have the forces resemble those
of the human arm. This parameterisation can only be done, when the corresponding
movements in the human arm are known. This requires knowledge of the maxi-
mum forces and moments that can be exerted by the human arm, dependent of the
positions of the joints.

3 Local stress analysis and the torque bubble

The central idea of load evaluation by the RAMSIS human model is the principle
of local stress analysis. This means, that unlike former evaluation techniques, loads
upon a human body are not rated with respect to a complete posture or specific
action, but their resulting moment of force upon each single joint is calculated in
order to compare the actual stress to the maximum stress the joint can bear (Fig. 5).
If every resulting charge is within its constraints, the global load can be sustained or
mustered, respectively; otherwise, it is undue.

Fig. 5 Example demonstrating the principle of local stress analysis. Left: global load on hand;
right: resultant stress on the shoulder joint.

Due to our anatomy, the resultant turning moments do in general occur as a com-
bination of bending moments and torsion moments, thus pointing into an arbitrary
direction. At the same time, the maximum torque value a joint can bear certainly de-
pends both on the torques direction and the joint position. Plotting the tie points of
the maximum torque vectors into every direction around the joint yields the set of all
turning moments that can just about be sustained. For the reasons seen above, these
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vectors are accommodated by some kind of distorted bubble, an unconformable
three-dimensional shape (Fig. 6).

Fig. 6 Sustainability consideration. a) tolerable load; b) undue load.

Consequently, to decide whether an external load is sustainable, one has to check
for every joint if the resultant torque vector lies within the boundaries of the torque
bubble measured for the respective joint position (Fig. 6a) or not (Fig. 6b).

This implies the need of exact knowledge of the bubble shape for every joint
position, which naturally is impossible to acquire. For that reason, one manages
with the following approximation: For a given ball joint position, one approaches the
bubble by segmentally defined ellipsoids each of which is determined by diameter
and height the individual diameters corresponding to bending moments, the height
to torsional moments (Fig. 7). For joints that allow less degrees of freedom (DoF),
e.g. the knee (one DoF: deflection) or the elbow (two DoF: deflection and rotation),
the three-dimensional bubble degenerates into other shapes, e.g. two-dimensional
ellipse-like areas.

Fig. 7 Composition of the torque bubbles. a) and b) parallel and anti-parallel torsion; c) bending
moment; d) exemplary simplified moment bubble.
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4 Relevance to the hand-arm system

The goal in constructing future robot hands and arms is maximum flexibility and
performance. Following natures example, they shall be able to fulfil the same tasks
as a human arm, develop the same skill and the same strength.

Just like human arms, however, they will always feature preferred directions in
which their fortitude culminates and others, where they cannot perform their maxi-
mum forces or torques, respectively. And this is where the gathered data described
above comes into play: It shall now be used to design a most human-like new robot
arm whose preferred and non-preferred orientations are congruent with the respec-
tive orientations of a human arm. Interpreting however the data given in several
voluminous tables, shapes up as a highly challenging task and gives rise to the need
of more vivid illustration.

Therefore, a visualisation tool has been programmed in order to ease the imagi-
nation of the torque bubbles explained before.

5 Visualization tool for shoulder torque bubble

The implementation of the visualization tool was effected under Matlab and in-
cludes two screens (Fig. 8). On the down right side one can see the position of the
arm which permits quick orientation. On the left hand side, the measuring points
are charted and interpolated by an ellipse-like curve corresponding to the bending
moments. Naturally, the view can be rotated freely in three dimensions; in Fig. 8
however, it is directed along the outstretched arm towards the shoulder joint (i.e.,
the origin).

Yet another type of presentation has been provided, that is to say a multiple view
of several or all available torque ellipses (Fig. 9). For that purpose, the curves are
not plotted around the centre of the shoulder joint but around the outstretched arm.
Thus, one can more easily derive patterns or estimate the position of maximum and
minimum fortitude.

6 Conclusion

Translating a human arm to a technical system demands to determine workspaces,
torque capacities and a technical kinematics representation.

The passive elasticity of the DLR hand-arm system is a subject of research. This
is especially true for the chosen shoulder kinematics, so that it allow for stiffness
variation between typical motion directions as well as across such directions. As
the elasticity is intrinsic to the joints we built, the shoulder was decided to be con-
structed as a kinematic chain, rather than a single 3-DoF joint. Combined with other
investigations, the torque bubble data is used to find strong and weak postures and
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Fig. 8 Screenshot of the visualization tool in shoulder mode.
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Fig. 9 Screenshot of the visualization tool in multi-mode.
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force directions as well as typical motion directions, in order to derive a suitable
kinematics configuration for the shoulder joint axes. Maxima in the torque bubbles
show required torque capacities for the joint, while minima denote possible singu-
lar positions, and the distribution of the maxima indicates main axis directions as
well as axis follow ups for the robot shoulder kinematics. Therefore, the approach
described in this paper will allow us to construct an optimal shoulder.
Acknowledgment. This work has been partly funded by SENSOPAC (FP6-IST-
028056).
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