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Abstract— In this work, we present a Hidden Markov Model
(HMM) based workflow analysis of an assembly task jointly
performed by a human and an assistive robotic system. In an
experiment subjects had to assemble a tower by combining six
cubes with several bolts for their own without the influence
of a robot or any other technical device. To estimate the
current action of the human, we have trained composite HMMs.
After the successful evaluation on disjunct experimental data
sets, the models are transferred to the assistive robotic system
JAHIR, where the same assembly tasks was executed. A new
3D occupancy grid approach was used to determine the hand
positions of the worker. The positions were then used to compute
the inputs of the analysis HMMs. The workflow of the right
hand could be recognized with an accuracy of 92.26% which is
nearly as good as the recognition rate of reference experiments.

I. INTRODUCTION

The combination of human flexibility and machine effi-
ciency can essentially reduce the amount of fixed production
costs in relation to variable costs [1]. Keeping the human
in the loop of technical system advances the overall system
due to the cognitive and senso-motoric advantages of the
human for highly flexible assembly. In this way, flexibility
and adaptivity are important for future developments in the
automation of production processes. As current trends aim
to combine the advantages of both fully automated and
fully manual production steps (hybrid assembly [2]), possible
future automation lie in the area of value creation by humans
supported by robotic co-workers. To enable the needed flexi-
bility and adaptability, such assistive robotic systems need to
make use of information provided by multiple sensors, that
are embedded in the “real world” to perceive, reason, learn
and plan in a context-aware manner [3].

Context-aware technical system can pro-actively assist the
human and are successfully employed in the domain of
modeling and monitoring of standard surgeries including la-
paroscopic cholecystectomy [5], [6], [7]. This allows context-
aware operating rooms assisting the surgeon by context-
sensitive user interfaces [6]. But also assembly tasks can
be pro-actively supported, if the current state of a task
can be identified. To achieve that, [8] uses body worn
accelerometers and microphones to estimate the progress of
an assembly task.

Several applications in the area of gesture recognition
show that a recognition of actions or special movements can

Fig. 1: Baja experimental set-up - Subjects assemble a
tower by combining six cubes provided by a cube vendor
in front of them with several bolts taken from a box on their
left. During the experiment sensor record the position of the
thumbs, the forefingers, the back of both hands, the head,
the torso, and the gaze [4]

also be achieved just by means of visual tracking. [9] uses
a visual-based system to recognize both isolated and contin-
uously spoken sentences in Greek Sign Language. Another
visual approach to recognize sentences in American Sign
Language is presented in [10]. Instead of recognizing words
of a sign language, [11] concentrate on single characters and
numbers. All data used in their feature vectors is derived
from motion tracking of a single hand.

In the works presented above, Hidden Markov Mod-
els (HMMs) has been successfully employed for workflow
analysis in different settings varying from the recognition
of executed actions including gestures to the detection of
different phases of an executed task. As a consequence,
we present in this paper a HMM-based workflow analysis
of collaborative assembly tasks between human and robot.
Composite HMMs were trained with several variations in
the presented sensor variety (see Section IV) in a “human-
only” reference experiment with 25 subjects (see Section
II-A) and then transferred to the assistive robotic system
JAHIR (see Section II-B). To allow a natural collaboration
without invasive sensors, we introduce a new approach to do
3 dimensional multiple hand tracking using 3D occupancy
grids (see Section III). The results of both experiments are
presented in Section V.



II. EXPERIMENTAL SET-UPS

A. Set-up used to gain base-line data

To be able to analyze and model the workflow of a natural
collaborative task, we use as basis an experiment in which the
subjects are not influenced by a robot or any other technical
device. Subjects had to assemble a tower by combining six
cubes with several bolts. Each cube features one to five holes
on two opposing sides. With the number of bolts needed
to stack two cubes, the complexity of the assembly step
increases.

As depicted in Fig. 1, subjects were sitting on a desk
and had to build towers upon a board. A box containing
the bolts was positioned to the left. Cubes were available to
the human from a slide placed in a way that the foremost
cube lied at roughly the handover-position of an imaginary
cooperation partner [12]. The sequence of the cubes on the
slide with respect to the number of holes was varied among
the persons. However, the number of holes of two subsequent
cubes always matched each other. Furthermore, the board in
front of the subjects initially contained the correct number
of bolts for the first cube. That way, the assembly task was
reduced to taking six cubes and connecting them with bolts
five times.

25 persons participated in the experiment and were asked
to build six towers in a row. A video of the tower building
experiment can be accessed online1. Their movements were
recorded by a Polhemus Liberty tracking device which
measures with 240Hz the position and quaternion of mul-
tiple sensors. The sensors were attached to the thumbs, the
forefingers, the back of both hands, the head, and the torso.
Moreover, the gaze of the persons on the table was recorded
with the eye-tracking device EyeSeeCam [13]. A detailed
description on the experimental set-up can be found in[4],
where the same experiment was used and evaluated with the
focus on optimal assistive timing.

B. Application scenario: the collaborative robotic system
JAHIR

The results and models for a workflow analysis of the
human-robot collaboration gained in the “human” exper-
iments as described above should then be transferred to
the robotic demonstration platform JAHIR (Joint-Action for
Humans and Industrial Robots) [14], [15]. JAHIR is a
hybrid assembly system [1], [2] created and embedded in a
Cognitive Factory scenario [16] in order to bring human and
robotic co-worker closely together in a common workspace
for collaborative applications.

Human and robot jointly use a workbench, which is
divided into several workspaces as shown in Fig. 2. The
human is sitting on the right side of the table and can only act
in a limited space (Fig. 2(b)). The slides on the left (Fig. 2(d))
and right side (Fig. 2(c)) of the table and the storage of
presorted parts (Fig. 2(g)) are not within reach of the human.
The robot can act in its own workspace covering the storage
spaces and an interaction area overlapping with the human

1http://www.youtube.com/watch?v=tfW4L7Idpqk
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Fig. 2: The hybrid assembly demonstration platform
JAHIR - (a) industrial robot, (b) shared workbench, (c) slide
for tower parts, (d) slides other parts, (e) sensor devices for
in- and output, (f) ARTrack system, (g) storage space for the
robot, that is unreachable for the human

workspace. A standard position controlled industrial robot
with six degrees of freedom, a maximum payload of six
kilograms, and a manipulation sphere of 0.902m radius is
used as collaborative robot. The tool center point is extended
with a force/torque sensor that triggers the gripper during the
hand-over.

Several sensing devices (input) and a projection unit
(output) are mounted on a scaffolding around the shared
workspace (see Fig. 2) to survey, inform, and interact with
the human worker (Fig. 2(e)). Microphones capture utter-
ances of the human to allow a natural way of interaction
with the system [17].

III. 3D OCCUPANCY GRID TRACKING

The determination of the hand position(s) and further
the continuous estimation of the hand motion are crucial
steps in the workflow analysis. Occupancy maps are a well
known technique used in mobile robotics to solve path
planning and localization problems [18], [19], [20], [21],
[22]. Recently, the application of such grid maps becomes
more and more popular to be employed in tracking tasks. [23]
uses discretized areas on the ground plane and fits GMMs
to estimate the likelihood of persons standing on a specific
location. The motion of humans is modeled by a Kalman
filter. A combination of probabilistic occupancy maps with
models of color and motions is presented in [24]. To follow
and distinguish multiple persons in the synchronized camera
streams, the Viterbi algorithm and a greedy approach is used.
[25] uses hierarchical likelihood grids based on intensity
edges followed by a global nearest neighbor data association
approach to perform the tracking of multiple persons in a
multiple camera set-up. All these approaches use generative
and generic models to compare “ideal” measurements with
the real—and probably noisy—sensory data on discretized
locations on one layer.

The discretization of the problem space allows a pre-
computation of expected measurements for all possible (dis-
crete) locations. This reduces the computational complexity



Fig. 3: Camera set-up - Two cameras are mounted on the
JAHIR set-up and calibrated intrinsically and extrinsically to
each other. One camera is facing the human from the front
and the other is facing towards the workspace from the side

during run-time and makes such approaches scalable to
multiple cameras and real-time capable. With the extension
of the occupancy grid to three dimensions, a reliable, fast,
and robust hand tracking in world coordinates becomes
possible. Two cameras are mounted on the JAHIR set-up and
calibrated intrinsically and extrinsically to each other. One
camera is facing the human from the front and the other is
facing towards the workspace from the side as depicted in
Fig. 3.

We define the volume in which the hands of the human
worker are likely positioned and are to be tracked. This
volume is set in the world coordinate frame, that is located in
the JAHIR set-up at the left corner of the desk. The volume
of interest starts at x = 0.3m, y = −0.1m, z = 0m and
has the width w = 1.1m, the depth d = 0.5m, and the
height h = 0.3m. This results with a discretization step of
0.05m in 1694 locations (22 in x; 11 in y; 7 in z direction)
as shown in Fig. 4 (a) and (b).

The hand of a human is approximated by a cube with a
side length of 0.05m which is roughly the dimension of the
palm. This model is projected to all 1694 locations in each
camera view leading to rectangular areas (screen rectangles)
that approximate the expectation of a hand being at a specific
location. Hence, the screen rectangles can be interpreted as
expected measurement of a hand being at a location.

If a projected model is not visible in one camera, the corre-
sponding screen rectangle is marked as invisible and will not
be evaluated in this camera. Partly visible screen rectangles
are truncated to fit the camera screen. The projection to the
two camera views used here is depicted in Fig. 4 (c) and (d).
The chosen camera arrangement offers the advantage that the
views are aligned with two world axes which leads to axis
aligned screen rectangles. All of these steps are computed
off-line.

During the on-line tracking, every incoming image is first
transformed into a scale space and then segmented using a
histogram back projection in the H-S color space resulting in
skin-colored regions. Every screen rectangle S1...C

1...R is tested

on the binary image zc of camera c and the likelihood of a
hand being positioned in the rectangle r in camera view c is
evaluated by

P (Sc
r |zc) =

F (Sc
r , z

c)

A(Sc
r)

(1)

where F (Sc
r , z

c) estimates the number of skin-colored pixels
in the screen rectangle with an integral image approach [26]
and A(Sc

r) is the area covered by the screen rectangle. The
overall likelihood for a hand in a specific rectangle is then
given by

P (Sr|z) =
C∏

c=1

P (Sc
r |zc). (2)

Given this three-dimensional likelihood distribution, we use
all rectangle candidates that are above a chosen global prior
value and compute the weighted average. This average is
used to divide the data set to left hand and right hand
candidates. This assumption is only valid because we assume
to have exact two hands in the volume of interest. For the
hand candidates we apply again a weighted average and get
the three-dimensional position of both hands.

These positions are then used as input values for two
Kalman filters. Since we are working directly in the three-
dimensional space, we comply with the linearity and Gaus-
sian requirements of a Kalman filter [27]. The motion of the
hands is modeled by a constant velocity motion model with
white noise acceleration (WNA).

The results of the tracking as depicted in Fig. 7 show that
the presented tracking approach delivers a good estimation
of the hand position compared to ground truth data. To
gain the ground truth, the hand positions were labeled in
every frame for every camera and then the 3D position
was reconstructed using the direct linear transform (DLT)
algorithm. The standard deviation of the position error is
given with 0.0207m in x, 0.0179m in y, and 0.026m in z
direction. The approach works in real-time with over 20 fps
on a standard machine.

IV. HMM MODELS

The tower assembly task used in the “human”
experiment—described in Section II-A—consists of roughly
three different actions: taking cubes, taking bolts and as-
sembling both. The taking actions of cubes and bolts can
further be divided to the sub-actions reaching out, grasping
and moving the object (bolt or cube) to the tower for
assembly (retraction). Hence, seven different actions need
to be distinguished.

Separately for both hands, we train a left-to-right con-
tinuous HMM [28] for each of the seven actions using the
Baum-Welch algorithm. For training, we label the data with
the different action categories based on several conditions. In
particular, the position of the right or left hand, its velocity
and the knowledge about past/future positions are relevant.

In contrast, the position is not included in the feature
vector used as input to the individual HMMs for train-
ing. Instead, the three-dimensional velocity, acceleration and
jerk are taken which can be derived from the position.
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Fig. 4: Discretized locations and screen Rectangles - The discretized volume of interest starting at x = 0.3m, y = −0.1m,
z = 0m results with a discretization step of 0.05m in 1694 locations (22 in x; 11 in y; 7 in z direction)

Furthermore, we constrain the frequency to 60Hz (instead
of the 240Hz available from the Polhemus system). As
described in Section II-A, not just one but eight different
sensors were fixed to several spots on the subjects. So,
every sensor provides a velocity, acceleration and jerk vector.
Different permutations of used sensor data were individually
investigated.

To allow a general sense of the position, we divide the
table in three zones: one around the cube vendor, another one
around the box of bolts and the last one around the tower. A
zone is activated as soon as the sensor on the back of a hand
is within its specified dimensions. For each hand separately,
the activation of the zones is taken as further dimensions
of the feature vector. Since the left hand should never be
near the cube vendor, we neglect this zone for the left hand
resulting in five dimensions for the table zones.

Experimental results revealed that six states with skipping
transitions per model are appropriate to be utilized for
all individual action HMMs. These HMMs are connected
by means of a grammar and form the workflow analysis
composite HMM for the left and the right hand separately. As
the left and the right hand act mostly parallel and therefore
a large number of movement combinations are possible,
an inclusion of both hands in one model would be quite
unhandy. The grammar allows taking cubes (for the right
hand), taking bolts and assembling to follow in an arbitrary
manner. However, it restricts the three minor movements of
taking a cube to succeed in the correct order. The same
holds with respect to taking a bolt. Since the subjects were

reaching 
out 

(cube)

assembly

reaching 
out (bolt)

grasping 
(cube)

grasping 
(bolt)

retraction 
(cube)

retraction 
(bolt)

Fig. 5: Composite HMM - Individual continuous HMMs
are trained and connected in a composite HMM for each
hand. Grey action HMMs are only available for the right
hand model

asked to only use the right hand to take cubes, the movement
vocabulary of the left hand does not encompass the taking
of a cube. The structure of the composite HMM is depicted
in Fig. 5 where the grey HMMs are only available for the
right hand model.

V. EVALUATION

The “human” experiment was evaluated using a 11-fold
cross-validation. As three out of 25 subjects did not follow
the experminental instructions and performed the assembly
task in a different way compared to the others—i.e. they
placed the bolts not in the existing tower, but in the cube
that should be mounted—we exclude them from the data
set. Hence, the HMMs are trained on 20 persons and tested
on the remaining two ones.

For each person, all appropriate sequences of building a
tower are taken which can be up to six ones. Unfortunately,
some subjects dropped bolts near the cube vendor or wrongly
decided to take a cube and therefore stopped the execution
of the movement in the middle. For this reason, we exclude
some sequences but at least three ones per person always
remain.

Using all available data that is the different table zones,
the gaze data and the velocity, acceleration and jerk of the
sensors of the head and both thumbs, forefingers and back
of hands, the feature vector consists of 70 dimensions. Like
that, we achieve an average accuracy of (95.67± 5.07)%
for the right hand and (87.68± 5.32)% for the left hand.
Accuracy means the percentage of labels which correspond
to the true ones. Correspondence for us also includes being
in the same general movement. So for example, if a sample
in the recognition sequence is labeled as reaching the hand to
the cube vendor and the true label stands for taking a cube,
no error will be registered.

However, by reducing the data in the feature vector to
just the table zones and the velocity, acceleration and jerk of
the back of both hands, we still get an average accuracy of
(95.11± 5.20)% for the right hand and (83.48± 7.39)% for
the left hand. Compared to the above results, these values are
not remarkably lower. That means, it is sufficient to focus on
the hands. The recognition results are summarized in Table I.

In an industrial setting, equipping workers with sensors
on their hands is impossible, though. Besides perturbing the



natural flow of actions, the cables connecting the sensors to
a computer will not be accepted by most of the workers.
Hence, it is desirable to extract the same data by different
means. A good possibility is the use of the occupancy grid
approach presented in Section III due to its robust and fast
results.

Having the three-dimensional position of both hands, all
necessary data for the feature vector can be derived. That
is straight forward with respect to the velocity, acceleration
and jerk of both hands. Regarding the activation of the table
zones, their dimensions need to be adjusted to the geometry
of the recorded workspace. Thereupon, the activation can
be determined from the position. An alternative approach
would be to use extra cameras for each table zone which get
activated as soon as a hand is recognized in the area of the
associated camera.

Since we want to simulate the application of the model
in a real environment, we do not perform a 11-fold cross-
validation. Instead, we train our HMMs on all 22 persons
of the “human” experiment. Thus, testing on the camera
tracking data corresponds to using a pre-trained model in
a real setting.

As result, we achieve an accuracy of 92.26% for the
right hand and 40.11% for the left hand. Compared to the
previous results in this section (see Table I), the estimation
for the right hand is just marginally lower. In fact, a direct
comparison between the true and the recognized label se-
quence shows that all grasps of cubes and bolts are correctly
identified. As shown in Fig. 6, only the boundaries of the
movements are not exactly recognized.

In contrast, the results of the left hand seem to be poor at
first glance. A closer examination of the three-dimensional
position sequence gained through tracking reveals the real
cause. In reality, the subject does not move its left hand at
all. However, the position sequence shows little movements.
Those occur especially whenever the right hand takes a bolt
and are probably caused by the combination of both hands
in the Kalman filter. Since the left hand is located near the
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Fig. 6: Recognized Workflow - Ground truth label sequence
(upper diagram) and recognized one (lower diagram) of the
right hand using the camera tracking dataset

Set-up Data source of
feature vector

Accuracy (%)
left hand

Accuracy (%)
right hand

BAJA All sensors
+ gaze 87.68± 5.32 95.67± 5.07

BAJA Hand sensors 83.48± 7.39 95.11 ± 5.20

JAHIR Camera track-
ing data 40.11 92.26

TABLE I: Workflow recognition results for the left and the
right hand - The accuracy is the percentage of labels which
correspond to the true ones. Correspondence also includes
being in the same general movement. The results of the
recognition rates for the right hand show that a transfer of
the trained models to another set-up is possible.

box of bolts and therefore the corresponding table zone is
activated, these small perturbations can be easily mistaken
as taking a bolt.

All in all, our approach works quite well, even on the
camera tracking data. Further improvement could presum-
ably be achieved by lessening the interlinking of the position
estimation of both hands.

VI. CONCLUSION AND FUTURE WORK

In this work, we have used composite HMMs to analyze
the workflow of a joint assembly task between a human
and a robot. The task consisted of building a tower by
combining six cubes with a varying number of bolts. The
composite HMMs used for workflow analysis were trained
on a dataset collected in a reference experiment with 22
subjects and without any influence of a robot. Evaluations
show that it is sufficient to use only the hand positions with
the derived parameters (velocity, acceleration, jerk, and table
zones) as input values. The label sequence of the right hand
was recognized with an accuracy of (95.11± 5.20)%.

Since it is impossible to equip workers with artificial
sensors or markers in an industrial setting, we propose a
method to collect the same three-dimensional spatial infor-
mation about the hands. The extension of an occupancy grid
approach to three dimensions using two cameras offers a re-
liable (error standard deviation ∼0.02m) and fast (>20 fps)
hand tracking in world coordinates. Using the composite
HMMs of the “human” experiment, the label sequence of the
right hand could be recognized with an accuracy of 92.26%
which is only marginally below the recognition rate of the
reference experiments.

Based on this work, future steps can include the pro-
active support of a human worker during a complex assembly
task, the automatic generation of an assembly report for
later analysis. This might include error tracing or efficiency
optimization.
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Fig. 7: Tracking results - The graphs (a) to (c) show the position error for x, y, and z for the tracking of the right hand
compared to ground truth data. Graph (d) shows the 3 dimensional trajectory for the right hand (red) for the tower assembly
task along with the ground truth trajectory (green)
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