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ABSTRACT 

Brain-computer interfaces (BCI) are a valuable proposition for the long-term vision of the automotive 

human-machine interfaces and for increasing the personal mobility of users with physical disabilities. In 

this work, we do not attempt to improve the vehicle control through a BCI. Instead, we focus on assessing 

the driver’s fatigue using a non-invasive BCI technology, a mobile electroencephalograph (EEG). Non-

invasive EEG-based approaches for driver assessment often rely on the independent components analysis 

(ICA) and measure the relative power of specific EEG frequency bands. In the case of wireless and mobile 

EEG devices, especially outside the domain of medical-grade electronics, a higher number of artifacts and 

lower channel count can be expected. Main priorities for such devices are ergonomics and usability, with 

signal quality and robustness on the second place. Such devices significantly simplify experiment design 

and data collection in automobile simulators and real test-drives. This work presents a robust two-step EEG 

signal processing method for driver assessment for a consumer-grade EEG BCI, which collects artifact-rich 

data using a limited number of low-quality saline-pad electrodes. We demonstrate that a reliable 

assessment of driver state in such conditions is possible, if the independent component analysis is extended 

through an expert system-based assessment of reliable signal components in a specific region-of-interest on 

the brain surface. The method additionally eliminates the need for manual artifact removal. We show that 

the lower sensor count, lower sensor quality and mechanical vibrations can be offset through additional 

signal processing. We additionally show that the data collected by the BCI provides additional value to the 

driver assistance, meaning that BCIs can serve both as a human-machine interface and a driver assistance 

system.   
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1. INTRODUCTION 

The societal impact of a successful and non-intrusive method of reducing the losses in lives and 

property in traffic accidents is without any doubt large. Depending on the type of the human-

machine interface (HMI) used for the primary vehicle control, various methods can be utilized to 

assess the driver state. In the scope of the automotive research project “Diesel Reloaded“, the 

brain-computer interface (BCI) is being analyzed as one of the future automotive HMI solutions.  

Such interfaces have already been used in semiautonomous and direct vehicle control 

(Autonomos Labs, 2012). Furthermore, BCI provides personal mobility to physically impeded 

users, which are not able to operate a standard vehicle equipped with steering wheel and pedals. 

Even though specific custom-made physical interfaces, one example being miniaturized 

joysticks, can be used to operate vehicles with only one hand and minimal physical exertion, the 

BCIs go one step further and read out user’s commands directly at the source. Further 

development of BCI feedback methods can be expected in the future, but current users have to 

do away with traditional feedback channels through human senses. It is not our goal to compare 

the user experience and ergonomics of the current physical interfaces and the BCI. While most 

drivers could wish to use their vehicles the same way they use their body and insisting on haptic 

feedback, monitoring their mental state and level of fatigue will remain of high importance.  

The BCI provides a clearer insight into the operator’s state, because it additionally captures 

brain activity not related to the primary task of vehicle control. Lal and Craig (2001) concluded 

that monitoring EEG may indeed be the most promising method for fatigue detection. Current 

state of spectral analysis suggests that ratios between the alpha, beta and theta frequency bands 

can yield acceptable driver classification (Cao, 2010). The currently established methods are 

however of little use for online assessment of driver state with low-cost consumer-grade EEG 

input devices in automotive conditions, especially if the user keeps changing head position due 

to external forces and short glances. We present a two-step method called based on region-of-

interest independent component selection for spectral analysis, abbreviated as RISSA for brevity 

in the rest of the document. 

This work is organized as follows. In section 2 we describe the design of the experiment 

which used to evaluate the approach. In section 3 we present the main properties and issues of 

analyzed signals captured by the BCI. In section 4 we describe our processing method and the 

key elements of the contribution. In section 5 we present and discuss the results. Finally, we 

conclude and present the future work in the section 6. 

2. EXPERIMENT DESIGN 

2.1 Driving Simulator 

VIRES Virtual Test Drive version 1.1 was used for data collection, complete with an automobile 

mock-up, a chassis of a Smart automobile, shown in figure 1. A simulation of the driving 

environment was being shown on a large screen in front of the vehicle mockup. Only one screen 

was present, hence the possible lack of driver immersion might have affected the results. 

Furthermore, the simulator was not equipped to provide lateral and longitudinal forces normally 

experienced during a real test drive. This could have also reflected negatively on the data, but 
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has to be cross-checked with either a more advanced simulator or a test drive. Simulated vehicle 

dynamics were comparable to a typical personal automobile. 

 

 

Figure 1. On the left the driving simulator, on the right electrode locations provided by the EEG helm 

2.2 Brain-Computer interface 

A 14-channel wireless EEG helm was used in the experiment. The provided electrodes, after the 

10-20 standard, are AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8, O1 and O2. Figure 1 

shows the exact electrode location. 

The device performs internal super-sampling of the EEG signal with the frequency of 2 kHz 

and provides the resulting output signal with the frequency of 128 Hz. Effective sampling 

resolution is 14 bits, with the least significant bit representing 0.51µV. Dynamic range is 

8400mVpp. Digital notch filters are active at 50 and 60 Hz. Signal bandwidth in the range of 

0.2-45Hz. The helm is using a 2.4GHz wireless band to connect to the personal computer with a 

wireless dongle, where further data processing takes place. It is powered by a Li-Polymer battery 

with a theoretical life of 12 hours. Electrodes are of modular design and are equipped with saline 

sensor pads.  

2.3 Participants 

A total of 21 participants (18 male, 3 female), all in the possession of a driver’s license valid in 

the European Union, took part in the experiment. Mean age was 26.1; the driving license was 

possessed for a mean duration of 8.2 years. All the participants fall into two groups – the 

normal, which consists of 14 well rested subjects performing the experiment well before 19:00h 

and the negative which consisted of 7 tired participants performing after 19:00h. The subject 

tiredness was additionally determined through a pre-experiment survey, in which the subjects 

were asked to provide objective and subjective data regarding their current overall fitness and 

fitness to operate a vehicle. Personal average sleep time was also compared to the duration of the 

last sleep. Energy drinks, coffee and similar stimulants were taken into account. 
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2.4 Experiment Course 

The entire experiment lasted approximately one hour per participant. At the beginning, the 

participants were requested to sit in front of a personal computer wearing the EEG helm and try 

to relax as much as possible for a full minute. They could observe their own EEG activity on the 

screen during this time. It was not allowed to touch the helm, close the eyes or engage in any 

form of deep relaxation. 

Second phase of the experiment took place in the driving simulator. A simple target 

following task, not related to driving, was performed with the joystick for 5 minutes. The goal 

was learning the sensitivity of the device before the driving phase. 

Third phase continued inside the simulator, starting with a test drive through a virtual city. 

After not less than 5 minutes of additional training, the simulation was reset and a 10-minute 

long data collection was started. 

3. SIGNAL AND ARTIFACT PROPERTIES 

Current approaches for driver state assessment often rely on medical-grade EEG devices with a 

larger electrode count. The electrodes are often gel based and remain fixed on the scalp. Minor 

head movement is only partially detrimental to the signal quality. In addition, the electrodes are 

precisely mounted on the scalp according to the 10-20 standard. 

Usage of a helm with a reduced set of saline pad electrodes, which are relatively equally 

spaced between each other due to the fixed mounting frame, introduces a different set of 

challenges. The wireless EEG helm is flexible and enables easy fitting, but the electrodes cannot 

be fixed individually and independently, since they are a part of one rigid unit. 

We have observed two types of typical sensor slippage types during the practical work with 

the EEG helm. The first is an instantaneous contact loss, which is immediately reestablished, 

which can be called a “shock” artifact. It is characterized by a sudden decrease of measured 

voltage, a very fast signal jump and a continuation of the decrease until pre-shock signal state is 

reached. The artifact is usually contained in the time frame of one second. 

Another type of slippage manifests as a sudden shift in moving average, which can last for 

several seconds. These appeared with the subjects with very thick layers of hair directly 

underneath the electrodes and during strong mechanical vibrations. The upcoming shift in 

moving average can be detected in advance using the gyroscope built inside the helm, which 

detects problematic types of mechanical vibration (Mercep, 2013). Vibrations are the largest 

issue with the used EEG helm. We did not detect electromagnetic interference caused by other 

electrical devices inside the vehicle. In our case, such devices would be the power electronics 

and computers running the simulation and located inside the chassis. In a real automobile, these 

would be infotainment and comfort systems. Such interference could be identified in advance, in 

the moment when the user requests a certain functionality to be activated, if a connection to 

underlying vehicle system architecture or all provided human-machine interfaces is present. 

Finally, we observed cases of a single electrode permanently not having optimal contact with 

the scalp. In the worst case, this manifests itself in a signal with no extreme values or extreme 

slew rates, but neither time-domain samples nor the signal’s spectrum have a biological 

background. Such data channels can be completely mapped out the collected data for the entire 

duration of the experiment. 
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Other artifacts stemming from external sources (such as AC frequency) and various muscle 

and eye activity are dealt with in the scope of ICA decomposition. 

4. PROPOSED PROCESSING METHOD 

Our proposed approach consists of a pre-experiment preparation phase and an online phase 

which takes place during the data collection. 

4.1 Preparation Phase 

Let us define a region of interest (ROI) on the brain surface, in which a well-defined set of rules 

regarding to mapping of brainwave frequency bands and their ratios to driver state exists. In the 

rest of this document we refer to this set of rules, which is derived from the biological effects of 

brainwave activity, the biological context table (BCT). It is necessary for the entire ROI to be 

invariant to the same BCT, which implies that all the relevant frequency bands can be detected 

throughout the ROI. There can be an arbitrary amount of ROIs with corresponding BCTs on the 

scalp. In regards to the EEG device capturing the data, they should be weighted by the a priori 

reliability, based on actual electrode position and density. For the purposes of this work, we have 

defined one ROI and its BCT in the preparation phase. The focus of this work is placed on the 

online phase and selecting a reliable independent component inside the ROI. For our 

experiment, the ROI was set to the frontal and central cortex lobe, mostly due to the higher 

electrode density for the provided EEG device in this area. Figure 2 shows two independent 

components in this ROI and presents the building blocks of the signal processing pipeline 

explained in the following section. 

 

 

Figure 2. On the left a comparison of power spectrum differences for two ICA components in one ROI, on 

the right the basic blocks of the signal processing pipeline in the online phase 
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4.2 Online Phase 

Once the ROI and appropriate BCT are fixed, we connect the following blocks into the signal 

processing pipeline: 

1. Simple artifact removal in raw data 

2. Independent component analysis on the entire scalp 

3. Selection of reliable independent component in a ROI 

4. Spectral analysis of reliable independent component 

 

The simple artifact removal in step 1 relies on straightforward detection of signal properties 

already described in section 3 of this work and is not explained further on. In the rest of this 

section, we briefly touch the methods which were incorporated as-is into our method (such as 

ICA), and go into detail when describing custom building blocks. 

4.2.1 Independent Component Analysis 

Let the vector  

 s = {s1(t),s2(t)…sn(t)} (1) 

 

contain N independent source signals. Let the vector 

 

 x = {x1(t),x2(t)…xn(t)} (2) 

 

contain N linear mixtures, which are the result of multiplying the vector of source activity 

EEG waveforms s by an unknown square matrix A which performed the mixing process, that is 

 x = As (3) 

The goal is to find the filter which performs the inverse mixing process and enables 

extraction of the vector u which is a scaled and reordered version of the original vector s. 

Therefore, it is necessary to find a square matrix W which inverts the mixing the process and 

produces u  

 u = Wx (4) 

The main difference between principal component analysis (PCA) and the independent 

component analysis arises in the assumptions on the nature of differences between s and x. PCA 

assumes that the data sources are uncorrelated, while ICA has a stronger assumption of 

statistical independence (Jung, 2001). PCA has been successfully used in the same context of 

EEG power spectrum analysis (Wu, 2004).The consequence of statistical independence is the 

factorization of the multivariate probability density function fu(u).  

The extended infomax algorithm based on a neural network and proposed by Bell and 

Sejnowski (1995) is used to find the vector u. The joint entropy H(y) of the output of a neural 

processor is maximized in order to minimize the mutual information among the output 

components yi=g(ui) where g(ui) is invertible bounded nonlinearity. The algorithm separates 

sources with both supergaussian and subgaussian distributions. In this work, the number of 

independent components has been set to the number of active EEG channels per experiment. 

This was not always the total number of electrodes (14), due to the rejection of bad EEG 

channels. 
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4.2.2 Selection of Reliable Independent Component in a ROI 

The ICA components in ROI are evaluated with an expert-based belief network, which provides 

a measure of so-called goodness for every independent component. We always selected the 

component with the maximal goodness for the next step, the spectral analysis. 

Main contributing factors to the component goodness are: 

 

1. Number of electrodes in the vicinity of the component 

2. Simple artifacts’ amount from the electrodes near to the component 

3. Dipole properties of the independent component 

4. Spread of the component over the frontal areas prone to facial muscle artifacts 

 

Most of the factors were derived from the existing and well-defined rules for manual 

component identification when using ICA with common signal toolboxes, such as EEGLAB 

from the Swartz Center for Computational Neuroscience. 

A Bayes belief network N contain the contributing factors is shown on the figure 3. This 

network can be extended in the scope of future work to take as many factors into account as 

possible. Using the built-in gyroscopic sensors for detection of head movement and correlating 

these movements to a map of electrodes with different sensitivity to different kinds of head 

motion is a good example. The inference complexity is not an issue, since the network size is 

negligible. For the future expansion, we suggest using the more performing exact-inference 

method called the junction tree in this step, since we assume that the number or rules and the 

resulting network will rapidly grow. The goal is to keep the method online while running on 

embedded hardware. This suggestion does not constitute a part of the scientific contribution of 

this work, but rather represents a method for the efficient implementation of RISSA. 

Let us briefly describe the junction tree-based inference. 

Let J be a subgraph of the clique tree C. J is a junction tree iff: 

1. J is a tree 

2. J contains all the nodes of the clique graph C 

3. For each pair of cliques C1 and C2 which have an intersection S, all cliques on the path 

between C1 and C2 also contain S. 
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Figure 3. Belief network used for component evaluation 

The benefits of a junction tree, as compared to the original Bayesian network, are: 

1. Frequent updates of clique probability tables incurred by dynamic artifact detection are 

performed more efficiently 

2. Querying the network is optimized for a desired set of often asked questions 

3. The junction tree is pre-constructed before the experiment and does not change 

structurally during the data acquisition 

4. New nodes are easily added to the original belief network and integrated into the 

junction tree before the experiment 

Drawing a parallel to the techniques used in dynamic programming, a junction tree can be 

seen as cache of subjoint probabilities used during the variable elimination. Probabilities are 

update by a message-passing algorithm, which is currently the most efficient exact reference 

method for concurrently computing multiple queries (Pan, 1997). However, the running time is 

exponential in the size of the largest clique.  

Previously introduced region of interest (ROI) can contain multiple instances of spatially 

localized ICA components. The independent component with the largest goodness is selected for 

the analysis. To recap, frontal and central cortex area was chosen as the region-of-interest, due to 

the highest electrode density. 

4.2.3 Spectral Analysis of the Reliable Component in ROI 

Our spectral analysis relies on the set of rules inside the previously defined biological context 

table (BCT). Cao (2010) found that the band power of θ, α and β waves reflect the difference in 

driver vigilance in different ways, based on the observed cortical area. In the central cortex, the θ 

band was stronger in the sleepy state. In the frontal cortex, the β band was weaker in the sleepy 

state. The α band was only significant for classification in the occipital and parietal cortex. 

However, we have found a significant difference in the frontal and central cortex activity by 

measuring the ratio β/(θ+α), where α contains both slow and fast alpha waves . Due to the large 

number of artifacts at frequencies lower than 4 Hz, we avoided analyzing the δ band, even 
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though it was found to be significant for the frontal cortex. As the end result, our BCT for the 

ROI of interest was set to the ratio β/(θ+α). 

5. RESULTS 

A single 30-second long sample was taken in the default state, while the user was not 

performing any activity. Six 30-second long samples were taken in the second phase in the 

driving simulator, while the user was driving through the virtual city. With this data, we 

benchmarked two aspects of our signal processing method. 

Firstly, the effectiveness of the belief network used for component selection was evaluated, 

in comparison to the choices made by manual data inspection. These results are shown in the 

table 1. 
Table 1. Accuracy of the independent component selection in the region of interest 

ICA Components in ROI 
Experiment Phase 

Default Activity Driving 

Mean Number of Alternatives 4.14 4.26 

First Choice Selection Rate 93% 91% 

Second Choice Selection Rate 100% 100% 

 

We can observe that the ICA mapped an average of 4 components inside our region of 

interest during both phases. The method correctly identified the most suitable component with 

the accuracy larger than 90% in both phases. The second choice selection rate describes how 

often the best component received the second best goodness i.e. how often the method made a 

mistake of placing the correct component on the second best place. It is clear that when the 

method fails to select the very best component (>10% of the cases), it always places that 

component on the second place. The difference between the two after spectral analysis is often 

minimal, so this does not affect the following part of result analysis. 

Secondly, we analyzed the actual difference between the fatigue assessments of the two 

driver groups as provided by the BCT in the defined ROI. Each group received a scalar value of 

the frequency band ratio. A two-sample t-test has been performed on the ratios for both test 

groups. As the result, the null hypothesis has been rejected with the significance level of 5%, 

meaning that the two groups do exhibit a statistically significant difference. These results are 

presented in the table 2. 

Table 2. Differences in ratio β/(θ+α) between two driver groups 

Experiment Phase 
Test Group 

Normal Negative 

Default Brainwave Activity 0.8898 0.7185 

Driving in the Simulator 0.8292 0.7027 
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The collected data summarized in both tables confirms that the independent components are 

being correctly identified and that the BCT in the selected ROI correctly identified the driver 

state during our experiment. As a result, we claim that the RISSA approach is robust enough to 

justify further development and experiments in real-life conditions. 

6. CONCLUSION AND FUTURE WORK 

We have demonstrated how consumer-grade BCIs can be deployed in automobiles to assess the 

driver fatigue. The issues of low-quality electrodes and low electrode count were alleviated with 

additional signal processing effort. Our contribution has both increased the robustness of the 

established methods for EEG signal processing and extended the usefulness of consumer 

electronics BCI devices in the automotive area for the purpose of driver state detection. One 

important question is how the resulting driver assessment can be meaningfully used for 

increasing traffic safety. 

We suggest a practical approach based on influencing the driver state through infotainment 

and/or comfort systems, in an attempt to bring the driver back into an alerted and wake state. 

One option, already made possible in our experiment vehicle, is manipulating the ambient 

lighting of the driver’s workspace. Sudden change of ambient color or a shift to daytime color 

temperatures can affect the driver wakefulness. Another option is alerting the driver with visual 

and audio cues, some of which require user interaction to be reset again. Some examples are 

illustrated in figures 4 and 5. 

As the last step of future work, the method could be tested inside our sidestick
1
-operated 

drive-by-wire prototype, the Innotruck. The RISSA can be integrated into a combined human-

machine interface and driver assistance module, since it provides fatigue information (attributed 

to classical driver assistance devices), while relying on large amounts of raw data from the HMI. 

 

 

                                                 
1 Sidesticks in the Innotruck are two spherical input devices with one degree of freedom (left-right) and two buttons for 

throttle and braking, vaguely resembling a joystick. 
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Figure 4. The EEG helm can be comfortably worn while the prototype vehicle is driven with conventional 

human-machine interfaces (Image by Juan Jose Gonzalez Herrero) 

 

Figure 5. The Innotruck experimental vehicle of the project Diesel Reloaded is equipped with controllable 

LED ambient lighting, shown here while illuminating driver’s workplace in blue 
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