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1 Introduction

The chair of Robotics and Embedded Systems at Technische Universität München
has developed an experimental teleoperated robot system for minimally invasive
surgery. In this scenario of robotic surgery, Skill Transfer from human demon-
stration to a machine, takes place in different subsequent steps. At first, user
data is collected by means of two Phantom devices and the force sensors. With
the help of these contrivances we can determine the position and orientation
of the tool within the operation environment. If the tool gets in contact with
the manipulated tissue or other objects in the environment, occurring forces are
measured by strain gauges. By collecting this data over time, we get a com-
plete description of the performed manipulation task. The collected raw data
could be used for directly replaying the demonstrated task, since demonstra-
tion domain (user-controlled telemanipulator) and application domain (system-
controlled telemanipulator) are identical in respect of the end effector. Note, that
for many examples of Programming by Demonstration (PbD), domains are dif-
ferent, e.g. if a program for robot control is demonstrated with the user’s hands.
Although a direct replay would be possible, this is not the goal of our efforts.
We rather want to generalize and contingently optimize the demonstrated task.
Instead of simply collecting raw data, we want to get a packed symbolic repre-
sentation of the task, which renders the system able to react to a-priory unknown
situations. A concrete example for applying this capability is knot tying. Once
the system has adopted this behavior from the user, it should be able to tie a
knot in different orientations and detached from the spatial features of the ob-
served demonstration. Therefore we have to extract task-relevant features from
the demonstrations of the user. After one execution, the system is not able to
distinguish important from irrelevant features of the task. For example it could
be important to maintain a constant force while pulling a thread. On the other
hand, the pursued trajectory might play no role. In order to differentiate such
features, it is necessary to demonstrate the task many times. Thus, the first
challenge is to extract significant features from the demonstrated tasks. Such a
feature will be a temporally cohesive action, described by its trajectory and the
occurring forces. We will call such a construct a primitive. Therefore a primitive
is a function mapping time to certain rateable states of the environment, like
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position, orientation and forces. If these quantities do not suffice to uniquely
instantiate a primitive, we can add further features like distance, measured with
a stereo camera system.
With a collection of primitives formed by this way, we should be able to sam-
ple every subsequent task demonstrated by the user. That means, we want to
decompose an observed trajectory in some primitives. It is admissible that the
sampling primitives overlap. If some parts of the task cannot be covered by
any primitive, it is necessary to generate new primitives or alter existing ones.
Therefore the act of primitive identification is never completed, but is a dynamic
process, where primitives can be altered, generated, deleted or fused every time
a task has been demonstrated.
If a task was observed sufficiently often, the system should be able to predict the
next steps of an unfinished demonstration, which is subsequently performed by
the user. Our goal is rendering the system able to semi-automatically complete
tasks commenced by the user. Semi-automatic means in this sense, that the com-
pletion is not performed after recognizing the missing steps, but a simulation of
one or more possible completions is displayed. The user can decide which of the
proposals, if one is actually applicable, should be realized.

2 Methodology

Before we can start high level learning tasks, we have to deal with low-level data
acquisition. Noise has to be filtered out and trajectories have to be represented
in an appropriate way for further processing. One possibility is sampling the in-
put stream at discrete points in time. Ways for representing the data are splines
and chain codes. This preprocessed representation of data serves as an input for
all further steps.
Learning in our system takes place in three entangled stages. The first stage is
demonstrating the task sufficiently often, in order to enable the extraction of
primitives. We want to implement the extraction by adopting on the one hand
methods applied in Optical Character Recognition (OCR), and on the other
hand methods from bioinformatics and text processing.
In order to extract primitives from multiple demonstrations, we have to look for
similarities amongst them. Therefore we have to find matches between coordinate-
based features in multidimensional space. If we restrict our endeavors to match
3D points of trajectories, we can find many approaches towards this issue. Most
of them origin in text analysis and bioinformatics. We have the problem of dis-
covering similar parts within acquired trajectories. This is very similar to chal-
lenges arising in bioinformatics, e.g. finding a protein fragment within a model
of a virus. After identifying primitives, we have to recover them in subsequent
demonstrations. In an optimal case, we should be able to sample the resulting
trajectory with already known primitives. Since gaps and overlaps in this re-
sampling cannot be avoided, we still must be able to create new primitives and
generate new ones. Nevertheless, the main purpose of this stage is the refinement
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of already known primitives. Since the knowledge about skills for performing cer-
tain tasks increases with each demonstration, we want to include this knowhow
in the knowledge base of our system. In order to specifically include new insights
extracted from current demonstrations, we need a learning strategy. We need to
validate current instantiations of primitives (i.e. the concrete parameters of this
primitive) against our knowledge base and alter it appropriately. This can be
done by means of reinforcement learning.
In the last stage of learning, the system should be able to provide skills for per-
forming different tasks. A skill is composed of one or usually more primitives.
Our goal is, that the system is able to assist the user in performing recurrent
task, but not by an application of a complete skill. It should rather recognize the
commenced performance of a specific task and complete it by assuming the skill
application of the user. That means at the beginning of a manipulation sequence,
performed by the user, the system tries to recognize known primitives. These
primitives are used to select a skill that is currently applied by the user. Trig-
gered by such an recognition, the system automatically completes the current
task within an internal simulation environment. It is possible that more than
one skills are applicable in the current situation. After simulation, results are
represented. Now, the user can decide, which simulated skill application should
be realized by the system. In the following sections we will describe all mentioned
procedures in detail.

3 Related Work

The complete scenario mentioned above was not mentioned by other authors
in this compilation, but many related issues can be found in the corresponding
literature. The main idea behind all developed methods in this context is to
spare the user from dealing with programming details of the underlying system.
Instead the system should learn from the user by observation. This paradigm
is also called Programming by Demonstration and was addressed by several au-
thors in the field of robotics (e.g. [KII94], [PJWI], [DH94] and [Kan94]). While
early approaches mostly dealt with exactly replaying the user’s demonstration
(with high repeat accuracy), later contributions emphasize generalization and
reuse of extracted primitives.
Skubic et al. [SV98] refer to primitives as sensorimotor skills. They have proposed
a model that triggers the execution of skills by force-based events. Information is
processed at a symbolic level. Therefore, with reservations, it is also possible to
complete tasks under position and orientation variations. This is also our goal,
but while Skubic et al. restrict their approach to force-based events and skills,
we want to establish a model that also regards geometric aspects of the tasks
and therefore can be employed for a broader variety of control tasks.
In order to classify our approach, we can use the terminology given by Kaiser et
al. in [KFB+]. In this sense, our method of generalizing multiple demonstration
is a kind of ”bottom-up skill acquisition”. In contrast, ”top-down skill acquisi-
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tion” is understood as an implementation of a-priori domain knowledge. Since we
want to decompose a known trajectory or a given task into previously acquired
primitive, this part of our approach can be classified as top-down acquisition.
Both methods can be supplied by ”autonomous skill acquisition” that Kaiser
describes as a means for skill refinement. An implementation of these theories
can be found in [Kai96].
According to Hovland et al. [HSM96] a task can be represented ba a discrete
state machine whose state is changed by events, e.g. performance of primitives.
In the specified approach, the state machine is controlled by a Hidden Markov
Model. We also want to use a modification of this approach for our learning
tasks.
A combined top-down / bottom-up approach was proposed by Inamura et al.
in [TIT01] and [TIN02]. They observed human motion with a motion capturing
system and broke it up in larger segments with neural nets. These segments
themselves were translated into a symbolic representation by means of Hidden
Markov Models. Once an appropriate symbolic representation of a motion se-
quence have been found, it can be reconstructed by inversion of the previously
described procedure. The resulting motion sequences can be used to replay a
certain behavior with a robot.
Rosen et al. [JRS01] have employed a technique, which is very similar to that
of Inamura. They have applied it for assessing the the training level of surgical
residents. They also stated that their approach can be used as a performance
measure for surgical robotic systems. The main idea of their work is to get a
symbolic representation of certain demonstrations by means of Hidden Markov
Models. By comparing corresponding HMMs of different groups (e.g. trainee vs.
expert), one can derive a formal description of differences in performance. These
experiments can be repeated from time to time in order to assess the advances
of a trainee’s skills.
In the approaches of Voyles [Voy97] and Friedrich et al. [HFD98] the demonstra-
tion is mapped on a predefined set of primitives. That means that an observed
trajectory is decomposed in a symbolic representation consisting of various prim-
itives. In our case we do not want to predefine a fixed set of primitives, but the
system should learn this set from multiple demonstrations of the same task.
In the paper of Tominaga et al. [TTO+00], primitives are called sub-skills. In
their approach sub-skills are used to decompose user demonstrations to simplify
analysis and trajectory generations. They only use geometric information derived
from camera views, but do not measure forces. Like in the approach of Voyles,
they decompose an observed demonstration in known primitives and reassemble
them for robot control.
An interesting example of programming by demonstration was also performed
by Chen et al. [CM98]. They showed that machine learning can best be under-
stood, if user and machine have the same abilities. Since their system was not
equipped with a camera system, they also wanted the user to demonstrate a pick
in a hole task with closed eyes. Subsequently, the system calculates an optimal
path from multiple demonstrations.
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Slutski et al. have proposed in [LSE97] a functional decomposition of tasks
into primitives, instead of a temporal one like many other authors. There idea
was, that every human motion is a superposition of many independent sub-
movements. For example the motion of the hand is composed of an upper-arm
motion and a forearm motion. They have implemented this insight with a robot
controller for telerobotic applications. Similar approaches of functional primitive
decomposition can be found in [XZ00], [AM02] and [Mat01].
In the work of Nakamura et al. [YNM99] certain primitives, so-called reactive
behaviors, are executed if the system is in a predefined stage. Complete skills
are composed of several primitives in a way, that the resulting sensory output
converges to the sensory output of the demonstration. This is an example of the
adoption of reinforcement learning in skill transfer techniques.
Schaal et al. have proposed a complex mathematical model for primitive move-
ments in [SSI03]. In their publication they proposed dynamic movement prim-
itives based on nonlinear differential equations. They introduced a method for
fast reinforcement learning based on these primitives.
While most authors have predefined their motion primitives, Fuentes et al.
[FN97] have tried to learn the primitive themselves with the help of genetic
programming (evolution strategy). They have used this approach for controlling
the Utah/MIT hand. In our domain, motion primitives learned this way would
only be useful, if we provide significant a-priory knowledge. Therefore we can
use such an approach only for primitive refinement, but not for construction of
completely new primitives.
Morrow et al. have also tried in [MK97] to provide a method for developing
basic sensorimotor primitives. Their idea is based on the observation, that there
are certain classes of relations between two manipulated objects (e.g. edge con-
tact). A primitive serves for transforming one state into another. For example
an alignment primitive is a transformation of a so-called free (unconstrained
motion) state to an edge-surface or surface-surface contact. For a real-world
implementation of such a primitive, force sensors are used. If contact occurs
between two objects, (force is measures) the alignment-primitive is realized by
minimizing occurring torques. This approach seems to work well for tasks com-
prising manipulation objects having a comparably simple shape (Morrow et al.
have chosen a peg-in-hole task). Their methods cannot directly be transfered
to our application domain without modifications, for we are dealing with non-
uniform and deformable objects.
Another way of identifying primitives was proposed by Wang et al. in [WdS98].
They have used sudden changes in force measurement (contact information) to
extract previously unknown primitives from demonstration.
Ogawara et al. have tried in [KOI03] to derive primitives only based on geomet-
ric features of demonstrations, while neglecting occurring forces and torques.
Their approach is based on the observation of multiple demonstrations. For each
demonstration the relationships between target object and manipulated object
were recorded. In addition the user has to provide the system with a hint indicat-
ing essential interactions. By combining the knowledge of many demonstrations,
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the essential primitives of those can be extracted.
Next, we want to give an overview on some methods applied in bioinformatics,
that are related to our issues.
Fredriksson et al. introduced an approach for finding a protein fragment within
a model of a virus (see [FU00]). They have generalized this example to finding a
three dimensional pattern within a voxel model. The pattern can be arbitrarily
rotated and translated. Their basic idea was to test all possible transformations
in order to get the best match. They developed methods to significantly restrict
the search domain. This approach works well for comparatively small patterns
and models. We have made the experience that such approaches are not suitable
for our domain, because it is not possible to perform realtime matching with
large multidimensional models.

4 Data Acquisition and Preprocessing

The raw data describing a complex manipulation sequence consists of the instru-
ment positions and orientations, the forces occured and additionally the state
of the instrumental side microgripper. It is obvious that the data has to be
preprocessed before it can be used by subsequent steps.
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Fig. 1. Raw and smoothed data: (a) Positions; (b) Forces

There is an amount of noise due to the inevitable physiological tremor of
the human operator, furthermore we have high hardware-side sample rates for
acquisitioning positions, orientations and forces, as they are needed for a realistic
force feedback and robot control, but obstructive for machine learning. Positions
and orientations are sampled (at hardware-side) with 1000 Hz (GHOST SDK),
whereas forces with 750 Hz, so there is in both cases room for smoothing and
lowpass filtering without information loss. Figure 1 shows raw and smoothed
positions and forces of a simple winding process, which is one important subtask
in knot tying. We have recorded at software-side with a sampling rate of 500 Hz,
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and took real suture material used in surgical practice to be as close as possible
to reality. Postprocessing the force values seems to be even more necessary, but
smoothing the trajectories using a sliding window average provides a good basis
for the next processing steps. The size of the window over which local areas were
averaged was 256 for the positions and 128 for the forces. Note that the forces
are plotted 2D since we only have forces in X and Y directions yet, Z direction
sensory is in work now.

4.1 Low-Level Symbolic Representation

Due to the big amount of data it is not advisable to store complex manipula-
tion sequences in their raw form. Therefore low-level symbolic representations
are needed, which are on one hand inexpensive to compute, and on the other
hand allow an efficient storage. Such representations have two further aims:
the possibility of primitive decomposition and of defining features needed for
the later matching process. It has been found that it is advantageous to inter-
pret the multimodal data (positions, orientation, forces) representing a complex
manipulation sequence as curves in 3D space, as they always have three compo-
nents: POS(x, y, z), ORI(a, b, c), FORCE(fx, fy, fz). In order to achieve more
adjustable matching capabilities, two different techniques were used: spline inter-
polation and 3D chaincoding. Both techniques are computationally inexpensive
and require much less storage place than the original data.

4.2 Spline interpolation
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Fig. 2. (a) Spline interpolation; (b) Curvature and Torsion

For the spline interpolation natural cubic splines were used. Figure 2a shows
an interpolating spline of the smoothed position trajectory from figure 1a. The
control points are the result of a simple resampling process, whereby also a
translation to a positive quadrant took place for simpler chaincoding. Beside
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the fact, that natural cubic splines are the ”smoothest” two times continuously
differentiable interpolating functions, they also provide two important features:
curvature and torsion. Curvature measures how sharply a curve is turning while
torsion measures the extent of its twist in 3D space. Curvature and torsion
(fig. 2b) completely define the shape of a 3D curve. Furthermore having a spline
representation allows the extraction of equidistant data even if it wasn’t recorded
in that way, an important criterion for certain machine learning approaches.

4.3 3D Chaincoding

Fig. 3. 3D chaincoding

A method for representing digital curves using chain codes was first men-
tioned by Freeman in 1961 ([Fre61a], [Fre61b]). Since then many authors have
been using techniques of chain coding due to the fact that various shape features
may be computed directly from this representation. He also mentioned a method
for representing 3D digital curves ([Fre74]), his method however involved assign-
ing a symbol for each of the 26 possible neighbourhood positions in 3D space.
As opposed to Freeman’s absolute directions, Bribiesca [Bri00] considers relative
direction changes, which allow to have a curve description that is invariant under
translation and rotation.

In our case chaincoding in the initial coordinate system doesn’t make much
sense, a quantization on a cubic lattice is necessary. Figure 3 shows the chaincode
representation of the spline in a cubic lattice of the size [30 × 30 × 30], which
is the result of a coarse resampling of the original bounding box of the curve.
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Therefore the spline was simply traversed, the properly rounded and scaled co-
ordinates were used as indices to a 3D integer array to indicate whether a lattice
cube contains a curve portion or not. There are a couple of shape properties
and alternative representations for chaincodes, so that useful features describing
a certain curve are available. The most important are the Fourier descriptors,
which provide a means to characterize contours. The idea is to represent the con-
tour as a function of one variable, expand the functions in terms of its Fourier
series, and use the coefficients of the series as Fourier descriptors. Kuhl et al.
investigated in [FKG80] and [KG81] ways of obtaining the Fourier coefficients
of Freeman encoded contours. The applicability of the 3D correspondants of
features available for 2D chaincoded curves like the ψ-s curve, eccentricity, com-
pactness, concavity, slope density function and shape numbers could also be
evaluated.

5 Detecting Manipulation Primitives

In this chapter we want to describe two approaches to derive primitives from
acquired data. It uses on one hand spline features like curvature and torsion, on
the other hand an analogy to bioinformatics and conventional cluster analysis.
These methods generate a symbolic representation of the input data which is
independent from the actual demonstration of a skill. Each demonstrated skill
is a combination of certain motion primitives. Our intention is to build up a
library of primitives which can be recombined to skills in order to solve a wide
range of problems. Primitives in this context are complex temporally ordered
operating sequences that alter the status of objects in the application domain.
A primitive can be described by means of paramaters determining the relative
position of manipulated objects (e.g. the tool tip of a medical instrument), their
orientation and occurring forces. Each parameter is a function defined over time
and again on its part can be adjusted by certain parameters in order to apply
the primitive to different situations. Additionally, the actual effectuation of a
primitive is also dependent on external events that are detected by sensors (e.g.
stop movement, if contact force detected). A possible primitive would be the
wrapping of the thread around the pincer with constant force by avoiding contact
with surrounding tissue.

In order to learn a skill, the system first has to observe a human operator
demonstrating the skill. In our case the implementing units of both, operator and
machine, are identical, because both control the same device (telemanipulator).
In an extended scenario this identity can be abandoned, e.g. by observing a
task manually performed by a human, while the machine executes learned skills
with robotic hands. We pick up the idea of breaking down skills to primitives (see
[Voy97] or [Kai96]) in order to reach a higher flexibility: primitives can be reused
for different skills or even recombined to create an a priori unknown skill to solve
a new problem. Therefore it is not only important to record the demonstrated
skill, but also to classify the situation in which a certain skill is used. A situation
is an episode in the multimodal input stream of the machine, comprising image
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processing, force sensing and reading positions. Our goal on the long run is to
recognize certain situations in which a formerly learned skill can be applicated.
This skill can be effectuated after approval of the operator.

As indicated above, the main design criteria of a primitive is reusability.
I.e. it should be possible to reuse a primitive in a variety of tasks. On the
other hand a skill should not be too trivial (e.g. movement on a straight line).
Trivial primitives can be reused in a maximum number of skills (each movement
can be approximated by a sequence of straight lines), but context dependency
will be lost (the execution of a straight line movement cannot be mapped to a
certain situation). Learning, or in other words mapping situations to skills, will
be impossible. Therefore primitive decomposition is a tradeoff between fexibility
and unambiguousness. In order to make allowance for this discrepancy, primitives
are no static constructs, but can be adjusted as learning advances (e.g. alter
parameters, split a primitive in two new ones etc.).

5.1 Spline Features

We have seen in the last section that a spline representation provides us with
continuous curvature and torsion values at each point of an interpolated 3D
curve. The idea is, that manipulation primitives begin (and close) at certain
points in time, where ”anomalies” occur in the spline representations of the
multimodal data describing a complex manipulation sequence. It stands to rea-
son, that very abrupt changes (therefore we call them ”anomalies”) both in
positions/orientations and forces point to manipulation primitive boundaries.

Figure 4 shows the position trajectory spline augmented by curvature and
torsion. The respective values are visualized by setting both color and thickness
according to curvature and torsion on the curve progression, the lower-left spline
is augmented by torsions, the upper-right one by curvatures.

5.2 Sequence Alignment with Trajectories

Once sampled equidistantly, data points of two different skills can now be scanned
for similarities. Therefore we will try to match sections of different trajectories on
each other. This can be done by means of algorithms adopted from bioinformat-
ics, because our problem is analog to the task of finding similar subsequences
in genetic code. In bioinformatics we compare sequences by successively com-
paring atomic parts (e.g. DNA bases) of the structure. In addition we will only
apply algorithms of bioinformatics which suppose that occurrences of atomic
elements are independent from each other. This does not apply if we assume
certain probabilities for mutations or the like.

In order to suit those algorithms to our problem, we first have to find a string-
like representation of the data, consisting of atomic parts whose occurrences are
independent from each other. For now we restrict our approach on regarding
only the three dimensional position of a trajectory, while neglecting tool rotation
and forces. These parameters will be included in a future version. In order to
compare similar trajectories recorded at different positions and under various
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Fig. 4. Position trajectory spline augmented by curvature and torsion
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angles, we have to represent the data-points independently from any coordinate
system, while still preserving the relative position of points to each other. One
idea to reach this goal is to observe the concomitant trihedron of the trajectory
at successive data-points (see fig. 5).
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b
�b
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�t

Fig. 5. Determining the difference between subsequent trihedrons

While each trihedron itself is expressed in terms of base coordinates, the dif-
ferece between the trihedrons of successive points can be expressed independently
from any coordinate system. We only want to regard the difference in rotation,
while neglecting translations. This is acceptable, because we have already pre-
sampled all data points in a way that they have always the same distace to each
direct neighbor. To simplify our first try with this method, we do not calculate
the unique rotation matrix between two successive trihedrons, but only regard
the angles between tangents ∆t and normals ∆n (see fig. 6 left side). Angles
between binormals ∆b can be neglected, because they will exhibit no additional
information. Note that in general this approach is ambivalent, because we will
use the inner product to calculate angles and therefore the direction of the cur-
vature is neglected. Results have shown that this procedure is convenient for
most real-world examples.

A-G-G-T-C-G-T-T-A-C-G-G-G-A-A-T

G-A-C-T-A-C-G-G-C-G-G-A-C-C-T-A

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11
n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11

- - - - - - - - - -

t1 t2 t3 t4 t5 t6 t7 t8 t9
n1 n2 n3 n4 n5 n6 n7 n8 n9

- - - - - - - -

Fig. 6. Analogy between Bioinformatics and Robotics
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We now have a coordinate-independent representation of our trajectory and
we can compare data points of different trajectories with each other (like it is
done with DNA-sequences: see fig. 6). Next we select an appropriate algorithm
to find similarities. Because matching parts could occur at any place within
a trajectory, we will adapt an algorithm searching for local alignments in two
strings. One algorithm that solves this problem efficiently and can be easily
implemented, is the algorithm of Smith and Waterman. An extensive description
of this algorithm can be found at [Gus97] or [Heu02]. In short, it defines an award
for matching symbols, while punishing insertions, deletions and substitutions. A
matrix is defined where each entry m(i, j) denotes the costs for locally aligning
string1 (substring of the first sequence) ending with character i, with string2
ending with character j. If we refer to the horizontally aligned sequence in figure
7, a local alignment can be constructed by the following operations:

1. assume a deletion in comparison with the other string (vertical movement
in fig. 7)

2. assume an insertion (horizontal movement)
3. assume a substitution (diagonal movement)
4. a match was found (diagonal movement labeled with the same characters)

Each insertion or deletion is punished by a discount of -2, while each substi-
tution is punished by -3. On the other hand, each match is rewarded by a gain
of +3. In figure 7 the local alignment of the (sub)strings T-CG with TACG and
TAAGG with TAAGG is shown (the dash denotes a deletion). In our case we
cannot make any deletions or insertions, because the value at each data-point is
defined by the difference of the corresponding trihedron and its successor. That
means the correct course of the curve at a certain point can only be determined,
if all relative changes of the curve at predecessing points are known. Therefore
we have to reduce the scope of the algorithm to finding socalled diagonal runs
(e.g. local alignment TAAGG in fig. 7). Another issue is the transfer of matches
and substitutions to our application domain. Because we operate with floating
point numbers we would rarely find exact matches and on the other hand it
would not be adequate to speak of a mismatch or substitution if the difference
between values is very small. In addition we have to deal with a value vector
instead of only a single character. To cope with this, we have decided to use
the following similarity function: s = −25((n1 − n2)

2 + (t1 − t2)
2) + 1, where n1

and t1 are the differences of angles between normals and tangents of successive
trihedrons determined for the first trajectory. Accordingly, n2 and t2 are the val-
ues calculated for the second trajectory. The function s was found by experience
and it has turned out to provide good results in all test cases. The algorithm
returns one or more subsequences of each trajectory which are similar to each
other concerning their spatial characteristic. For the future we want to extend
this approach by regarding rotations and forces. Another challenge would be to
make the procedure invariant of scaling, by allowing deletions and insertions in
our adaptation of the Smith-Waterman algorithm.

The algorithm described above tells us about the positions of matches within
sequences, but does provide no information about the exact overlay of these
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Fig. 7. Example for a local alignment search

matching regions. Therefore we will search for an optimal homogeneous trans-
formation matrix whose application on one trajectory minimizes its displacement
compared with the other one, within the matching region. We solve this problem
by means of nonlinear programming (for a detailed introduction to this technique
see [Win95]). Again, we only care about rotation and translation, while leaving
it open to add scaling in a future version. The problem can be described as fol-
lows. As input data we have the same number of points 1 . . .m selected from the
trajectories A and B by the Smith-Waterman algorithm. For data processing we
will use homogenous versions of the position vectors:

PA

1 =









XA
1

Y A
1

ZA
1

1









· · ·









XA
m

Y A
m

ZA
m

1









; PB

1 =









XB
1

Y B
1

ZB
1

1









· · ·









XB
m

Y B
m

ZB
m

1









;

We are searching for a homogenous transformation matrix, that has the following
form:

H =









r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1








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For each matching pair of points, we now get a constraint describing the trans-
formation:

HPA
1 + dA

1 = PB
1 + dB

1

...
HPA

m + dA
m = PB

m + dB
m

where dA
1 . . . d

A
m and dB

1 . . . d
B
m are homogeneous vectors enabling a residual dis-

tance between the corresponding points. Note that only one distance vector,
e.g. on the left hand side of the equation, is not sufficient, because we want
to minimize its absolute value, but functions (like abs()) cannot be used in-
side optimization problems. In addition, we have to guarantee that the resulting
transformation matrix contains a valid rotation. For any rotation matrix it must
hold true that every vector has unit length and each pair of vectors is perpendic-
ularly aligned. These prerequisites can be formulated by dint of the dot product
as nonlinear constraints. The resulting transformation matrix can be obtained
from a nonlinear solver fed with the above formulation by minimizing the dis-
tance vectors. The result of such an optimization can be seen in the screenshot
of our user interface for this application (fig. 8).

Fig. 8. Screenshot of the User Interface
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Once we have compared the first data points with the procedure described
above, we have to find a mathematical description of the resulting primitive,
(e.g. by analyzing its main axes and using them as a coordinate system to func-
tionally approximate the position of the concomitant trihedron. With the help
of this procedure we can build up a data base of primitives and can match newly
acquired trajectories against it. If we compare many primitives with this method,
we can determine the acceptable value facet for parameters describing the spa-
tial position of our objects. Later these parameters can be adjusted within the
determined range in order to react on certain situations with an appropriate skill.

5.3 High-Level Symbolic Representation

If we look at their underlying representations as curves, there is an obvious
analogy between recongnizing two-dimensional handwriting (or printed text)
and three-dimensional trajectories describing complex bimanual manipulation
sequences. Therefore we rely on the established techniques developed in the
Optical Character Recognition (OCR) domain, of course with the necessary
adaptations to our domain, and suggest a hierarchical Hidden Markov Model
(HMM) for identification and completion of manipulation sequences.

On the first level ”characters” (a manipulation primitive) must be recog-
nized. In OCR the digitally scanned pixel image from a character is analyzed
and a couple of features are extracted like concavity, compactness, centroidal
profile, number and position of holes, vertical/horizontal transitions. The corre-
lation of these features to certain characters are trained by means of examples
with HMMs. We could train in the same way manipulation primitives, with
the difference, that the ”image” of a ”character” is composed of three curves,
namely the spline and chaincode representations of positions, orientations and
the forces occured. The features used by the correlation are those extracted from
our two low-level symbolic representations (splines and 3D chaincodes): curva-
tures, torsions, Fourier descriptors and other features mentioned in section 4.3.
Figure 9 shows a schematic ”character-level” HMM, self-evidently there are as
many HMMs as manipulation primitives.

On the next level ”characters” must be merged into ”words”. In the OCR this
is done by word-level HMMs, which are trained using typical text passages, so
that character transition probabilities are correlated to respective words. Then a
dictionary query follows with the word one thinks it was recognized. We modify
this approach, and make ”dictionary” (see fig. 11) queries already after the first
few recognized ”characters”. If there is an unambiguous match of the prefixes,
then the word can be treated as recognized and the corresponding manipulation
sequence can be completed on request. In the case of ambiquities further ”char-
acters” are necessary. Figure 10 shows the schematic ”word-level”, which is used
to train whole manipulation sequences using HMMs.
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Fig. 9. HMM for recognizing ”characters”

Fig. 10. A manipulation sequence ”word”

5.4 On-line Completion

The on-line completion of partially recognized manipulation sequences was al-
ready hinted in the previous section. We want to mention here that in the case
of a few number of ambiguous prefix matches the system could present them
to the human operator, suggest the most probable and let him choose from the
proposals. The decision taken by the human operator should also be included
into the learning process. We didn’t handle yet the case of no match at all, which
is actually trivial: the appropiate manipulation sequence and his primitives are
accepted as new entries.

We want to stress that learning does not take place in a dedicated learning
phase, but during operation. Initially, the system has no knowledge about the
application domain, but should learn it step by step by watching the operator.
That means, at the beginning the operator has to do all the work alone, while
in later phases the system can provide help in terms of semiautomatic execution
of skills in certain situations. In order to meet all these requirements, we have
to implement our solution in a way suited for real-time conditions.
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