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Summary. The capabilities of observing the world and manipulating objects based
on visual information are basic requirements in robotic applications. Typically, for
manipulating objects in real environments it is necessary to recognise and locate the
substantial objects robustly. Due to external influences, e.g. partial occlusions of
objects and illumination changes, as well as to internal influences, e.g. noisy imag-
ing hardware, inaccurate measurements and quantization effects, the recognition
systems have to cope with incomplete, uncertain and inaccurate information.

In the first part of this paper we present the general framework of a robust
approach for recognising partially occluded objects. It combines the popular con-
cept of using invariant shape descriptions, i.e. descriptions of objects which remain
unaffected by certain variations of the intrinsic and extrinsic camera parameters,
with the flexibility and readability of rule-based fuzzy systems by applying invariant
object shape descriptions in fuzzy if-then classification rules.

In the second part, we propose a fuzzy control approach for learning fine-
positioning of parallel-jaw robot gripper using visual sensor data. The first compo-
nent of the used model can be viewed as a perceptron network that projects high-
dimensional input data into a low-dimensional eigenspace. The second component
is a fuzzy controller serving as an interpolator whose input space is the eigenspace
and whose outputs are the motion parameters. Instead of undergoing cumbersome
hand-eye calibration processes, our system is trained in a supervised learning pro-
cedure using systematical perturbation motion around the optimal grasping pose.

1 Introduction

Vision may aid robots (both mobile and fixed) in many tasks such as navi-
gation, location and inspection of assembly parts, tracking objects, avoiding
collisions, detecting errors, determining distances or even learning from a
human instructor by analysing hand gestures. Unfortunately, unlike human
vision, machine implementations of vision systems tend not to be particu-
larly robust, i.e. they are susceptible to variations in lighting, to unexpected
shadows, lens and perspective distortions, specular reflections etc. Moreover,
these systems often cannot deal with more complex scenes in which objects
occlude each other or in which parts change their orientation with respect to
a reference image.
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These uncertainties seem to lend themselves naturally to be dealt with
by fuzzy techniques. Interestingly, such techniques have not met with much
acceptance in the computer vision community even though they promise to
alleviate two of the main methodological problems in computer vision: the
ubiquitous application of crisp thresholding and (probabilistic) model match-
ing (see [11,27])!.

Both thresholding and model matching result in a more or less drastic
loss of information that is not recoverable in higher processing stages of a
vision system — data are irretrievably discarded either when they do not ex-
ceed a certain threshold or do not lie within a certain distance to the model.
The obvious advantage of fuzzy techniques is that they do not necessarily
discriminate sharply between data that are below and above the threshold.
Instead, the threshold can be replaced by a membership function and valu-
able information retained for higher level processing stages. The same applies
to models (of object form, pose, invariants, etc.) and clustering: while (prob-
abilistic) models are normally based on Bayesian prior distributions with
few degrees of freedom, fuzzy methodology easily combines the notion of
membership with complex rule bases that make it easy to express and incor-
porate human expert knowledge. It is also underpinned by powerful learning
or adaptation algorithms whose learning results are transparent, sometimes
even human readable.

Examples of typical complete vision systems that have successfully incor-
porated fuzzy techniques are:

e path tracking of autonomous indoor vehicles through fuzzy control [4].
The main advantage of the fuzzy controller was considered to be its ability
to extract heuristics from experiences. An outdoor mobile platform that
is also controlled by a fuzzy rule base is presented in [17].

e visual inspection of assembly parts (integrated circuits) for their correct-
ness with respect to their specification [6]. It was noted that both the
fuzzy algorithm used there and expert systems represent human domain
knowledge in the form of production rules; the former, however, does not
run the risk of a combination explosion.

e identification of objects in a robotics scene based on a verbal description
[8]. The noisy high-level features of an object are compared with a natural
language expression.

e object extraction for navigation through fuzzy feature matching [14]. The
main goal here is to recognise office chairs under varying viewing angles
or in the case of occlusions by evaluating local features. Similarly, [15]
use corners as local features for the recognition of transistor packages on
an assembly line.

! These two papers contain references to other survey papers; [23] discusses some
further issues related to uncertainty.
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e recognition of occluded objects [25] using fuzzy linguistic statements as
input for the training of a neural network. The classification of the par-
tially hidden objects is then performed based on adequate local features.

In this paper we address two issues in robot vision: the recognition of
partially occluded objects in complex scenes of (known) objects and the fine-
positioning of a robot gripper for grasping an object. We demonstrate the
performance of our methods for a specific domain: a set of the wooden toy
objects of a construction kit for children (Fig. 1, for details see [13]). Our ex-
periments show that a robust recognition of occluded objects is possible even
under a high degree of uncertainty (object type, object pose, highly struc-
tured background, change of perspective, lighting variations). The same is
true for our “near-field” recogniser that guides the robot towards its gripping
position.

Fig. 1. Typical test scenario

The rest of the paper is organised as follows: in section 2 we describe in
detail a recognition system for the extraction of objects from images taken of
a robotics scene. The images are recorded by a standard camera with a large
area of view. Section 3 is devoted to the hand-camera based fine-positioning
system, which “takes over” once the position of the objects in the scene
have been determined and the gripper has been moved into the vicinity of
the object to be grasped. Section 4 describes the whole “run” from the first
image of the scene to the grasping. Finally, in section 5, we conclude with
some remarks on the qualities and deficiencies of the systems and possible
lines of future research.
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2 Recognition through Fuzzy Invariant Indexing

2.1 Motivation

The recognition of partially occluded objects is undoubtedly one of the most
challenging tasks in computer vision. Recent research has indicated that the
use of invariants as shape descriptors is a promising and powerful approach
to tackle this problem. Mathematically, invariants are functions of geometric
configurations remaining unaffected under particular classes of transforma-
tions (for good introductory papers see [7,19]), e.g. the class of projective
transformations modelling the camera mappings of a vision system. Since
these invariants are independent of the viewpoint of the camera, the mea-
sured projective invariant values of an object can be used efficiently in the
hypothesis generation as an index into an object-lookup table. This technique
is called invariant indexing.

Several recognition systems based on invariant theory have been devel-
oped, e.g. an early system based on geometric hashing technique [16], the
LEWIS-system [24] or the MORSE-system [18]. Since images taken from
real-world scenes (and using real-world equipment) are generally discrete,
cluttered and noisy, the observed projective invariant values fluctuate when
different perspective views of an object are recorded. This problem must
be handled within the indexing stage of every recognition system based on
invariants. In our context, indexing means to assign image features to corre-
sponding model features and therefore to generate object hypotheses.

Usually, invariant indexing hashes into a discrete index space, where all
points belonging to an object are marked. For indexing, a hashing function
is evaluated for the measured invariant values of a geometric configuration
part of an object. The number of the independent invariants depends on
the underlying geometric configuration. For example, the planar geometric
structure of a conic and three straight lines has three independent projective
invariants (see sect. 2.2). To overcome the fluctuation, not only a single point
of the index space is marked but also the neighbouring ones. Invariant values
of a certain neighbourhood are hence mapped to the same object with equal
weight.

Contrary to this, we utilize an invariant indexing technique based on
fuzzy if-then-classification-rules and fuzzified invariant values modelling the
fluctuation. This technique is called Fuzzy Invariant Indexing (FII).

2.2 The Fuzzy Invariant Indexing Technique

The basis of the fuzzy invariant indexing technique are disjunctively con-
nected fuzzy if-then-rules that incorporate fuzzified invariant values. These
classification rules have the following form:
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where i¥ =~ denotes the n-th input variable of subrule m for the k-th ob-
ject, fﬁm the corresponding fuzzy invariant value, of, the output variable of
subrule m and O the k-th object class modelled as a fuzzy singleton. The
total amount of antecedents (NX) depends on the number of independent
invariants of the underlying geometric configuration of subrule m for object
k and the total amount of subrules (M*) depends on the number of different
geometric configurations for object k.

The main problem with the fuzzy if-then-rules is to find appropriate mem-
bership functions to model the fuzzy invariant values I¥ , in (1) for a given
object. Our investigation of invariant values measured in views of different
perspectives has indicated that the fluctuations can be adequately approxi-
mated by bell-shaped membership functions Pk

_uah)?
pp (u)=e 2%ha ueR (2)
where the parameters of, | 3% = that shape the function are chosen as follows:

e The parameter o, determines the position of the maximum of the bell-
shaped function (2). Therefore, this parameter should be the mean of the
fluctuating invariant values: aﬁm = % Zl I;, where I}, 1 <1 < N are the
invariant values for an object taken from N different views.

e The parameter 3%, determines the position of the inflexions of (2), which

are located at oo+ 3. This parameter should be the standard deviation of
1
the invariant values: 8%, = (% >,(I; — ak,,)?) 2.

For example, consider the well-known invariant of a conic and two lines under
plane projective transformations [19]:

(L'C 1)’

I(C,13,15) =
(C i, 12) (L'C™'L) (L'C'1,)

(3)

where C is the conic coefficient matrix and 13,1z denote lines expressed in
homogeneous coordinates. Figure 2 shows the distribution of invariant values
for a test object 'nut’ measured in 30 images. To provide a better discrimina-
tion we apply Eq.(3) to feature groups of a conic C and three lines 13,132,135



6 Alois Knoll et al.

z (Measured values of invariant 3)

Fig. 2. Distribution of measured invariant values for test object 'nut’ (30 images)

by determining the three independent invariant values:

11(0711712713) = I(0711712) (4)
12(0711712713) = I(C7 11713) (5)
I3(0711712713) = I(0712713) (6)

In Fig. 2, the invariant values on the z-axis are calculated using Eq. (4),
the invariant values on the y-axis are calculated using Eq. (5) and the in-
variant values on the z-axis are calculated using Eq. (6). The distributions of
these invariant values are depicted in the histograms shown on the left hand
side of Figure 3. Thus, for the test object nut’ we get the values ¥, = 1.4,
B¥, = 0.086 for the parameters of the first fuzzy invariant value, ¥, = 3.2,
Bt, = 0.145 for the second and ofy = 2.5, B¥; = 0.14 for the third fuzzy
invariant value, which leads to the fuzzy invariant values shown on the right
hand side in Figure 3. Note that the (fuzzy) model of an object may be
composed of many such invariants. Finally, the fuzzy invariant values are
incorporated into the following if-then-classification rule:

IF (invl ~ 1.4) AND (inv2 ~ 3.2) AND (inv3 ~ 2.5) (7)
THEN (object is NUT)

Object hypotheses are generated through the FII-technique by evaluating
the fuzzy rules using standard fuzzy inference techniques:

pop, = | i iz (imn) 8)

where 1, is the output of m-th subrule for object k and ik . are the measured
invariant values. These subresults are combined disjunctively:

Hot = | INAX ok, (9)
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Fig. 3. Example for the generation of fuzzy invariant values

The final result is the indexed k-th object model with the measured credibility
Mok -

2.3 Recognition System

The fuzzy invariant indexing technique outlined above has been integrated
into an object recognition system for partially occluded (quasi-)planar ob-
jects. The structure of the system is similar to other systems ([16,24]) but
differs completely in applying a fuzzy rule base in the hypothesis generation
stage.

Asindicated in Tab. 1 the system provides two different processing phases:
an off-line acquisition process and an on-line object recognition process.

Acquisition Process. The acquisition process is capable of learning the
rules of the fuzzy invariant indexing automatically. The first stage of the ac-
quisition process is the edge detection stage. In the implemented system we
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Table 1. Acquisition / Recognition Process

L Acquisition (offline) | Recognition (online) |
Edge detection
Feature extraction
Computation of invariants
Generation of fuzzy invariant values Hypothesis generation
Generation of fuzzy rules Hypothesis verification

Y | Gof | =

use the Canny edge detector [5], which takes a greyscale or color image as
input, and generates as its output linked edge points. Next, in the feature
extraction stage, geometric primitives are fitted to the extracted edge points,
where the primitives that are used depend on the objects to be recognised.
For the objects shown in Fig. 1 straight lines and ellipses are suitable. The
features are grouped into configurations for which invariants can be com-
puted. In the implemented system we use the invariants of two geometric
configurations: the invariants of a conic and three lines (see Egs. (4),(5),(6)),
and the invariants of a pair of coplanar conics [21].

The last and most expensive stage is the model and rule generation, in
which new objects are learned automatically, including both the object model
and the fuzzy if-then classification rules. The object model is stored in a model
base and consists of an object name, the extracted features and the computed
invariant values. The fuzzy rules are generated as described in Section 2.2.

Recognition Process. The first three steps of the recognition process are
equivalent to those of the acquisition process: the edge points are extracted
in an image, features are fitted and invariants are calculated.

Next, in the hypothesis generation step, the classification rules of the fuzzy
rule base are evaluated as described in Section 2.2. If the resulting credibility
Lot of an indexed object is above a threshold?, a new object hypothesis is
generated. This hypothesis consists of the object name, the credibility and the
features used to compute the invariant values. The recognition process ends
in the verification of the generated object hypotheses. This is done as usually:
The hypothesized object model is mapped into the image and verified against
the extracted features. Although this system is implemented for recognising
(quasi-)planar objects only, this is no principle limitation.

2.4 Recognition Examples

The performance of the FII-recognition system is demonstrated for the afore-
mentioned object domain of quasi-planar, colored wooden toy objects, such
as rims, tyres, nuts and slats as shown in Fig. 1.

The first scene, Figure 4, consists of four three-hole-slats, two seven-hole-
slats, two orange nuts, two red rims, two white tyres and one “unknown”

2 The threshold is used to rule out the very unlikely hypotheses only.
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(b) Extracted Edges

(c) Fitted Features (d) Result

Fig. 4. Example scene 1

(i.e. unmodelled) spanner, which partially overlap each other. Since the ex-
tracted edge points (Figure 4b) as well as the fitted features (Figure 4c)
provide a reliable image description, the system recognises all of the known

objects (4d).

(d) Result

(c) Fitted Features
Fig. 5. Example scene 2

In the second scene (Figure 5a) several slats, three rims, one tyre, one
nut and three unknown objects on a highly textured background are used.
Figure 5b shows the detected edge points and Figure 5c¢ the fitted features.



10 Alois Knoll et al.

Although the complexity of this test scene is very high, the recognition system
performs well (see Fig. 5d). The system detects all of the known objects except
for two 3-hole-slats and one rim. The problems here are a consequence of an
inaccurate feature extraction. Since the system fails to extract the topology of
these objects correctly, no invariant values can be computed. False positives,
however, are not made.

y /%// )

(c) Fitted Features (d) Result

Fig. 6. Example scene 3

Since the utilized invariants remain unaffected by the intrinsic and ex-
trinsic camera parameters, the recognition system can be applied to different
imaging conditions. Figure 6a shows a test scene taken at a viewing angle of
45°. Again, despite the resulting perspective distortion, the recognition sys-
tem performs well. Just one 5-hole-slat has been misclassified as a 7-hole-slat
(Fig. 6d). Further recognition results are shown in Fig.14 for hand-camera
images.

To demonstrate how the fuzzy rules can easily be extended by integrating
further attributes, we added color attributes to the fuzzy rules learned before.
We measure the RGB color information of an object along the underlying
geometric structures of the fuzzy rules and transform it into the HSV color
space. Depending on the saturation of the object color we use the hue or the
intensity for generating and evaluating the fuzzy rules, e.g. the rule for the
nut (7) changes to:

IF (invl = 1.4) AND (inv2 =~ 3.2) AND (inv3 = 2.5)
AND (hue ~ 283) (10)
THEN (object is NUT)
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Experimental results show that this extension generally reduces the num-
ber of generated object hypotheses by 25%, which further reduces the like-
lihood of false matches. For example, the extended fuzzy rules decrease the
number of hypotheses for Fig. 4a from 4078 to 3119, for Fig. 5a from 5840 to
4385 and for Fig. 6a from 4094 to 3444. The integration of further attributes
enhances the performance of the recognition system in two ways: It speeds up
the recognition process because fewer object hypotheses must be investigated
into in the time consuming verification stage and, secondly, the robustness of
the system is increased, because fewer false positives are established.

Furthermore, we have compared the FII-technique to a crisp invariant
indexing technique (where we have replaced the membership functions with
intervals). It turns out, that the FII-technique provides better recognition
results than the crisp one; this is true, especially in the difficult case of very
similar objects (for details, see [9]).

We conclude this section by noting, that the average time for recognis-
ing the objects in Fig. 4a is 49 seconds, in Fig. 5a is 77 seconds and in in
Fig. 6a is 50 seconds on a standard PC (K6-300MHz) with the potential of
a straightforward distribution on multiple processors and a resulting drastic
reduction in time.

We now turn to our second fuzzy robot vision system that directly controls
the movement of a robot arm based on visual input.

3 Fine-Positioning and Object Grasping: Turning
Visual Observations into Action.

3.1 Motivation

The task is the fine-positioning of a manipulator once the coarse positioning
has been completed. The object to be grasped is visible in the image of a “self-
viewing” eye-in-hand camera (Fig. 7), which sees an area of about 11cm x
9cm of the z-y-plane. The aim is to move the robot hand from its current
position (Fig. 8 left) to a new position so that the hand-camera image matches
the optimal grasping position (Fig. 8 right). Some of the objects in the image
have the same shape but different colors. It is therefore mandatory that a
general image processing technique be applied, which needs no specialised
algorithm for each object and shows stable behaviour under varying object
brightness and color. In other words: for dealing with the general case of
handling objects whose geometry and features are not precisely modelled or
specially marked, it is desirable that a general control model can be found
which, after an initial learning step, robustly transforms raw image data
directly into action values.
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gripper

Fig. 7. The end-effector of the manipulator with a hand-camera (positioned opti-
mally over the yellow cube)

3.2 The Neuro-Fuzzy Model

One approach to developing such techniques is neural network-based learn-
ing, which has also found applications in grasping: [20,28,12] use geometric
features as input to the position controller.

o

Fig. 8. A cube viewed from the hand-camera — before and after fine-positioning

Our idea to solve the fine-positioning control problem is to use a direct,
linear method to reduce the input dimension and then apply the non-linear
B-spline model [30] to map the projection on the subspace further to the
control output.

Depending on how “local” the measuring data are and, therefore, how
similar the observed sensor patterns appear during variations within a given
situation, a more or less small number of eigenvectors calculated by a principle
component analysis (PCA) [32] can provide a sufficient summary of the state
of all input variables (see the left part of Fig. 9). Our experimental results
show under the most diverse conditions that it is very likely that three or
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four eigenvectors provide all information indices of the original input space
necessary for the positioning task. Therefore, in the case of very high input
dimensions, an effective dimension reduction can be achieved by projecting
the original input space into the eigenspace.

Eigenvectors can be partitioned by covering them with linguistic terms
(the right part of Fig. 9). In the following implementations, fuzzy controllers
constructed according to the B-spline model are used [30]. This model pro-
vides an ideal implementation of CMAC proposed by Albus [1]. We define
linguistic terms for input variables with B-spline basis functions and for out-
put variables with singletons. Such a method requires fewer parameters than
other set functions such as trapezoid, Gaussian function, etc. The output
computation is very simple and the interpolation process is transparent. We
also achieved good approximation capabilities and rapid convergence of the
B-spline controllers.

pattern pattern rule firing
coding matching & synthesis
Xl
Xz >
x (y, o)
Xm
input output
vector rules
eigenvectors principal
components

Fig. 9. The task-based mapping can be interpreted as a neuro-fuzzy model. The
input vector consists of many thousands pixels of a grey-scale image

3.3 Implementation

The working system implements two phases: off-line training and on-line eva-
luation. In the off-line phase, a sequence between 10 and 100 training images
showing the same object in different positions is taken automatically, i.e.
without human intervention. For each image, the position of the manipulator
in the plane and its rotation about the z-axis, both with respect to the optimal
grasp position for the current object, is recorded.
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In the on-line phase, the camera output is transformed into the eigenspace
and is then processed by the fuzzy controller. The controller output is the
end-effector’s position and angle correction (Fig. 10).

sampled

fuzzy controller

image data 3 .
| : camera| image
c N :
o train images
kS
IS Y
£ :
ug ‘ image preprocessing ‘ : ‘ image preprocessing ‘
c o 3 e
8 normalized images . normalized| image
g Y : v
eigen A building A eigen
transformation eigenspace 3 transformation
transformed| images transformed| image
' :

*‘ fuzzy controller training }——»

translational and
rotational correction

offline phase  online phase

Fig. 10. The training and the application of the PCA neuro-fuzzy controller

Preprocessing. Fig. 14 (left) shows typical pictures taken by the hand-
camera. Fig. 14 (right) shows the images after a clipping process utilising the
FII recognition system (Sec. 2). This clipping process leaves only the object of
interest in the images. After clipping, all images are normalised with respect
to their “energy” [22]:

2

. X
x; = . J
(&)

where 5:; is the intensity of the j-th pixel in the i-th image, .’E; is the intensity
of the j-th pixel in the corresponding normalised image and dim is the number
of pixels in the image.

For detecting the rotation of an object, one more preprocessing step is
necessary: since most of the variance in the images is caused by translations,
the rotation cannot be learned properly from the eigen-transformed images.
To eliminate the variance caused by changes in the position, we shift the
region of interest to the centre of the image. As this removes the translational
information from the images, two eigenspaces must be computed: one based
on the original images and one based on the shifted versions.
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Fuzzy controller training. With the image intensity values and the cor-
responding desired action values, a B-Spline fuzzy controller is trained. We
use third order splines as membership-functions and between 3 and 5 knot
points for each linguistic variable. The distribution of these points is equidis-
tant and constant throughout the whole learning process. The coeflicients of
the B-Splines (de Boor points) are initially zero. They are modified by the
rapid gradient descent method during training [30].

On-line phase. In the on-line phase, the same image preprocessing as in the
off-line phase is applied. Then, the stacked image vector x is transformed into
the eigenspace. The resulting vector is fed into the fuzzy controller, which, in
turn, produces the position and angle of the object in the image. These values
are then used to move the robot closer to the target object. This sequence is
repeated several times; normally no more than 3 steps are necessary until all
parameters (i.e. deviation in z and y direction and residual angular deviation)
are below a specific threshold (e.g. 0.5 mm and 1 degree).

To improve the raw algorithm outlined above several aspects were refined:

Color images: Instead of the gray-scale images, the saturation parts of
color images in the Hue-Saturation-Intensity color-space may be used. For
objects with full colors (“rainbow”-colors) the saturation part is high; for
colors like teal, pink or light blue this component is low and for all grey-
tints including black and white it is zero. This increases the contrast between
objects and background when compared with the intensity image. Thus, in
the case of colored objects, the controller becomes highly independent of the
hue of the objects.

Boosting image vectors: The complexity reduction method is not
limited to one image per vector. For example, the vector @ could consist of the
intensity image, the saturation image, and a Sobel-filtered intensity image.
This can help to suppress inaccuracies due to unusual lighting conditions.
Obviously, further (possibly object-dependent) improvements can be achieved
with specialised feature detectors (lines, angles, etc.).

Hierarchy: If, for a very difficult object, the discrimination accuracy
of the neuro-fuzzy controller is not sufficient, a hierarchical system may be
built. The camera images are separated into regions, then an appropriate
classifier detects in which region in the image the object to be grasped is
located, and, based on this information, the robot moves approximately to
the optimal grasping position. After this movement, a neuro-fuzzy controller
is trained. The training images for it need only show the object near the
optimal position. Such a system is even more accurate than the neuro-fuzzy
controller alone.

Optimal choice of training images. Appearance-based vision is fre-
quently criticised for the fact that the training images must be chosen man-
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ually, which often leads to simple trial-and-error. To cope with this problem,
we developed a method for automatically determining the positions where
the camera images should be taken. Since the robot is allowed to do sev-
eral steps, high accuracy is only needed near the optimal grasp position
d= (IOa Yo, 040) = (07 0, 0)

Rotation: The angles at which the images are taken depend on the object
symmetry S. For objects with an S of less than 360 degrees there is more than
one optimal grasp position. That is because it makes no difference whether a
cube is grasped by the front and rear side or at the left and right side. So near
the angles 0, 5,28, ... more images are needed. The objects in Fig. 12 possess
the following symmetries: For the slat S is 180 degrees, for the cube S is 90
degrees and for the screw head S is 60 degrees. To limit the number of images
for objects with a small S, the following changes are made: If S is smaller
than 90 degrees, then it is multiplied by the smallest integer that produces a
value of greater than or equal to 90 degrees. This leads, for example, to an S
of 120 degrees for the screw head. The following heuristic formula produced
acceptable results:

S1 51
U lza] v s[5z )
i € Np
j=0,1,...,360/S — 1

For the cube, this formula gives the set of angles W = {45, 23, 67, 11, 79, 6,
84, 3, 87, 1, 89, 0, 90, 45490, 23490, ... }(in degrees), with W containing
48 elements. Due to the clipping described in section 3.3 for rotation, only
training images near the optimal grasping position are taken, at the points
with coordinates (0,1), (1,0), (0,0), (0,1), and (1,0). Long objects like the
slat can lie partly outside the image. In this case, images with 0, 90, 180 and
270 degrees are added at the 4 positions (£25mm, +25 mm).

Translation: Images at the learning positions are taken with 0 degrees
rotation. In most cases the resulting accuracy for the xz- and the y-controller
is satisfying with these images. If not, either the controller for  or that
for y can be selected. If the y-placement is not correct, then we rebuild the
y-controller with images at those positions where = = 0.

Preparation of continuous output for learning. Since the fuzzy con-
troller learns to approximate a function, it works correctly only if the function
to be learned is continuous, i.e. a differential change of the input will result in
a differential change of the output. The correction angle « of the objects to be
grasped has different rotation symmetry (lying screw: 360°, slat: 180°, block:
90°, standing screw with six-edge head: 60°). Therefore, we need to find a set
of functions which meet the following conditions: a) continuous output val-
ues can be generated for fuzzy controller learning; b) the original correction
angle can be uniquely reconstructed given the values of these functions. We
propose the following two learning functions (Fig. 11):
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1
L, =sin <§a> , Lg=sin(a)

[sin(1/2 )| 1-

Fig. 11. The two functions which are used for fuzzy controller learning

Two fuzzy controllers are needed to learn L, and L separately. The
correction angle can be reconstructed as follows:

e The function arcsine supplies a value between —90° and +90°. |2 arcsin(Ly)|
supplies the absolute value of the correction angles.

e The sign of arcsin(L;) provides the information on whether the object is
rotated clockwise or counter-clockwise with respect to the gripper.

In the application phase, the gripper motion should be corrected in the
reverse direction of the object rotation. Therefore, the correction angle a can
be calculated:

a = —sign(Lg) - |2 arcsin(L,)| (11)

These two functions can be extended for objects with the symmetry S:

. 360° 1 . (360°
La—sm< 5 504), Ls—sm< Sa)

The reconstruction of the angle is then:

a= 735)0 sign(Lg) - |2 arcsin(L,)]
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Fig. 12. 15 grasping scenarios; from left to right: yellow cube, partly covered yellow
cube, blue cube, yellow screw head, 3-hole-slat; from top to bottom: optimal, worse
and poor illumination

3.4 Experimental Results

The approach was applied to the grasping of different objects: a yellow cube, a
partly covered yellow cube, a blue cube, a yellow screw head, and a 3-hole-slat
(Fig. 12). All training images were taken under optimal lighting conditions.
For each object a specific controller was trained, except for the three cubes,
where training (not grasping!) was restricted to the yellow cube. For the slat,
different training images for « and y were used.

Only the eigenvectors corresponding to the three largest eigenvalues were
used as input to the fuzzy controllers. The four largest eigenvalues for ro-
tation/translation and the corresponding eigenvectors, which have the same
dimension as the training images and can hence be interpreted as images. The
eigenspace and the fuzzy controller that were derived from these data were
applied to 15 different scenarios: the manipulator was to be positioned over
the five objects, each with optimal, worse, and poor illumination (Fig. 12)
and from the most remote starting position. The accuracy of the controllers
was determined as the average error of 50 positioning sequences for each
scenario.

Table 2 shows the RMS error for z, y, and the rotation angle « for posi-
tioning above the objects. Obviously, the positioning is correct even for the
blue cube with the controller trained on the yellow one. It is easy to see that
for the translation it makes hardly any difference whether the illumination
is optimal or less optimal. The performance deteriorates under poor lighting
conditions but it is still good enough to grasp the object. The rotation is
more dependent on the illumination, in particular with the blue cube. That
is because the vertical edges of the cube are practically invisible.
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Table 2. RMS-errors for the three objects under different lighting conditions. Con-
trollers with three input dimensions and four linguistic terms for each dimension
were used.

yellow cube, completely visible yellow cube, 20% covered
illumination|x[mm)]|y[mm]|a[degree]| |illumination|x[mm)]|y[mm]|a[degree]
optimal 0.399 | 0.665 | 0.608 | |optimal 0.832|1.093 | 0.997

worse 0.595 | 1.525 | 2.606 worse 0.524 (2.373 | 1.141
poor 3.126 | 1.038 | 6.059 poor 6.395 | 4.728 | 19.786
blue cube screw head

illumination |x[mm] |y[mm]|a[degree]| |illumination|x[mm]|y[mm]|a[degree]
optimal 1.658 | 0.946 | 1.481 optimal 0.630 | 0.535 | 1.850

worse 0.494 |2.020| 1.979 worse 0.323 | 0.851 | 1.897
poor 1.006 | 0.928 | 10.803 | |poor 0.610 | 0.751 | 1.281
3-hole-slat

illumination |x[mm] |y[mm]||a[degree]
optimal 0.272|0.728 | 0.452
worse 0.940 | 0.704 | 0.386
poor 1.198 | 0.612 | 0.404

3.5 Linguistic Interpretation of the Controller

One main advantage of the neuro-fuzzy system in comparison with other
adaptive systems like the multi-layer perceptron is the interpretability of the
controller’s function. Since we can transform the projections in the eigenspace
back into the original input image space, the control rules can be given an
interpretation as follows:

IF Antecedent THEN Consequent

where Antecedent is a back-transformed image and the Consequent (the
controller output) is the z-, y- value or the correction angle .

The following example illustrates the rules for a two-dimensional con-
troller, each input variable with four linguistic terms. Therefore there are
4 -4 = 16 rules altogether. The rotation control looks as follows:

if then |Aa| = 2.2° if then |Aal = 6.7°

if then |Aal = 5.8° if then |Aal = 7.6°
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ifE then |Aa| = 7.8° if E then |Aa| = 19.7°
ifm then |Aa| = 7.9° if E then |Aa| = 22.6°
ifm then |Aa| = 11.3° if E then |Aa| = 24.8°
ifm then |Aa| = 13.6° if E then |Aa| = 28.2°
ifm then |Aa| = 14.9° if E then |Aa| = 29.3°
ifm then |Aa| = 17.8° if E then |Aa| = 34.3°

4 A Complete Recognition-Grasping Example

We now show a complete sample run of the hybrid system composed of the
subsystems of sec. 2 and sec. 3. For the scene shown in Fig. 1 all steps are
performed in an integrated way: a top view image is taken (Fig. 13a); the
FIl-recognition system recognises the objects of interest (Fig. 13b); the ma-
nipulator moves approximately above the object to be grasped; the evaluation
of hand-camera images guides the gripper directly to the grasp position; the
object is grasped.

(a) Original Image

(b) Result

Fig. 13. Test Scene (left) and recognised slats (right)

The task to be solved is the grasping of a slat (Fig. 13a). The FII-
recognition system provides all the slats in the image (occluding each other
or not), see Fig. 13b.
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(a) Original image (b) Result

Fig. 14. Images of the hand camera taken at different time stamps

As we have not yet implemented heuristics that automatically pick a slat
according to some given criteria, we manually choose the one that is not dif-
ficult to grasp: the 3-hole-slat lying on top of the 7-hole-slat. Figure 14 shows
a part of the image sequence taken by the hand camera; the right row shows
the results with the 7-hole-slat clipped based on the position information
obtained by the FII-recogniser.

Fig. 15. Grabbed 3-hole-slat

Finally, as shown in Fig. 15, the slat is grasped successfully.
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5 Conclusions

In this paper we have shown that fuzzy rule based methodologies provide an
added level of capabilities for robotic vision. We combined fuzzy rule systems
with classic vision algorithms (invariants, PCA). This makes some challenging
tasks like handling occlusion and calibration-free visual servoing feasible.

The object recognition system that utilizes fuzzy invariant values and
fuzzy if-then-rules for the hypotheses generation step combines the approach
of using invariants as object shape descriptors with the strength of fuzzy
set theory. It is capable of recognising partially occluded objects from dif-
ferent viewpoints robustly, without the need of time-consuming and difficult
camera-calibration.

The PCA in conjuction with neuro-fuzzy control is a practical and fast
technique for performing multi-variant task-oriented image processing tasks.
It is a general method, which needs learning. It is also a calibration-free ap-
proach and works robust even when the camera focus is not correctly adjusted
or objects are soiled.

A complete recognition-grasping example has demonstrated the combined
capabilities of both algorithms. It started with the recognition of partially oc-
cluded objects in a complex real robotic scenario and ended with the grasping
process of an object of interest.

In sum the systems work without calibration and geometric models can
be learned automatically. To a high degree they are:

e immune to uncertainties (illumination, perspective, ...)
o flexible, i.e. it easily adapts to new object poses, object types
e capable of recognising occluded objects in complex scenes

Future research directions will concentrate on some deficiencies of the
presented systems:

As mentioned in sec. 2, the implemented FII-recognition system is able
to recognise (quasi-)planar objects only. Therefore, future research will focus
on the recognition of three dimensional objects. Additionally, the recognition
system will be distributed on multiple processors to reduce the recognition
time.

The proposed neuro-fuzzy control method for fine-positioning is based on
supervised learning. The further development of the approach will be on ex-
tending the approach to reinforcement learning which is life-long learning.
The similar representation of robot state for fuzzy control can be used for
reinforcement learning. The next challenging task is to use vision system to
automatically evaluate the quality of grasping after each trial in order to
supply the learning correct reward value. That task will demand on integra-
tion of active vision, multiple-view and diverse image processing algorithms.
Fuzzy methodology can play an important role in the development.
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