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ABSTRACT: 
 
Matching of multiple views is often addressed in 3D-model generation and is normally a two-stage process consisting of a coarse 
and a fine matching stage. Coarse matching, that is the pre-alignment of the surfaces for the complex forms, which can be positioned 
far away from each other in 3D space, is a difficult problem to solve. Fine matching on the other hand can be performed accurately 
using either the ICP (iterative closest point) method or the least square surface matching method. Nevertheless, ICP involves an 
iterative solution which consumes much computing time, and it requires models with considerable degree of overlap at the start 
position. This is because it treats the closest point in the other model as the corresponding point and updates the corresponding 
relationship in each iterative step. If the models have insufficient overlap, ICP will converge to false result. Consequently, a good 
coarse matching is a precondition for a successful ICP. The other matching method - least square surface matching - needs a pre-
aligned corresponding relationship between the surfaces of complex objects, exactly the task of the coarse matching process. 

This paper presents a novel algorithm to perform coarse matching with an innovative data structure, a “matching tree”, which is a 
combination of a interpretation tree and a bipartite matching graph. The whole systematic process can be divided in three steps: 
firstly, it performs segmentation of the laser range scan data according to the geometric characteristics; secondly, a coarse matching 
is conducted to solve the pre-alignment problem; and finally, an efficient fine matching aligns the models accurately. The coarse 
matching is not affected by the position of the models, because it generated from a matching tree using invariant relationships from 
the models themselves. This method is particularly suitable for laser range scan point cloud matching of rooms during the 
reconstruction of historic buildings, since it requires neither GPS nor wall markings. Experiments have been performed based on 
reconstructing King Ludwig II ’s working room in the real Neuschwanstein Castle and the carnival model of Neuschwanstein Castle. 

 
 

1. INTRODUCTION 

Matching the multiple views is an interesting but hard problem 
for the reconstruction of historic buildings. Because of the 
demand of high resolution, the processing time of each scan is 
quite long. Therefore the relative distance between the scans is 
usually large. Additionally, many different objects appear in 
each view. Due to these difficulties, the existing matching 
techniques are insufficient for automatic matching of such scans 
for building reconstruction. Therefore, in industry, the typical 
solution to this problem is to use artificial markers. 
 
This paper attempts to solve this problem by introducing a 
novel data structure, called “matching tree” to pre-align two 
scans automatically and uses standard fine matching methods 
subsequently to achieve a high accuracy. Experiments have 
been performed by reconstructing the working room of King 
Ludwig II in the real Neuschwanstein Castle and the carnival 
model of Neuschwanstein Castle. All of the scan data are 
acquired with the advanced laser scanner of the high tech 
company Zoeller & Froehlich. 
        
The paper is organized as follows. In section 2, previous work 
is briefly summarized. Then, section 3, describes the details of 
the automatic matching process, which is in three stages 
divided: segmentation, coarse and fine matching. The 
implementation of the algorithm and the experimental results 
are shown in this section. After this, the possible improvements 
in the future are addressed in the conclusion section.    
 

2. RELATED WORK 

Automatic Matching without an additionally tracking system is 
always a hot topic in the 3D modelling fields. The research can 
be categorized into: coarse matching and fine matching, two 
views matching and multiple matching.  
 
Coarse matching, namely pre-aligning, is usually the 
precondition of fine matching. It does the global registration 
task. We define the pre-works for the fine matching, such as 
automatic allocating the correspondent relationship, aligning 
views approximately, to this stage.  
 
For single-object views, one utilizes usually “principal axis 
transformation” [1]. For multi-object views, the objects’ global 
registration problem must be solved. A possible technique is 
skeleton based matching [2], which encodes the geometrical 
and topological information in form of a skeletal and uses graph 
matching techniques to achieve the destination. Since the 
construction of skeleton and the matching algorithms of it are 
sophisticated, we did not choose this method for our 
application, but used a novel graph-structure, which will be 
introduced in section 3.       
 
Fine matching is a fairly adult field in science. The most robust 
and frequently used method is ICP (Iterative Closes Point) [3] 
and thousand variants of it: ICCP (Iterative Closest Compatible 
Point) [4][5][6], ICPIF (Iterative Closest Points using Invariant 
Features) [7] etc. The basic idea of ICP is treating the nearest 
point in the other view as correspondent point. SVD (Singular 
Value Decomposition) is used to deduce the transformation-



 

matrix during iterative steps to align the views to each other. 
The nearest point can in distance field (original ICP), or in 
diverse feature field (ICPIF), and by weighted correspondent 
pair or by reducing the search space (ICCP) to accelerate the 
convergence. The limit of these ICPs is that it only reaches a 
local minimum. That is, if the nearest points of the most points 
just lie in the false direction of the true correspondent points 
unfortunately, it will convergent to a false result. This problem 
can be solved either with dynamic programming or by a 
reasonable pre-alignment.          
 
Adaptive least square matching [8] is an effective method for 
matching of 3D surface patches. However, it is not suitable for 
multi-object scenes, because it does not deal with the automatic 
correspondence problem, but needs an initial approximation. 
  
Multi-view matching can be solved either incrementally or 
simultaneously. It’s is not the main focus of this paper. The 
interested reader is referred to the article of Cunnington and 
Stoddart [9], who gave a comparison of three n-view point set 
registration algorithms.  
  
 

3. MAIN METHOD 

In this section, the proposed method is described in details. The 
whole process can be divided in three steps: firstly, it performs 
segmentation of the laser range scan data according to the 
geometric characteristics; secondly, a coarse matching is 
conducted to solve the pre-alignment problem; and finally, an 
efficient fine matching aligns the models accurately. 
 
3.1 Segmentation 

By the characteristics of the surfaces, the model in one view is 
segmented into diverse objects. Here, the difference between 
normal vectors between adjacent points is treated as segmenting 
criteria.  
 
As illustrated in Figure 1, if the difference between the normal 
vectors of p and q is fairly large, then the boundary between 
two objects will be set through here.       
 
 
 
 
 
 
 
 
 
 
 

Figure 1: criterion for segmentation 
 
The estimation of the normal vector is done by least squares 
fitting of a tangent plane through the point neighborhood. For 
the 2.5 D range image, the information from the points can be 
stored in a matrix, so the access time to the neighborhood is 
O(1).  
 
The whole matrix will be treated as a graph. Each point in the 
matrix is like the vertex of the graph, and an edge is constructed 
if the adjacent points fit the segmenting criteria. By BFS 
(breadth first search), the whole graph is segmented. The 
runtime of BFS is O(m + n), in which m is the number of the 

edges and n is the number of the vertices. Because the edges 
exist only between adjacent points, the maximal number of 
edges on a vertex is 8. So the runtime of segmentation is linear, 
i.e. O(n). 
 
Because the differences between normal vectors are identical in 
diverse views, segmentation of each view should be the same. 
After a successful segmentation, the invariant characteristics 
will be taken from the segments. 
 
We define a form-descriptor as a two-attribute vector consisting 
of the sine value of the angle between the normal vectors and 
the radius of the surface curvature. This will act as the feature 
in the automatic correspondence allocation in the following 
step. 
 
According to the form-descriptor-vector, a list of correspondent 
segment-pairs is established with a certain tolerance by 
calculating the normalized Euclidean distance.       
 
For the experimental reconstruction of King Ludwig II’s 
working room, the number of segments in each scan is about 
100. The segmentation and computing time of the values of 
form-descriptor requires 10-20s. 
 
 
3.2 Coarse Matching 

In this step, the goal is to find the best allocation of the 
correspondent relationship between segments of different views 
automatically. We introduce a novel data-structure to achieve it: 
the “matching tree”. 
 
The matching tree is a combination of an interpretation tree and 
bipartite matching graph. The basic idea is to gain the benefits 
and overcome the shortcomings of the both structures. 
 
An interpretation tree represents the complete search space for a 
problem [10]. For a 2-view matching problem, if there are two 
segments in one view and three segments in the other view, the 
correspondent interpretation tree will be as illustrated in Figure 
2. That is, the two layers represent the two segments of the first 
view, and the four children of each node represent the four 
matching possibilities, either one of the three segments of the 
other view, or none of them. The edges of the tree are 
interpreted as the matching quality. Each path from root to leaf 
represents a solution of the matching problem. Getting the best 
matching between two views means finding the optimal path 
from root to leaf.       
 
The advantage of an interpretation tree is that it represents all of 
the possibilities for matching. But it has two essential 
shortcomings: firstly, it doesn’t represent the space relationship 
between the segments directly. That means the maximal 
weighted path can be a false matching; second is the runtime 
problem. It is NP-complete, that is, if there are n segments in 
one view and m segments in the other view, the runtime is 

O( 1+mn ). Many people have resolved this problem by 
backtracking, that is, cutting off the sub-trees from the main 
tree by setting some boundary criteria. 
 
The advantage of the bipartite matching graph is that it 
represents the correspondent relationship between the pairs. But 
it does not deliver the 3D topological information between the 
segments.    

 p  q 



 

 
The structure of the matching tree and its relationship between 
the interpretation tree and matching graph are shown in figure 
2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2:  Relationship of interpretation tree, matching and 

matching tree 
 

The matching tree is a tree specially for matching. Each node of 
the tree represents a correspondent pair. The black color means 
that this correspondent relationship is valid in current matching, 
while white means invalid. The root of the matching tree 
consists of three matched basis-correspondent pairs. The 
relative distances between the three base nodes in two views are 
also “matched” with a certain error tolerance. To assure the 
stability of the tree structure, the three nodes in the root should 
not be collinear. This will be represented as a stable triangle in 
the root of the tree. Thus the validity of the other correspondent 
pairs can be determined by their directed distances to the root. 
This will be illustrated in Figure 3. To avoid the scan point 
density changing in two views, we take the form centroid of the 
segment to represent the segment.  
 
 
 
 
 
 
 
 
 
   
 
 
 
    

Figure 3:  Validation of the correspondent pair  
 

∆abc is the triangle in the root. n is the cross product of ab and 

ac . p is the considered correspondent pair. ap , bp , cp  are 
three directed distances, the direction of which can be 
calculated by the scalar product with n. 
 
For example, (a, a’), (b, b’), (c, c’) are three correspondent pairs 
in the root. (a, b, c) is from one view, and (a’, b’ ,c’) is from the 
other. As illustrated in Figure 4, p and p’ has the same directed 
distances to the three pairs of the basis, then (p, p’) is valid. In 
contrast, (q, q’) is invalid.        

 
 

Figure 4:  Example of the valid and invalid correspondent pair     
 
A matching tree is a tree, and also a matching. That means that 
the black nodes in one tree are disjunctive to each other, 
because none of the segment in one view can correspond to 
more than one segment in the other view. The black node is like 
the solid line in the matching graph, and the white is like dotted 
line.  
 
We define an income and cost function for the matching tree. 
The income is the whole area of the matched segments, and the 
cost rate is the relative matching error. Therefore, the weight of 
the matching tree can be calculated as the difference between 
the incomes and costs. The choice of the root results in different 
weight of the tree. Our goal is to find the tree with maximal 
weight. If there are n correspondent pairs, the runtime is 

maximal O( 4n ). That is, the different combinations of the root 

is maximal O( 3n ), and the validation of the other pairs in each 
iteration costs linear time. By pre-cutting and wise choosing-
strategy of the root, the process can accelerated significantly.    
 
After defining the segment correspondence correctly, one can 
calculate the transformation between the views in different 
ways.  
 
One way [10] is: translate the views to the center of the 
correspondent pairs, and calculate the rotation matrix of the 
second view by singular value decomposition. The algorithm is 
as follows, with run time of O(n). 
 
Input: n correspondent pairs (p, q) with correspondent weight 
w.  
Output: rotation matrix R. 
 
1. Compute the covariance matrix K: 
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2. Compute the Singular Value Decomposition 
                         TUDVK =  
 
3. Compute the  rotation matrix R: 
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           and set δ = 1 or–1, whatever is closest to det )( TVU . 
 
 
Figure 5 shows two views before and after the coarse matching 
during reconstruction of the carnival model of Neuschwanstein 
Castle. 
 

 
 
    
 

Figure 5:  Coarse matching: the carnival model of 
Neuschwanstein Castle 

 
 
During reconstruction of King Ludwig II’s working room, 
coarse matching for two views runs within about 6s.  Figure 6 
shows two views before and after the coarse matching.    
 

      
 
                (a) before                                      (b) after 
 

Figure 6:  Coarse matching: King’s working room 
        
 
 
3.3 Fine Matching 

The correct correspondent relationships between segments are 
decided in the first two stages. We can generate an arbitrary 
number of control-point-pairs by projecting the sampling points 
of one segment to its correspondent segment. And by the use of 
iterative actions, the result will be refined. 
 
Figure 6 shows a piece of the wall from the 2-view matching 
result of the king’s working room. By experiment the matching 
accuracy is within 2mm, which is restricted by the accuracy of 
the laser scanner. It can be improved much more if the both of 
the views exactly represent the same real models.        
   

                     
                 (a)                                  (b)                       (c)   
 
Figure 7:  A part of a wall after fine matching in King Ludwig 
II ’s working room in Neuschwanstein Castle : (a), (b) and (c) 
are from different viewing angles: 90º in (a), about 45º in (b) 
and 0º in (c). 
 
Our fine matching method is a variant of ICP. Moreover, 
another method could be used to do the fine matching. As 
described in the section 2, there are many excellent methods in 
this field, such as accelerated ICP and adaptive least squares 
etc. The research in this field is very fruitful. 
 
Multiple matching is not the research focus of this paper. We 
computed the result from the 15 views of Ludwig II’s working 
room incrementally. For better visualisation, we also illustrate a 
lower part of the room too.  
  
 
 

 

  

 

 

 

 



 

 
 

(a) lower part 
 

 
 

(b) whole 
 

Figure 8: King Ludwig II’s working room: matching result from 
15 views  
 
  

4. CONCLUSION 

In this paper, an approach to marker free automatic matching 
for historic building reconstruction is presented. The algorithm 
consists of three steps: segmentation, coarse matching and fine 
matching.  
 
In the second step, a “matching tree” is introduced to find the 
best pre-alignment between views. But we think that it is only a 
prototype. There is considerable room for improvement, both in 
the structure itself and in the algorithm for finding the best 
matching. 
  
As the runtime of the coarse matching is decided by the number 
of correspondent segments, the advancing of the segmentation-
technique and refining of the form-descriptor are also important 
work for in the future too. 
 
The fine matching result should be adjusted by multi-view 
matching in the future. Furthermore, multi-view matching can 
perhaps be integrated in the matching tree algorithms, and the 
three steps, coarse- fine- and multiple-matching, can be 
integrated into one.     
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