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TUM-INFO-01-I0404-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
�

2004

Druck: Institut f ür Informatik der
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1 Introduction

We describe the inverse kinematics of our robotic system for minimally invasive
surgery. Special respect is given to an intuitive operability of the user interface.
Therefore we apply the concept of so-called trocar kinematics. Meaning that
the manipulator (in our case an instrument for minimally invasive surgery) has
to pass a fixed opening through the surface of the patient’s body. It is the
principle idea of minimally invasive surgery to perform all surgical tasks through
small keyhole-openings (so-called ports) in order to avoid traumatic invasions.
Evidently, this procedure restricts the degrees of freedom of the instrument. Feed
and rotation axes always have to intersect with the fixed port. With respect to
kinematics this point is often called trocar point. Given the position and rotation
of the end effector, as a result of the instrument’s trocar kinematics, we get the
position and rotation of the robot flange that bears the instrument. Therefore we
have full cartesian control of the instruments. Since no direct cartesian control of
the robot is possible within our interface, we also have to determine the inverse
kinematics of our robots. As a final result we will get three joint angles for the
minimally invasive instrument, while we get six angles for directly controlling
the robot’s joints.

1.1 Mechanical Setup

The motor part of our system consists chiefly of two instruments for minimally
invasive surgery, which are mounted on Kuka industrial robots. Both instruments
employed in our system are provided by Intuitive Surgical Inc. Each of them
consists of several mechanical parts. The part mounted on the driving device is
called drive box. It contains four driving wheels, one for each degree of freedom
of the instrument. Note, that both fingers of the end effector can be moved
independently. In our setup the wheels are directly driven by servos that are
coupled to the device via an Oldham coupling. The driving wheels are connected
to spindles that control the moving parts of the instrument via steel wire linkage.
The long cylindrical part which catenates the drive box with the end effector is
called shaft. It is constructed as a hollow carbon fibre tube that contains the steel
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Fig. 1. Instrument for Minimally Invasive Surgery

wires for end effector control. The shaft can be rotated about its longitudinal
axis. The end effector consists of an iron wrist and hand. The hand itself has two
fingers that share one pivot axle. The axis of rotation of the wrist is arranged
perpendicularly across from the finger axis. For our consideration we have chosen
the following convention for axis assignment. The longitudinal axis of the shaft
is conceived as zM -axis. The rotational axis of the wrist constitutes the yM -
axis, while the hand rotation takes place about the xM -axis. M indicates in
this case, that these axes are parts of the mechanical system (see figure 3).
Later we will introduce coordinate systems for the instruments that alleviate
mathematical considerations. Note, that any correspondence of mechanical axes
and this coordinate system only applies to the basic position of the instrument
(i.e. all rotational angles are set to zero). Later we will explain how we exploit
this initial congruence in order to reach the desired position of the end effector.
The instruments are mounted on an aluminum adaptation that can be flanged
to a Kuka robot. In addition, a second tube enwraping the shaft is fixed at
this adaptation. It provides stability for the shaft and prevents the patient’s
body from contact with the rotating shaft. The robots bearing the instruments
are standard industrial robots of the type Kuka KR6/2 (see figure 2). The last
rotational axis of the Kuka robot and the rotational axis of the instrument are
identical. Meaning that rotations about the longitudinal axis of the shaft can
either be realized with the servos driving the instrument rotation or directly
by the robot. We restrict our further considerations to one of the manipulators
(instrument and robot). The kinematics of the other arm can easily be derived
by symmetry.

1.2 Notation

Since we often deal with different coordinate systems and conversions between
them, it is sensible to introduce some notation conventions. Within this text we
will refer to coordinate systems with different capital letters. For example K

denotes the coordinate frame of the Kuka robot. For transformations between
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Fig. 2. System Overview

different system we use a capital T with the original system as superscript and
the target system as subscript (both on the left side of the T ). For example
K
P T denotes the transformation of the Kuka system into the Phantom system.
The rotational part of a transformation Tr is denoted as a 3 × 3-matrix, while
translations Tt are indicated by subscripts with the corresponding axis. Example
for a homogenous transformation matrix:

K
I T =









K
I T00

K
I T01

K
I T02

K
I Tx

K
I T10

K
I T11

K
I T12

K
I Ty

K
I T20

K
I T21

K
I T22

K
I Tz

0 0 0 1









Vectors are represented by small letters, while points in 3D space are written
down as capital letters. The corresponding coordinate system is indicated as a
subscript. For example xP means the x-axis of the Phantom system and OK is
the origin of the Kuka system. If the referred coordinate system is clear from
the context, subscripts are omitted.

1.3 Coordinate Systems

In this section we want to describe some of the coordinate systems in detail
which we will employ for our considerations. The most important issue in this
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respect is the correlation between different systems. Because our working space
is mostly specificated by the working space of the Kuka robots, we have chosen
the Kuka system K as our base system. In our setup the user and the camera,
respectively, is placed in front of the Kuka robots. Meaning the xK-axis points
in the direction of the user, while the zK-axis points up to the ceiling (see figure
2). Since all systems have a right hand orientation, the yK-axis points to the
right hand side.
The Phantom is placed in front of the user and therefore its zP -axis is collinear
with the xK-axis of the Kuka system. The yP -axis points up to the ceiling, while
the xP -axis points to the right hand side (see figure 2).

Fig. 3. Virtual Instrument Definition

A crucial issue is the determination of the coordinate system for the mini-
mally invasive instrument. We want to design the control of the instrument as
intuitive as possible. If we take the human hand as an archetype, we can make
important observations. If we perform very precise manual tasks (e.g. a surgeon
making a cut), we turn the hand about a rotation center that lies near the first
link of the fingers (see figure 3 left side). On the one hand we want to include
this behavior in our instrument control, on the other hand, we should preserve
mechanical feasibility. A good compromise is shown in the middle of figure 3,
where we have selected the mechanical rotation axis of the fingers to be the xV -
axis. Any rotation about this axis is called yaw. The zV -axis (roll axis) points
always in the direction of the closed end effector (e.g. gripper). Consequently,
the yV -axis (pitch axis) is aligned as shown in figure 3 in order to get a right
hand system. Unfortunately, the mechanical axes do not intersect in the point
we have chosen for the origin of the instrument system. Therefore we call the
system established by the axes xV , yV and zV virtual instrument system. Me-
chanical rotation axes of the real instrument are named xM , yM and zM (see
figure 3 right side). An important issue is the conversion of movements of the
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virtual instrument to real world axes rotations. We will refer to this later in
detail.

1.4 Trocar Kinematics

The minimally invasive instruments are controlled by the operator via two Sens-
able Phantoms (6dof position control with 3dof force feedback). We want to
impart the impression, that the user can control each instrument’s motion as a
direct mapping of the finger position (measured with the Phantom stylus; see
figure 2). This behavior has already been implemented with commercially avail-
able systems like Intuitive’s daVinci. This issue gets even more complicated if
fixed ports for the instruments are demanded. A port is a small incision in the
patient’s body surface which render the surgeon possible to reach positions in-
side the body without making an invasive cut. In most of the cases three ports
are needed (see figure 4). Two for the instruments and one for the endoscopic
camera. It is clear that the possible movement of the instrument’s shaft is re-
stricted to insertion, retraction and rotation exclusively about the corresponding
port. Every other motion (e.g. translation tangential to the body surface) would
force the shaft to displace the port and harm the patient. This would be con-
tradictory to the idea of minimally invasive surgery. Therefore the shaft axis of
each instrument has always to be aligned with the corresponding port point.

Fig. 4. Location of the Instrument and Camera Port

The most comfortable way of moving a surgical instrument inside the body
would be cartesian control. Therefore we assume that the position of the in-
strument’s end effector (e.g. gripper, scissors etc.) is given by a homogeneous
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transformation matrix. The position and rotation of the instrument and the po-
sition of the port has to be determined in our base system (system of the Kuka
robot). That can easily be done for the port, but requires a coordinate trans-
formation from the Phantom system towards the Kuka system P

KT . As one can
derive from the corresponding coordinate systems in figure 2, the zP -axis of the
phantom is collinear with the xK-axis of the Kuka system. Correspondingly the
xP -axis of the phantom is collinear with the yK-axis, while its yP -axis points in
the same direction like the zK-axis of the base system. As we mentioned above,
the zV -axis of the instrument is always aligned with the end effector and points
in its direction. On the other hand, the stylus of the Phantom points in the di-
rection of the phantom’s zP -axis (see figure 2). That means, if we use the stylus
as surrogate for a surgical instrument, its zP -axis points in the reverse direction
of the end effector. Therefore we additionally rotate the homogeneous transfor-
mation matrix of the stylus by 180 degrees. Meaning if the user holds the stylus
in home position - i.e. the user’s fingers point in direction of −xK - the fingers of
the controlled instrument also point in direction of −xK . This gives the user the
impression of manually controlling the instrument’s end effector (as depicted in
figure 2). As a result, we get the transformation matrix K

V T , for converting stylus
movements (i.e. user input for the position of the virtual instrument system) to
the Kuka system.

K
V T = K

P T ·
P
V ′T ·

V ′

V T

K
V T =









0 0 1 V ∗
x

1 0 0 V ∗
y

0 1 0 V ∗
z

0 0 0 1

















P
V ′T00

P
V ′T01

P
V ′T02

P
V ′Tx

P
V ′T10

P
V ′T11

P
V ′T12

P
V ′Ty

P
V ′T20

P
V ′T21

P
V ′T22

P
V ′Tz

0 0 0 1

















−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1









K
P T describes the renaming of the corresponding axes, where V ∗

t is the dis-
placement of the initial instrument system from the origin of the Kuka-system
to the home position of the instrument. This home position is shown in figure 2.
Transformation matrix V ′

V T applies a rotation by 180 degrees about the yP -axis
of the phantom, while P

V ′T gives us the measured user-applied position of the
stylus (i.e. the virtual instrument). We now have both, the transformation of the
instrument and the port, given in base (Kuka) coordinates.

Fig. 5. Initial Position of the Virtual Instrument
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As a next step, we determine the transformation matrix for a so-called initial
instrument system I. This system is a hypothetical construct to facilitate the
calculation of the backward kinematics of the instrument. The alignment of this
initial position is determined by the positions of port and instrument (see figure
5). Point V marks the origin of the virtual instrument system, i.e. V = K

V Tt. That

means the zI -axis of the virtual flange is identical with the vector
−→

PV . We also
demand that the yI -axis of this system is parallel to the xyK-plane of the Kuka
system. The idea is, that we can easily calculate the homogenous transformation
of this system in relation to the Kuka system. After that, the system I can be
transferred to the virtual instrument system by subsequent rotations. But first
of all, we describe the rotation of system I, relative to the base (Kuka) system,
by Z-Y-X-Euler angles.

Fig. 6. Z-Y-(X)-Euler Angles of the Virtual Instrument System

We denote the angle of rotation about the initial zK-axis of the Kuka system
as θ. It can be determined with the atan2-function, which serves in robotics as an
substitute for the well-known tan−1-function. We measure the distance between
the port and the instrument position by the difference vector

→

P −

→

V . The left
side of figure 6 shows the first quadrant according to the sign of the differences.
That means atan2(dy, dx) will always calculate the angle θ, that results from
a counterclockwise rotation of the negative xK-axis until it points in direction

of
−→

PV . As a result we get a rotated intermediate system with axes x′

K ,y′

K and
z′K = zK . In order to get the desired initial position, we additionally have to
rotate the intermediate system about the y′

K-axis. We calculate the length of

dxy by Pythagoras’ law: dxy =
√

dx2 + dy2. Therefore dxy will always become
positive. The distance in zK-direction is the z-component of the difference vector
→

P −

→

V . By employing the atan2-function, we get the angle ϕ′. Remember, since
dxy is always positive, atan2(dz, dxy) always returns the acute angle between
−→

PF and the xyK-plane. We want to rotate z′K , which is perpendicularly aligned
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to the xyK-plane, until it is collinear with zI . Therefore we have to add 90◦ to
get the rotation angle ϕ. Because the y′

K-axis points into the drawing plane of
figure 6 (right side), we have to apply −ϕ for rotation (right hand rotation). As
explained above, ϕ always lies in between 0◦ and 180◦. This makes sense, because
we do not want the instrument to get into a reverse constellation (reverse means
xV pointing downward). In order to keep y′′

K (= y′

K) parallel to the xyK-plane,
we set the rotation about the x′′

K-axis to zero. Now we have reached the initial
instrument position I: x′′

K = xI ; y
′′

K = yI ; z
′′

K = zI . Given these angles, we now
can arrange the homogenous rotation matrix K

I T that transforms the Kuka-
system to the initial position of the instrument.

K
I T00 = cos(θ) ∗ cos(ϕ)
K
I T01 = − sin(θ)
K
I T02 = cos(θ) ∗ sin(ϕ)
K
I Tx = V ∗

x + Vx

K
I T10 = sin(θ) ∗ cos(ϕ)
K
I T11 = cos(θ)
K
I T12 = sin(θ) ∗ sin(ϕ)
K
I Ty = V ∗

y + Vy

K
I T20 = − sin(ϕ)
K
I T21 = 0
K
I T22 = cos(ϕ)
K
I Tz = V ∗

z + Vz

The derivation of this formula can be found in every book about robotics
(e.g. [4] or [5]). Therefore we abstain from details here. Note that the position
of the origin is the same for both, the virtual instrument system and the initial
instrument system I (K

I Tt = K
V Tt. This position is composed of an offset part

(V ∗t) (see above) and the user input for the instrument’s position (Vt). On the
other hand, the rotations of both systems are different. While the rotational
part of K

I T gives the position of the instrument with no rotations applied to the
instrument’s axes (only to Kuka axes!), K

V T also determines the desired rotation
of the instrument’s axes. In order to apply this rotation mechanically, we need to
know the transformation from K

I T (initial position) to K
V T (desired position). In

other words we have to calculate T I
V . This is best be done by taking the inverse

matrix of the description of the initial position: K
I T−1 =I

K T . Now we get I
V T

by a simple matrix multiplication: I
V T = I

KT ·
K
V T . With the help of this result,

we can determine the X-Y-Z-Yaw-Pitch-Roll rotation angles for the instrument.

αV = atan2(I
V T21,

I
V T22)

βV = atan2(−I
V T20,

√

I
V T 2

00 +I
V T 2

10)



9

γV = atan2(I
V T10,

I
V T00)

We want to give a brief explanation wy we have chosen a X-Y-Z-Yaw-Pitch-
Roll rotation. This order of angles can be directly realized with the mechanical
structure of the instruments. The first rotation about the xI -axis means that
the instrument in its initial position makes a movement of the fingers. Note that
the latter rotation of the instrument leaves the positions of all mechanical axes
unchanged. This is very helpful, since Yaw-Pitch-Roll angles refer to a fixed sys-
tem. As a next step we apply the rotation about the yI -axis, by bending the
wrist of the instrument. Now the rotation axis of the finger has been changed,
but since we have already applied the corresponding rotation, it does not matter.
The remaining rotation about the current zI -axis is performed by turning the
shaft. Every other order of angles will either have no mechanical correspondence
(e.g. Z-Y-Z) or will lead to errors due to the fact that already executed rotations
are changed afterwards due to mechanical dependencies. For example assume
we had extracted X-Y-Z-Euler angles from the matrix. If we now perform the
rotation about the x-axis, the y-axis changes its location to y′ and the z-axis to
z′, respectively. But, e.g., the location of the mechanical y-axis stays the same.
Therefore a subsequent rotation about the y′-axis cannot be performed mechan-
ically.

In the last section we have determined the rotation angles of the virtual in-
strument from its initial position to the desired transformation. As mentioned
above, we have assumed that all rotation axes of the virtual instrument intersect
in one point. We now have to consider how to simulate this behavior with the
real instrument and its mechanical axes. The mechanical xM -axis and the virtual
xV -axis are identical as we have mentioned above. That means we can directly
apply the xV -rotation of the virtual instrument to its mechanical counterpart,
the yaw of the fingers (αM = αV ).
Because the xM and yM -axis of the instrument do not intersect, we cannot ap-
ply the yV -rotation without modifications. We have to calculate it from known
geometric features. We know the rotation angle about the yV -axis of the virtual
instrument (βV ). In addition we know, that the shaft of the instrument always
has to pass the port P . Since virtual and mechanical y-axis are always parallel
(but not necessarily identical), we can calculate the rotation about the mechan-
ical yM -axis (βM ). Note that the position of K

I Tt remains unchanged, but the
shaft of the instrument is tilted about the port.

As one can derive from figure 7, we have given two sides of the triangle, where
w is the length of the instrument’s wrist and d is the distance between the port
and the position of the virtual instrument system V = K

V Tt. Additionally we have
given the rotation angle β4 = βV which is constituted by w and d. Therefore
the following equations hold true:

tan

(

γ4 − α4

2

)

=
d − w

d + w
cot

(

β4

2

)

,
γ4 + α4

2
= 90◦ −

1

2
β4;

By ”atan”ing the first equation and adding the second one, we get:
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Fig. 7. Calculation of βM

γ4 = tan−1

(

d − w

d + w
cot

(

β4

2

))

+ 90◦ −
1

2
β4;

We now get βM = 180◦−γ4. Note that we will use this procedure regardless
of the sign of βV . We always use the absolute value of βV within the formula
explained above, but we remember the sign and apply it also to the resulting
angle βM .
The last angle to determine is the mechanical rotation of the instrument’s shaft.
The initial transformation of the shaft is set by the transformation of the robot
flange F . In order to reach the desired position of the virtual instrument, we
perform a rotation about the zI -axis (see derivation of transform I

V T ). On the
other hand, we only can apply rotations about the real zM -axis, which is identical
with the zF -axis (see figure 8). It is clear from picture 7 that the longitudinal

axis of the shaft zM (
−→

PL) is not collinear with the zI -axis (
−→

PV ) as long as βM

is different from zero. In this case, we have to determine γM by an additional
calculation. Therefore we need to find the positions of the mechanical instrument
axes (esp. the shaft axis zM = zF ) relative to the Kuka-system. Our chosen
convention for the yF -axis is, that it is initially parallel to the xyK-plane. Note
that every other convention would naturally change γM , but will not influence
the final position of the instrument. In figure 8, the point V + is the position of
the virtual instrument if γM were zero. Therefore we have to rotate the shaft
until V + overlaps with the actual position of the virtual instrument V = K

V Tt.
In other words, we have to find a rotation that transforms xF , which is parallel

to a plane spanned by zK and
−→

PL, to xI , which is parallel to a plane spanned

by
−→

PL and
−→

PV (see figure 8). Therefore we first have to find the position of the
inflexion point L (also see figure 7). We know the transformation of the virtual
instrument K

V T . Since the xV - and the xM -axis are identical, we can get the
orientation of the wrist K

W Tr, by back-rotating K
V T by −αM . Because the z-axis
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of the resulting system points in the direction of the wrist, we now can step back
along it for the known length of the wrist w. Thus altogether we get:

→

L=K
V T ·

V
W T ·









0
0

−w

1









Fig. 8. Calculation of γM

Given all points, we now can assess γM . The best way to do this is calcu-
lating the intersection angle of the plane spanned by V +, L and P , and the
plane spanned by V , L and P . We get this angle by intersecting the normals
of these planes. The plane spanned by V +, L and P can be constituted by the

cross product of the vector
−→

PL, which is identical with the rotation axis of the
instrument’s shaft zF , and the zK-axis. The normal of the other plane spanned
by the destination points of the instrument (V , L and P ) is determined by the

cross product of the vectors
−→

PV and
−→

PL. Note that the direction and order of
vectors for the cross product is crucial, in order to get the right direction of the
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normals. The angle between the normals can be calculated with the formula for
the scalar product. Since the result will always lie in between 0◦ and 180◦, we
also have to regard the right quadrant, which can be derived from the knowledge
of γV . Now we have all angles to control the instrument.

The next step is to determine the position and rotation of the flange of the
Kuka robot (K

F T ), where the instrument is fixed to. The orientation of the Kuka
flange has to be the same like the initial orientation of the instrument’s shaft.
This is not identical with the initial rotation of the virtual instrument! The
instrument should be positioned in an initial posture, i.e. with no shaft rotation.
In this case, as mentioned above, the zM -axis of the instrument is collinear with

the vector
−→

PL while the yM -axis is parallel to the xyK-plane. Since the points
P and L are given in coordinates of the Kuka system, we can directly derive
the necessary rotation angles for the transformation K

F T , which describes the
position of the robot flange in the Kuka system. This is done in a similar fashion
like for the initial position of the virtual instrument (see figure 4). In contrast
to the arrangement of K

I T , we do not use the formula for Z-Y-X-Euler angles
here, but Z-Y-Z-Euler angles. Like the yI -axis, the yM -axis is initially parallel
to the xyK-plane. Therefore the last rotation is always zero, regardless if it were
about the x′′- or z′′-axis. But taking the formula for Z-Y-Z-Euler angles has
the advantage, that we can choose to perform a part (or even the complete)
instrument rotation with the help of the last axis of the robot. In other words:
γM = γ′

M + γK .
Once we have identified the flange rotation, we can simply find out the position
of the flange point, by stepping back for the length l of the shaft in negative
zF -direction, starting at the inflexion point L. As we have explained above, L

marks the link between wrist an shaft. If we take αK for the z-rotation, βK for
the y′-rotation and γK for the z′′-rotation, we get the following transform matrix
K
F T :

K
F T00 = cos(αK) ∗ cos(βK) ∗ cos(γK) − sin(αK) ∗ sin(γK)
K
F T01 = − cos(αK) ∗ cos(βK) ∗ sin(γK) − sin(αK) ∗ cos(γK)
K
F T02 = cos(αK) ∗ sin(βK)
K
F Tx = −

K
F T02 ∗ l + Lx

K
F T10 = sin(αK) ∗ cos(βK) ∗ cos(γK) + cos(αK) ∗ sin(γK)
K
F T11 = − sin(αK) ∗ cos(βK) ∗ sin(γK) + cos(αK) ∗ cos(γK)
K
F T12 = sin(αK) ∗ sin(βK)
K
F Ty = −

K
F T12 ∗ l + Ly

K
F T20 = − sin(βK) ∗ cos(γK)
K
F T21 = sin(βK) ∗ sin(γK)
K
F T22 = cos(βK)
K
F Tz = −

K
F T10 ∗ l + Lz (1)
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We will use this matrix as an input for the inverse kinematics of the Kuka
robot. This procedure will be described in the next section.

1.5 Kuka Inverse Kinematics

Since we have no possibility for a low-level cartesian control of the Kuka robots,
but only control over the joint angles, we have to determine the inverse kinemat-
ics of the Kuka robots. That means, given the homogeneous transform matrix
of the robot’s flange, we have to find a mapping to extract the joint angles. This
is best be done by addressing the first three degrees of freedom separately.

Fig. 9. Kuka Robot Geometry

The joint angles of the first three hinges uniquely determine the position of
the point N . Note that there exists no uniquenes for the other direction, since
the position of N can be reached by several joint angle configurations: We can
choose to turn the rotating column by 180◦. In addition, we can either put the
arm in elbow up or elbow down posture. For our setup it was most convenient
to turn the rotating column by 180◦ and move the elbow down. This can be
seen in figure 9. It looks like the elbow were moved up, but that comes from the
180◦-turn of the rotating column! We have given the transform of the robot’s
flange. In order to get the position of N we have to move back in zF -direction
for the length d of the last link (see figures 8 and 9). Consequently we get:
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N = K
F T ·









0
0
−d

1









Nx = −d ·
K
F T02 + K

F Tx

Ny = −d ·
K
F T12 + K

F Ty

Nz = −d ·
K
F T22 + K

F Tz

(2)

Given the position of N , we now can derive the value of the first three
joint angles (θ1, θ2, θ3). The angle which is easiest to determine is θ1. It can be
calculated by:

θ′1 = atan2(Ny, Nx)

As mentioned above, we additionally want to turn the rotating column by
180◦. Therefore, in order to get θ1 we add 180◦ if θ′1 < 0, otherwise we subtract
180◦. A dangerous situation will occur when the user wants to move the flange
through the first or fourth quadrant of the xyK-plane. Then the first joint, and
with it the whole construction, will flip-over from −180◦ to 180◦! We have to
regard this issue when implementing the control software for the robot. Angles θ2

and θ3 are harder to figure out. We need a detailed plan of the robot’s geometry
(see figure 9 right side: all measurements are given in millimeters). First of all
we identify the angle ε:

ε = atan2(z − 675, p + 300); p =
√

N2
x + N2

y

For calculating α and γ we will employ the three-side formula for triangles with
oblique angles. Therefore we first need to know all three sides (a, b and c) of the
triangle. One side is already predefined: b = 650mm. The others can be found
as follows:

a =
√

1552 + 6002; c =
√

(Nz − 675)2 + (p + 300)2;

Additionally we introduce s (the half of the triangles outline) and the radius of
the inscribed circle r:

s =
a + b + c

2
; r =

√

(s − a)(s − b)(s − c)

s

Now we can determine the interesting angles of this triangle:

α = 2 tan−1

(

r

(s − a)

)

; γ = 2 tan−1

(

r

(s − c)

)

;
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Because θ2 is measured between upper arm and forearm, and not between upper
arm and line a, we need the additional correction angle ϕ = tan−1

(

155

600

)

. Given
all these angles we now can combine them to θ2 and θ3:

θ2 = α + ε − 180◦; θ3 = γ + ϕ − 180◦

Note the direction of rotation indicated by ”+”-signs in figure 9. There is
no danger of any flip-over for the second and the third joint, because θ2 and θ3

always lie in between 0◦ and −180◦.
In order to determine the remaining angles, we need to know the transformation
matrix of the forearm in point N . We get this homogeneous transformation
matrix K

A T by rotating the base system about its zK-axis by ρ1 = −θ1. For
orientation of the base system see 2. This gives use the transform of the base
system after application of θ1 (Note that the negative sign is due to the left-hand
rotation of the first joint). After that we turn the z′K-axis, which still points to
the ceiling, into the direction of the forearm. As one can derive from figure 9,
this can be done by rotating ρ2 = θ2 + θ3 + 90◦ about the y′

K-axis. Given ρ1

and ρ2, we can determine K
A T in a similar fashion like we did for K

I T and K
F T .

We use again the formula for arranging a homogenous transform matrix from
Z-Y-X-Euler angles. In our case, the rotation about the x′′

K-axis is zero.

K
A T00 = cos(ρ1) ∗ cos(ρ2);
K
A T01 = − sin(ρ1);
K
A T02 = cos(ρ1) ∗ sin(ρ2);
K
A Tx = Nx;
K
A T10 = sin(ρ1) ∗ cos(ρ2);
K
A T11 = cos(ρ1);
K
A T12 = sin(ρ1) ∗ sin(ρ2);
K
A Ty = Ny;
K
A T20 = − sin(ρ2);
K
A T21 = 0;
K
A T22 = cos(ρ2);
K
A Tz = Nz;

For further steps we need to determine the orientation of the flange in rela-
tion to the orientation of the forearm. In other words we are looking for A

F T . The
easiest way to do this, is multiplying the inverse of the forearm transformation
with the flange transformation: K

A T−1
·

K
F T = A

KT ·
K
F T = A

F T .

Note that after applying K
A T , the zA-axis of the forearm system points in the

distal direction of the forearm. The rotation axes of the last three joints intersect
in one point (see figure 10). In their initial orientation, the rotation axis of the
fourth and sixth joint are identical to zA, while the fifth one is identical to
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Fig. 10. Top View of the Wrist

yA. Therefore we can extract the corresponding angles from the transformation
matrix with the rules for Z-Y-Z-Euler angles:

θ4 = −atan2(A
F T12,

A
F T02);

θ5 = atan2(
√

A
F T 2

20 + A
F T 2

21,
A
F T22);

θ6 = −atan2(A
F T21,−

A
F T20);

The negative signs for θ4 and θ6 come from the left-handed rotation of the
corresponding mechanical axes! Due to the fact that we operate the robot in
a ”headlong” position, we have chosen a configuration with a reverted wrist in
order to usually get smaller angles. Therefore we additionally turn the fourth
and sixth joint by 180◦ and drive θ5 in the opposite direction. Now we have
the complete information to control our manipulator system. We have got three
rotation angles for the instrument and six joint angles for the Kuka robot.
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