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1 Introduction

At present, there is a large number of systems dealing with various aspects of un-
derstanding either speech or vision. Such systems are, however, relatively seldom
capable of a complex processing that begins with sensory data and arrives by
way of subsymbolic processing levels at a symbolic representation. (An overview
of current systems is to be found in AAAI-94, Integration of Natural Language
and Vision Processing 1994.) Yet the establishment of a connection between
perception and the conceptual level is in fact a prerequisite for the modelling of
cognitive processes as required for example within the framework of a cognitive
semantics (e.g. Johnson 1987; Lakoff 1987; Jackendoff 1983).

In the following, we will present an integrative system which, on the basis
of semantic networks, facilitates the symbolic interpretation of sensory data on
the one hand whilst providing on the other a uniform representation for visual
and linguistic knowledge by means of which an interaction between modules is
simplified.

The system is being developed at the University of Bielefeld within the frame-
work of the special research project “Situated Artificial Communicators“ (SFB
360). By the term “artificial communicators“ we mean formal systems which
reconstruct the behaviour of natural communicators in relevant aspects. Since
most cognitive skills are situation-dependent, the SFB’s research has concentra-
ted on a specific basis scenario. The subject of this scenario is a task-orientated
discourse. The assembly of a model aeroplane from construction-kit parts serves
here as an illustration (see Figure 2).

As the formalism for knowledge representation, ERNEST has been used (Nie-
mann, Sagerer, Schroder & Kummert 1990; Kummert, Niemann, Prechtel & Sa-
gerer 1993). ERNEST is a semantic network formalism which, besides the general
characteristics of semantic networks such as the representation of concepts and
the relationships between them, also has a variety of additional features which
are highly interesting from a cognitive perspective (Johnson-Laird, Herrmann,
Chaffin 1984). The interpretation of sensory data is, for example, seldom unam-
biguous. Thus cognitive models must be able to interpret robustly both graded
and uncertain knowledge near the signal. With ERNEST it is possible to trace
competing hypotheses in parallel and to include different areas of knowledge at
an early stage in the processing.



In the following, ERNEST’s most important characteristics will first be out-
lined. This will be followed by a more detailed description of those features of
ERNEST which seem particularly well-suited to the cognitively adequate mo-
delling of processes of image and speech understanding. Finally, an integrative
architecture for both image and speech processing is presented. This archite-
cture makes possible a close coupling of speech understanding processes and
attention-driven image processing.

2 Knowledge representation in ERNEST

2.1 The ERNEST formalism

ERNEST (from “ERlangen semantic NEtwork sySTem ) is a formalism for the
representation of knowledge (Niemann, Sagerer, Schroder & Kummert 1990;
Kummert, Niemann, Prechtel & Sagerer 1993). The main influence on the de-
velopment of ERNEST was the theory of semantic networks as described for
example by Sowa (1984, 1991). Important elements of a semantic network are
concepts, their attributes and the relations between concepts. These are usually
represented as nodes, their internal structures and links between nodes. ER-
NEST’s main task is to interpret sensory data symbolically;in this context these
data are primarily visual and acoustic signals. In ERNEST there are three types
of nodes:

— A concept can represent a class of objects, events or abstract conceptions.

— An instance 1s understood as the concrete realisation of a concept in the
sensory data; i.e. an instance is the copy of a concept by which the general
description is replaced by concrete values.

— In addition, there are also modified concepts. A modified concept represents
knowledge which is adapted to a concrete situation of analysis.

Features of a concept, such as the size of an object or the grammatical number
of a noun phrase, can be represented by means of attributes. In this way, concepts
in ERNEST are given an internal structure. Since the attributes of a concept are
sometimes dependent on each other, ERNEST also makes it possible to represent
relationships between attributes. In ERNEST, there are the following link types:

— Through the link type part, two concepts are connected with each other if
one concept is understood as a part of the other concept.

— Another well-known link type is the specialisation, with a related inheritance
mechanism by which a special concept inherits all properties of the general
one.

— The link type concretisation connects two concepts to each other if a concept
is represented on different levels of abstraction. Thus the visual perception
of an ellipse may be a hole or a tyre on a higher level of abstraction.

As mentioned at the outset, the goal of an analysis in ERNEST is the symbo-
lic interpretation of sensory data, i.e. the instantiation of concepts. The creation



of modified concepts and instances constitutes the knowledge utilization in the
semantic network. For the creation of instances, this process is based on the
fact that the recognition of a complex object has the detection of all its parts
as a prerequisite. For concepts which model terms only defined within a certain
context the instantiation process must proceed in the opposite direction. In this
case the context must exist before an instance of the context-dependent con-
cept can be created. In the network language, these ideas are expressed by six
problem-independent inference rules. Context-independent parts, contexts, and
concretes are the prerequisites for the creation of instances and modified con-
cepts in a data-driven strategy. The opposite link directions are used for model
driven inferences. Since the results of an initial segmentation are not perfect,
the definition of a concept is completed by a judgement function estimating the
degree of correspondence of a part of the signal to the term defined by the rela-
ted concept. On the basis of these estimates and the inference rules an A*-like
control algorithm is applied. For a more detailed description of the network con-
trol see (Kummert, Sagerer & Niemann 1992; Kummert, Niemann, Prechtel &
Sagerer 1993).

2.2 The representation of cognitive processes

The architecture of a computer system integrating speech and vision processing
can be structured according to the following dichotomies. An obvious starting-
point is the aforementioned division into visual and linguistic components. Fur-
thermore, a distinction between a long-term memory and a working memory
can be made. In ERNEST the long-term memory is represented in the form of
concepts and their relationships, i.e. as a semantic network. The instantiation
of concepts can be interpreted as the activation of mental entities. During the
processing, modified concepts are adapted to the given concrete situation. This
constitutes the working memory. Thus a division into a visual and a linguistic
working memory, as suggested for example by Baddeley (1983), and their gradual
integration into a common mental representation, is given.

In addition, the represented knowledge is also structured in functionally dif-
ferentiated modules. In the speech components these are for example the areas
of syntactic or semantic knowledge. These modules are, however, not isolated,
but are on the contrary capable of close interaction. Accordingly information
from various sources can be utilised during processing (Altmann & Steedman
1988). In ERNEST, these interactions are supported by a homogeneous repre-
sentation of the knowledge base. The processing direction between the modules
can be data-driven, starting from the perception and arriving via various proces-
sing levels at a more or less complete mental representation. Depending on the
processing level, model-driven processing, based on knowledge, is also possible.
In ERNEST, a flexible strategy facilitates the alternation between data-driven
and model-driven processes.

Ambiguities or competing hypotheses which arise during processing are the-
reafter further processed in parallel. As soon as sufficient evidence has been
found for an interpretation (e.g. high activation), this is given preference and



expanded further. Thus ERNEST’s control makes a (quasi) parallel processing
of competing interpretations possible.

ERNEST also distinguishes between attributes and procedures determined
by the model, and those which are technically motivated. These features of
ERNEST are indispensible for an adequate implementation of cognitive models.

In view of the capabilities described above, we regard ERNEST as a forma-
lism for the interpretation of knowledge which is not only particularly well-suited
to the realisation of highly efficient, application-orientated systems, but which
is equally suitable as a basis for computer simulations of cognitive processes.

3 Integrative architecture

3.1 The speech understanding component

The speech-processing component in ERNEST is based on a speech-understanding
dialogue system for railway information (Mast, Kummert, Ehrlich, Fink, Kuhn,

Niemann & Sagerer 1994). The system’s aim is to automatically understand

spontaneous spoken language and to answer the questions put. A speech re-

cognition system delivers word hypotheses at the interface with the linguistic

knowledge base.

The structuring of the knowledge base is orientated towards Winograd’s
(1983) cognitive speech-processing model, which advocates stratified processing.
In this model, the essential processing levels are respectively a syntactic, a se-
mantic and a pragmatic level, all based on a uniform representation.

Since the order of syntactic constituents in spoken German language is rela-
tively free, and only constituents are syntactically stable, no attempt was made
to model a complete sentence grammar. The semantic level follows Fillmore’s
(1968) deep case theory, according to which syntactic-semantic roles are as-
sociated with verbs. By means of a verb-orientated, model-driven analysis in
ERNEST, concrete expectations as to the argument of a given verb could thus
be produced. Using ERNEST’s capabilities, the processing strategy in the dia-
logue system alternates between data-driven and model- driven processes. This
facilitates the efficient use of relevant information from both the acoustic data
and the linguistic knowledge base.

Figure 1 shows the individual levels of the integrative architecture’s speech
understanding component, illustrated by examples of some concepts. The first
letter of a concept’s name indicates the level to which it belongs: P_.CUBE is a
concept on the pragmatic level, SSOBJECT is a concept on the semantic level,
and SY_NOUN is a concept on the syntactic level. Since the speech recognition
system can now deliver the full forms of words as hypotheses on the hypothesis
level H, there is a so-called word level W, which includes the collective concepts
for individual word forms. At present, this word level is structured according
to morphological and phonetico-phonological criteria; in the near future it will
form a new interface with the speech recognition system. This structuring follows
psycholinguistic criteria, so that a computer simulation of lexical access during
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speech production or reception is also possible. For instance, the first syllable of
a word is accorded paramount significance, since this is usually what allows the
word’s semantic content to be indentified early and with a high degree of pro-
bability (Marslen-Wilson & Welsh 1978; Levelt 1994; Spivey-Knowlton, Sedivy,
Eberhard & Tanenhaus 1994).

3.2 The image understanding component

Model-driven processes are particularly important for cognitively motivated vi-
sion processing where an interaction with speech is being aimed at. The latter
demands the consideration of special purposes which are derived from the sy-
stem’s situated global requirements (Ballard 1991, Brown 1992).

For this reason, the exclusion of model-driven influences, as often practised
in more traditional approaches (e.g. Marr 1982), is no longer appropriate for a
comprehensive architecture. In our approach, objects are modelled by means of
individual entities which can be robustly detected and which specify the object
redundantly. In this, lighting conditions and perspective are taken into conside-
ration on the perceptive level. In Figure 1, this corresponds to level PE of the
knowledge base. An object corresponds to only a few percepts, since only a small
number of topologically differing views can be derived from the contour struc-
ture of an object (Koenderink & van Doorn 1979; Rieger 1990). For example, a
rhomb-nut is modelled by its upper side, the hole and the two visible sides in
front, in a particular spatial arrangement. In ERNEST, a spatial arrangement
of this kind can be represented by a relation between attributes within con-
cepts. A three-dimensional reconstruction of the scene is created on subsequent
processing levels. In Figure 1, this level is shown by concretisation level R.

The interface with the segmentation processes on the signal level (level I)
is given by contours on the one hand and regions of homogeneous colour and
texture on the other. Figure 2 shows segmentation results consisting of ellipses
and line segments by intensity edges and also regions by fast colour segmentation.

In selective perception, spatially-oriented attention with low resolution (level
S) provides an important initial indication for subsequent focussing mechanisms
(level A). Object-related attention is realised in the PE module that has been
described above. This architecture allows an interaction of low resolution and
colour with subsequent focusing and shape processing. As such, it represents an
abstraction and coarsening of biologically motivated architectures which model
saccadic eye movements (e.g. von Seelen, Bohrer, Engels; Gillner, Janflen, Neven
& Schoner 1994).

3.3 The integration of the components

The integration of the two modalities speech and vision is based on Johnson-
Laird’s theory of mental models (1980, 1983). “The theory of mental models
assumes that they can be constructed on the basis of either verbal or perceptual
information“ (Johnson-Laird 1980, p.100). Important in this regard is the inte-
grative and coherent representation of objects and facts as well as the cognitive
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processes based upon such a representation. By means of direct access to various
aspects of a concept, it is possible to provide adequate modelling of temporal
sequences of cognitive processes. For instance, on the evidence of current psycho-
linguistic experiments, it seems likely that word recognition may have a direct
influence on saccadic eye movements, i.e. on visual processing, even when a word
which is heard has not yet been processed through all levels (Spivey-Knowlton
et al. 1994).

The integration of the individual components of the knowledge base in ER-
NEST takes place on a common level of abstraction, which we take as a repre-
sention of mental models (level M). In Figure 1, the entire conceptual hierarchy
can be seen. A significant characteristic of this hierarchy is that concretisation
relations exist not only between adjacent processing levels, but that there are
also direct connections between the mental models level and the conceptual level
near the signal. By this means, the modelling of an early interaction between the
visual and speech components should be possible. The following extract from a
dialogue serves to illustrate such an interaction as a sequence of ERNEST infe-
rences:

Hast du. So, jetzt nimmst du dir den roten Wiirfel

<pause .> Ja.

und die griine ganz lange Schraube.

<pause ..> Mhm.

So, den roten Wiirfel schraubst du jetzt unter den blauen Wiirfel.

Translated into English:

Got it. So, now you take the red cube

<pause .> Yes.

and the green, very long bolt.

<pause ..> Mhm.

So, now you screw the red cube under the blue cube.

In addition to the immediate influence which the instructor’s directions have
on the conscious actions of the constructor, unconscious processes are also set
in motion. As mentioned above, experimental data suggest that an utterance on
the part of the instructor will influence the eye movements of the constructor.
The implication for the modelling is that visual processes already begin during
the incremental processing of the verbal instructions. For example, the visual
search for red objects in the scene can begin as soon as the word red from the
first instruction “now you take the red cube®“ has been understood, before a
complete linguistic interpretation of the entire utterance has been completed.

In the integrative system presented here, a concept W_RED is instantiated
on the word level by the colour adjective red, thus giving lexical access. Thanks
to direct concretisation links with the syntactic and mental processing levels,
modified concepts are laid down simultaneously on the SY level as well as the



M level. From the M level, a model-driven activation of modified concepts in
the visual components now takes place, before the linguistic processing has been
completed. A modified concept C_RED is activated and following that, a mo-
dified concept A_RED_THING, which represents red objects in the scene. By
laying down a modified concept S_SPOT, the red components of the image are
emphasised, and red objects in the scene can be directly accessed. If a cube is
the only red object in the scene, this can lead to an instantiation of a concept
PE_CUBE on the perceptive level before the instructor has actually uttered the
word cube. The foregoing sequence illustrates by way of example the modelling
of interactive vision and speech processing. Due to many degrees of freedom in
our model, more detailed empirical data are however still required for a more
differentiated modelling.

4 Conclusion

The integrative architecture presented here is based on the requirements arising
from the situated integration of speech and vision. This integration requires a
homogeneous representation for image and speech understanding. Accordingly,
a close interaction of early processes provides the vision module with cues for
colour focusing and selective shape processing. We are adapting our present
system for a distributed workstation environment based on message passing.

The architecture which has been briefly outlined here offers great potential
for further research. Psycholinguistic experiments are needed however, since the
process of speech and vision interaction is at present underspecified from the
empirical point of view.
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