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Abstract – The multi-agent paradigm may be used in
many different ways for structuring the process of
fusing data in large networks of information
sources. The general goal of such networks is the
maximisation of the quality of the result to be ob-
tained at minimum cost, e.g. within a minimum
time interval using many agents or before a given
deadline using as few agents as possible. To this
end agents compete for scarce resources or they
work in parallel. Both the general granularity of
the agent society and the competence assigned to
each individual agent determine the information
flow in the network. The multitude of parameters
involved makes it difficult for the designer to opti-
mally adapt the structure of the network to a given
class of sensing tasks. In this paper we outline
possible network structures and present an ap-
proach for analysing a number of important parame-
ters characterising the network at a relatively ab-
stract level. The abstraction enables a comparison
of different network structures. The methods for the
analysis may, however, be readily refined to evalu-
ate a specific problem. A model of lateral coordina-
tion control in sensor networks is proposed as a re-
sult of this comparison. This model is based on the
notion of negotiated cooperation between pairs of
autonomous sensor agents. It is presupposed that
the sensor agents may communicate with each
other, thus enabling them to fuse the information
they acquired. The actual cooperation phase is pre-
ceded by a bidding scheme to establish logical com-
munication links. This scheme implements network
self-organization, i.e. the automatic adaptation to
changing environmental conditions. The coopera-
tion is modelled on human social behaviour in the
case of a task being worked on sequentially by team
members with potentially different capabilities. A
cooperation protocol is described to achieve the
desired coordination. Our qualitative reasoning is
supplemented by simulation results to support the
hypothesis of the superiority of lateral over pure
vertical coordination, particularly under severe en-
vironmental conditions, such as sensor failure.

I. INTRODUCTION

As data fusion methods become more powerful and wide-
spread, there is a natural tendency to design sensor systems
with an ever increasing number of sensors contributing to the
solution of a given sensing task. Each of the sensors is faced
with the problem of making decisions based on its observa-
tion of a part of the environment and on partial a-priori in-
formation. The need for transferring information to locally
disparate sensors and the need to associate their data both re-
quire a mechanism for transporting data of different structure

at minimal costs. To reduce the amount of data to be trans-
ferred, only those sensors that are necessary for the solution
of a specific sensing task should be activated. This also
makes it possible for the rest to work in parallel on the solu-
tion of other tasks. Consider a vision system with cameras of
overlapping fields of view (e.g. for distributed vehicle moni-
toring [1]). The quality requirements of the task permitting, it
is obviously desirable not to focus all cameras to a single
specific object at one point in time, but to track different ob-
jects (possibly using the same sensor data). This is particu-
larly important when the operations required to re-focus a
sensor are costly.

It may also be very useful to fuse information on different
aspects of one object using a set S1 of sensors observing a
certain spatial area A1, while the information on a different
area A2 produced by the union of a subset of S1 and a second
set of sensors S2 is processed by other fusion entities. This
suggests another field of application of the multi-agent
paradigm: The coordination of information processing enti-
ties, i.e. agents that do not necessarily comprise a physical
sensor. There are three different interesting classes of the
mapping of physical sensors to sensor agents:

• The 1 → M mapping: One physical sensor provides
information for M more or less specialised agents. In
the field of Computer Vision the extreme view would
be “one agent per pixel;” realistically, teams of agents
are examined, which cooperate on the segmentation of
regions [3]. Agent cooperation schemes must be
highly flexible to adapt to varying scenes, and com-
munication is a crucial issue.

• The 1 → 1 mapping: Sensors are equipped with local
data (pre-)processing and communication facilities.
The resulting homogeneous/heterogeneous network
may in many respects be likened to distributed com-
puter networks with a large number of nodes of equiv-
alent/different capabilities.

• The M → 1 mapping: This is the classical hierarchical
network in which M sensors are controlled by one su-
perior agent.

Clearly, a mix of the three is also possible, this would re-
sult in an N → M mapping, where N agents at a lower level
interact with M agents at a higher level of a hierarchy. If a
large sensor system is structured according to these schemes,
the high number of nodes enforces a strategy for sensor coor-
dination to achieve a common goal with minimal cost. This
is the reason, therefore, that architectures must be developed
to structure such sensor systems systematically, to organise
them efficiently and to ensure a certain degree of fault toler-
ance by avoiding central controllers or coordinators (as was



- 2 -

A1

F1 2F 3F

Functional  approach
(hierarchical)

Example: 
F : Secretary
F : Printer
F : Clerk

1
2
3

A1

F F

Task–orientied
approach
(hierarchical)

Example: 
F: Typists

F

Fig. 1. Simple hierarchies. A1: Task to be solved by the hierarchy. Fi: Specialised entities capable of solving A1.
Left: At the lower level there are specialised agents.

Right: At the lower level complete solutions are obtained by non-specialised agents.
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Fig. 2. Left: Extended hierarchy with load compensation. Non-specialised agents, which may be coordinated (identified) by the upper level agent.
Right: Lateral organization: At the lower level complete solutions are obtained autonomously by non-specialised agents. The latter

are not identifiable or at least not controllable by the upper agent.

demanded in [6]); see [5] for early work on the centralised ap-
proach. The latter two issues presuppose that strategies can
be found to decide when to use a particular sensor for a set
task. The relatively small amount of work that has been done
in this field has focused on the vertical, i.e. hierarchical,
structuring of coordination responsibilities within sensor
networks. As common with all hierarchies, this approach of-
fers a clear assignment of responsibilities as well as a mostly
unidirectional and limited flow of control information.
Unfortunately, its performance is impaired severely in the
case of node failure. Moreover, with hierarchies it is difficult
to add or remove nodes from the system without major sys-
tem reconfiguration and they also suffer from the bottleneck
syndrome, i.e. during high system load, tasks cannot spread
out over the entire system although there may be resources
available to process them. It will be shown below that a flat
or lateral open (i.e. reconfigurable) structure offers significant
advantages over hierarchical organizations as the complexity
of the network increases, typically as its grows beyond sizes
of teams of 15 sensor nodes.

II. AUTONOMOUS AGENTS

It is the purpose of large sensor networks to acquire infor-
mation about the environment which is more comprehensive
and more precise than the contribution from any single sen-
sor. We assume that the network receives a sensing task from
an external mandator. The entities of the network, the sensor
agents then successively agree to form a group or collective.
All members of this collective are capable of observing the
same object feature (or complete object) and were assigned the
competence to do so. This setting suggests a comparison
with a human team of experts and it is therefore helpful to
consider models from organization theory in order to cope
with the problems of organization and communication within
large networks. A huge amount of work has been done in this
field, particularly for dealing with uncertainty introduced

when only partial information is accessible to every node
(see, for example, [10]).

There are two main issues to be dealt with when organising
teams of interacting agents [4]. The first of these issues is the
structure of the team (sec. II.A) and the second issue is the
definition of a control mechanism for coordinating the mem-
bers of the team (sec. II.B). Criteria for selecting a structure
and a control mechanism for a given network with a specific
ensemble of sensor agents are both the complexity (e.g. the
arrival rate of sensing tasks, the amount of knowledge neces-
sary for resolving the problem and for coordinating the a pri-
ori knowledge and the resources) and the uncertainty (of ac-
quired data, of the behaviour of the sensor agents and of the
behaviour of the environment). The latter determines the
number of agents necessary for completing the task. We shall
now explore these issues further before proceeding to their
application to networks of sensor agents.

A. Team Structure
A structure is specified by defining capabilities of the team
members and by assigning responsibilities to them. In the
case of sensor agent networks this implies that certain agents
may specialise in particular tasks such as the sensing of the
physical data; others work on different problems (e.g. prepro-
cessing data from different channels, establishing communica-
tions paths or coordinating subordinate agents).

This differentiation of capabilities and responsibilities,
however, is valid only for hierarchical structures, whereas in
the case of the proposed lateral structure the agents are locally
disparate but have equal rights and duties (as far as equal du-
ties are possible for sensors of different physical principles).
In a simple hierarchy, there exist a number of agents on a
lower level, which are coordinated by an agent at an upper
level. The agents at the lower level are all specialised to
unique classes of tasks (fig. 1, left) or they may have univer-
sal capabilities (fig. 1, right). In either case they are subordi-
nated in responsibility to the upper level agent.
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In an extended hierarchy  (such as proposed in [7]) there is
more than one level of coordinating agents (fig. 2, left).
Specialised agents may coexist with non-specialised agents in
one network. If there are non-specialised agents at the same
level, then there is a potential for these agents to coordinate
themselves by interchanging information directly without any
arbitration by a superior agent (fig. 2, right). This is, in
essence, the concept of lateral structures. Both hierarchical
and lateral structures may coexist in one network; subtrees are
structured laterally and organise their cooperation within their
layer of the subtree autonomously after receiving a certain
task from their superior agent (or the external mandator).
Finally, a network in which there are only lateral dependen-
cies is called a cooperative. In such organizations there is no
coordinating authority and agents may be members of differ-
ent collectives that are working on different tasks. This struc-
ture of overlapping cooperatives forms the basis of our work
because it also contains all hierarchical structures as a subset
of possible specialisations (through the assignment of limited
capabilities/competence to each individual agent).

B. Network Control Mechanism
The control mechanism defines how and when sensor

agents communicate (interact). From an interaction, a transfer
of control may result, which in turn is preceded by a selection
process. The mechanism for coordinating communication be-
tween the agents may be either static, i.e. communication
channels and hence groups of sensors for working on a certain
task are fixed (e.g. [12]), or it may be dynamic. The latter
means that cooperation between sensor agents is agreed upon
for a limited period of time and vanishes after completion of
the task. During the selection process, an exchange of infor-
mation with different agents may take place and the decision
for or against cooperating with a potential partner may be
taken after evaluating the latter’s offer in terms of promised
result quality, e.g. time of completion and measurement pre-
cision.

An example of a static control mechanism is the conserva-
tive selection strategy: An agent which initiates a cooperation
for a certain class of tasks for the first time looks for suitable
partners and (possibly randomly) selects one of them. When
the same task (or class of tasks) appears again, the agent se-
lects the identical partner. After some time, all classes of
tasks have caused each agent to “know” each partner for every
task class and the partnerships for cooperation are fixed. With
a dynamic strategy, current partnerships do not affect future
relations. The selection process is repeated each time a coop-
eration becomes necessary and the momentary state of poten-
tial partners (e.g. workload of the potential partners) may be
taken into account. Note that the selection strategy may have
a drastic effect on the performance of the network. Moreover,
the effects of sensor failure are less severe and the addition or
removal of agents does not necessitate a complete re–initiali-
sation of the network. Such dynamic strategies are obviously
better suited for lateral networks in which agents are less spe-
cialised than in hierarchical networks where in certain situa-
tions there is only a limited choice of partners.

C. Lateral Networks of Autonomous Sensor-Agents
The general layout for the structure which forms the basis

for the following discussion is shown in fig. 3. In principle,
each sensor may become a member of any conceivable collec-
tive, i.e. a member of whichever collective promises the
completion of a certain sensing task.

Fig. 3. Lateral sensor network. The dashed lines indicate four possible
collectives each consisting of KS=10 competent sensor agents.

The centre agent is not included in either of these collectives. The size of
the network is K=5 × 5 agents. The external mandator is not shown; it may,

however, communicate with each of the agents in both directions.

It is assumed that the network forms a grid of K nodes (i.e.
sensor agents). A sensor agent is composed of a coordination
component responsible for establishing links and transferring
both control information and sensor data to other sensor
agents together with an optional sensing component in
charge of both data acquisition and data (pre-)processing. The
sensing component and coordination component of a sensor
agent communicate by means of a local data base, which sto-
res information related to the tasks the sensor agent is allo-
cated to.

A task comes into being once an object appears for the first
time in the local field of view of any of the sensor agents
(event). Since other agents may be necessary to resolve the
task, the agent (or, originally, the mandator) may request that
they contribute to the solution (demand). Moreover, there is
normally an external demand from the mandator (e.g. from
the robot control) to create certain results.

III. LATERAL AND DYNAMIC SENSOR AGENT COORDINATION

To establish contact between any two sensor agents of a col-
lective and to coordinate their activities, a bidding scheme
similar to the Contract Net Protocol introduced in [2] is
utilised. This bidding scheme has been applied to the vertical
distribution of subtasks in the context of automated manufac-
turing [11] and to the lateral scheduling of tasks in dis-
tributed systems [13]. In our context, the bidding scheme is
applied to the lateral allocation of sensor agents for object
identification and localisation tasks. Not only does this
scheme enable the dynamic allocation of sensor agents
within an individual cooperative, but it can also assign a
sensor agent to different cooperatives thus coordinating the
activities of overlapping cooperatives.

A. General Sensor Agent Interaction Patterns and the
Contract Net Protocol
In an event-driven environment the agent starts processing the
input when an object enters the local field of view. After gen-
erating preliminary results of a given quality, the agent pro-
ceeds to locate an interested external mandator by offering the
preliminary results in a broadcast message. If interested (e.g.
because of specific spatial task characteristics), the mandator
responds with conditions constraining the amount of effort to
be put into processing the task by the sensor agents. These
conditions comprise two aspects which are important from
the point of view of a mandator: the expected quality of the
task processing results and the time limit within which re-
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sults are expected. The time limit defines the time at which a
mandator expects the results at the latest, whether they satisfy
the quality constraints or not. In a demand-driven environ-
ment, the external mandator may also initiate a cooperation
by itself, i.e. without being asked to issue a sensing task.
After having received the constraining conditions of a manda-
tor, the sensor agent continues to process the task:

• The generated preliminary results are immediately re-
turned to the external agent if their quality already
meets the external quality requirements.

• The sensor agent tries to allocate the complete task to
another sensor agent of the collective corresponding to
this task if it fails to meet the required deadline or
quality.

The transfer of control between pairs of sensor agents is
termed contracting by negotiation, the negotiation being the
preceding bidding and selection phase which results in a
transfer of control (in a contract). This contract assigns a cer-
tain credit to the sensor agent and commits it to perform a
specific action. A sensor agent will refuse to bid for a task
when it can derive its inadequateness from the task descrip-
tion and its own current status and capabilities (e.g. work-
load, state of sensory and processing resources, environmen-
tal conditions). If the time limit is exceeded, further process-
ing of the task results must be carried out by the mandator or
the application system because the generated results corre-
spond to current sensor network capabilities and cannot be
improved. A task ceases to exist in the sensor network when
its results are communicated to a mandator.

Contracting by negotiation enables a sensor network to
flexibly adapt to indeterminate environmental and agent spe-
cific conditions governing its performance. It also leads to
the sequential coordination of only the minimum amount of
resources required to solve a task according to given quality
constraints. The sensor agents not participating in the pro-
cessing of a task of a particular collective remain free to em-
ploy their resources in other collectives. Due to the lateral re-
lations between sensor agents, sensory results from multiple,
possibly disparate sources can be accumulated and integrated.
Furthermore, such a sensor network is fault–tolerant and ex-
tendible because new agents or enhanced capabilities of al-
ready existing agents are included automatically in the con-
tracting scheme. The partial or complete failure of an agent
is tolerated; a totally disabled agent will automatically not be
considered in the coordination of the remaining network.

A great advantage of the lateral organization is the imme-
diate availability of all other agents (i.e. the maximum net-
work capacity) to each sensor agent if need be. This is in
contrast to a hierarchical structure where contact between
nodes at the same hierarchical level is possible only through
intermediate managing nodes at higher hierarchical levels. In
the vertical case, a managing agent coordinates only a subset
of network capacity for a specific set of tasks. Coordination

is efficient only in such a subset because otherwise too many
intermediate nodes may be involved, thus inhibiting tasks
from spreading out over the entire network. The relevance of
this property increases as complexity and uncertainty in the
network environment grow.

B. The Cooperation Protocol
A common frame of reference (or “common language”) is a
precondition for cooperative object identification and localisa-
tion by multiple agents. This may be given by a global co-
ordinate system referencing fixed points in Euclidean space.
Additionally, a globally utilised description of agents, their
capabilities and of the tasks to be processed must be pro-
vided. An object description comprises a unique object type
identifier and parameters determining its current position,
alignment and size (fig. 4). In addition, an object description
includes quality factors as a measure of reliability of the slot
values describing an individual object. A quality factor is
normalised to the interval [0,1], with a quality factor of 1
expressing complete reliability of the associated object slot
value. A quality factor is the result of a specific sensor data
evaluation. A sensor agent description encompasses informa-
tion about the basic capabilities of a sensor agent and its cur-
rent status, as well as administrative information. The status
of a sensor agent is described by values expressing its current
workload and sensory precision/variance. The workload is
given as the number of tasks the sensor has successfully bid-
den for but not yet processed. Due to the generally sporadic
time of arrival of individual tasks and the indeterminate
amount of time required for their processing, this is the only
way of pragmatically measuring the workload of a sensor
agent. A task description is composed of administrative in-
formation, the conditions constraining the cooperative pro-
cessing of the task as given by a mandator and results gener-
ated by sensor agents which have already processed that task.
The administrative information consists of a unique task
identifier and the communication address of the mandator,
both supplied by the agent. The task description also in-
cludes a unique identifier of the local field of view of the sen-
sor agent where the task originated from. The external con-
straints consist of a value defining the task processing time
limit and the desired quality factors for the object identifica-
tion and localisation relevant slots of the object description.
To facilitate contracting by negotiation among sensor agents,
appropriate message types must be defined. Five message
types are used:
• A request for bids-message describing a task to be pro-

cessed cooperatively. It initiates a negotiation and se-
lection phase.

• A bid-message by which an interested sensor agent
offers its capacity to process a task.

• An award-message by which an initiating sensor agent
transfers task information to the selected bidder.

type object is type sensorAgent is type task is
  objectID : integer;   address : string;   taskID : integer;
  position : vector;   localRangeID : integer;   mandatorAddress : string;
  alignment : vector;   qf_objectID : real[0,1];   localRangeID : integer;
  size : real;  qf_position : real[0,1];   timeLimit : real;

   qf_objectID  : real[0,1];   qf_alignment : real[0,1];   qf_objectID : real[0,1];
 qf_position : real[0,1];   qf_size : real[0,1];  qf_position : real[0,1];
  qf_alignment : real[0,1];   workload : integer,   qf_alignment : real[0,1];
  qf_size : real[0,1];   precision : real;   qf_size : real[0,1];
end object; end sensorAgent;   results : list of object;

end task;
Fig. 4. Left: Object description, Centre: Sensor agent description, Right: Task description
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• A request for interest-message by which a sensor agent
offers to mandators further processing of a newly ar-
rived task.

• A result-message by which a sensor agent currently al-
located to a given task returns the available results to a
mandator when either the quality requirements for this
task have been met or its time limit has expired.

M

1

2

3

4

Fig. 5. Multiple agents form a team to process a single specific task.
Agent 1 was awarded the task originally, but turned out not to be capable

of meeting the requirements. Note that all but the active agent may
simultaneously be members of others teams working on different tasks.

Fig. 5 shows how a collective of KS=4 agents is assembled
if the first agent that was awarded the task turns out to have
been too optimistic, i.e. it cannot meet the requirements. It is
important to note that, although preferences for choosing par-
ticular collectives may exist, the structure of the team (i.e.
members of the collective) is not set a priori and cannot be
predicted. It is only after the completion of the task that the
individual members of the team can be identified.

IV. EVALUATING THE PERFORMANCE OF ORGANIZATION SCHEMES

We now turn to the interesting question of how well the ar-
chitecture performs under several conditions.
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Fig. 6. Sensor agents as a queuing network

The performance of the agent organization is assessed by
steady-state simulation, which models a sensor network as a
set of interconnected service centres equipped with queuing fa-
cilities (fig. 6). Each agent is modelled as consisting of two
sequentially related service centres, i.e. its sensor component
(sp) and its coordination component (cp). Agents without a
physical sensor (coordinating agents) lack the sensor compo-
nent. Among the network service centres, transactions circu-
late which represent object identification and localisation
tasks. For the sake of simplicity, only sensor agents with
homogeneous capabilities and tasks of similar complexity are
considered.

A. Simulation Model
The sensor component of a sensor agent is represented as an
M/M/1-queue, i.e. a service centre with exponentially dis-
tributed inter–arrival times of new tasks and exponentially
distributed service time. The coordination component is rep-
resented as an M/D/1-queue, i.e. with exponentially dis-
tributed inter-arrival times and constant service time.
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For the purposes of our simulation, a task arriving at an
agent is first processed by its sensor component and then by
its coordination component. In particular, it is assumed that
an external mandator was already located for each newly arriv-
ing task. The rate of newly arriving tasks (e.g. due to object
movement) λi at a sensor agent i with i = 1,...,K is termed
external arrival rate and is assumed to be identical for all
agents. Thus, the total external arrival rate is given by λ =
λiK. A task processed by a sensor agent i is routed to a sen-
sor agent j of the corresponding collective of KS agents
(which are competent to work on the task) with probability
qij where i, j = 1, …, KS. The task exits the network when it
was successfully completed with probability

q qi ij
j

Ks

0
1

1= −
=
∑

 

with i = 1, …, K

The probabilities qij are called the network routing probabili-
ties [9]. The tasks arriving at agent i from other agents j
(because of contracting) are a fraction of the total rate of
tasks γj leaving sensor agent j with j = 1, …, KS. The rate of
traffic flowing into agent i is called the internal arrival rate of
agent i and is given by

γ j ji
j

K

q
s

=
∑

1

 

with i = 1, …, K

Due to the flow balance assumption [8], tasks must leave
a sensor agent at the same rate at which they arrive there. A
fraction qij of the set of tasks arriving at agent i are directed
from sensor agent i to sensor agent j with the rate γiqij.
Furthermore, a fraction qji of tasks is directed from sensor
agent j to sensor agent i with the rate γjqji. Consequently, the
total traffic rate γi at a sensor agent i is given by the network
traffic equations (see fig. 7):

γ λ γi i j ji
j

K

q i K
s

= + = …
=
∑

1

1, ,

The external arrival of tasks is considered a stationary
Poisson process. However, the internal arrival rate is not
necessarily such a process: in the case of a dynamic selection
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strategy (such as selection by smallest workload) arrival rates
depend on system history. Moreover, as will be explained be-
low, the probability qji of a task arriving from sensor agent j
at sensor agent i is a function of the number of sensor agents
which have already processed this task. Therefore, our per-
formance evaluation is conducted by means of simulation in-
stead of analysis because the non-Poisson characteristics of
the processes significantly complicates an analytical ap-
proach.

The coordination component of an agent decides by means
of an evaluation function whether a task processed by the
sensor component can be successfully completed. As no fur-
ther assumptions on the nature of sensor data evaluation were
made, the process of KS agents transferring a given task and
accepting it for completion or rejecting it, is viewed as a
Bernoulli experiment. After each transfer the task is accepted
by the new agent with probability b and rejected with proba-
bility 1 – b. The probability of the kth agent accepting the
task for completion is then given by

P(k) = (1 – b)k–1b

The corresponding geometric probability distribution is
given by

F(k) = 1 – (1 – b)k

This function determines the probability qi0 of a task exiting
the network as successfully completed by sensor agent i after
passing k  agents including i (k  ≥ 1) with E[k] = 1/b .
Additionally, qi0 is set to 1, should the set processing dead-
line have expired at the time a task arrives. Based on these
assumptions, vertical and lateral structures were compared in
performance.

: Neighborhood relations
: Control relations

Top level

Middle level

Lower level

Fig. 8. Sensor network hierarchy

For the vertical organization, two additional layers of sen-
sor agents (manager–agents) were introduced with the origi-
nal sensor grid constituting the lowest level. Each sensor
agent at the middle level coordinates exactly one row of the
sensor agent grid. The middle level agents are coordinated by
a single manager–agent at the top level (fig. 8). At the mid-
dle and top level a task is processed only by the coordination
component of a manager–agent. Specifically, a sensor agent
at the middle level coordinates only a subset of the collec-
tives defined by its subordinate sensor agents.

The main simulation output parameter of interest and hence
the measure of organization performance used for comparison
is the percentage V of tasks successfully completed within a
given deadline. The following variables were among the sim-

ulation input parameters, which were introduced to determine
the behaviour of the modelled organization and, consequently,
the value of V: The network size K defining the number of
sensor agents in the network; a relative processing deadline d
within which tasks should be completed; a failure probability
f which determines whether a sensor agent fails at a specific
point in time;a repair delay r after which failed sensor agents
return into the system; a completion probability b determin-
ing the mean number of sensor agents required to successfully
complete a task

B. Simulation Results
The selection strategy employed in both a lateral and a verti-
cal organization is selection by smallest workload. As a mea-
sure of difficulty of the task, the coefficient b was varied, a
decrease in b resulting in an increase in E[k], the mean num-
ber of sensor agents necessary to successfully complete a
task. The node failure probability f and repair delay r as well
as the network size K are viewed as measures of complexity.
Additionally, the coordination component service time cp was
varied to represent an increasing complexity in reaching coor-
dination decisions as opposed to the sensor component ser-
vice time sp.

Figs. I…II depict the effect of increasing the network size
K while the other parameters remain fixed, except for the
failure probability f, which was 0.01 and 0.05, respectively.
In addition, organization performance (fl denotes a lateral and
hi a hierarchical organization) is shown for different degrees
of task uncertainty b. In the case of low failure probability f
(fig. I), the superiority of lateral over vertical organization is
evident because even with small network sizes the lateral or-
ganization provides a higher percentage V of tasks completed
successfully within the deadline d. This advantage increases
with growing network size K and uncertainty b. Particularly,
it is shown that for a large network (K = 49) an increase in
uncertainty leads to significantly less degraded performance
when compared to the vertical organization. In this case, with
b decreased from 0.5 to 0.33 (and hence E[k] increased from 2
to 3) the lateral organization suffers from a performance
degradation of ca. 5% (as given by the parameter V), whereas
the vertical organization performance degrades by approxi-
mately 20% under identical conditions. A further increase in
complexity (high failure probability f = 0.05; fig. II) yields
an important result: initially, i.e. with small network sizes,
the vertical organization exhibits a better performance than
the lateral organization. However, as K increases, a break–
even point is reached, at which the lateral organization per-
formance exceeds that of the vertical organization. Moreover,
as uncertainty increases, this break–even point occurs at de-
creasing network sizes. At first sight, this fact may look con-
tradictory to our argumentation; note, however, that the dif-
ference in performance in the two organization types grows
with increasing difficulty as the network size increases.

The results displayed in figs. I…II are supported by figs.
III…IV, which show the organization performance as a func-
tion of the repair delay r with high failure probability f fixed
at 0.05. The repair delay corresponds, for example, to the
time it takes to re-focus a sensor if the current focus turns out
to be inadequate. The probability f indicates how frequently
this happens. Initially, with a small network (K = 9) and
short repair delay, lateral organization is at an advantage over
vertical organization. Soon, however, with increasing repair
delay, lateral organization performance degrades significantly
below vertical organization performance (fig. III). This situa-
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tion is completely different in the case of a large network (K=
49; fig. IV): Here, even with very long repair delays r, the
lateral organization significantly outperforms the vertical or-
ganization. It is also clearly visible that the difference in or-
ganization performance increases with growing uncertainty.
This sensitivity of the vertical organization to increased net-
work size is explained by the bottleneck effect affecting man-
aging agents.

A different measure of complexity is the amount of time
required by a coordination component to reach a coordination
decision. It was considered for varying circumstances and the
corresponding results are displayed in fig. V. The network
size has no significant effect on lateral organization perfor-
mance, but very much on vertical organization performance.
Here, another interesting feature of vertical organization per-
formance was encountered: As cp is increased (and sp corre-
spondingly decreased), lateral organization performance re-
mains relatively stable, rising from nearly 100% to a full
100% of successfully completed tasks. This is largely due to
the growing influence of the constant service time cp and,
correspondingly, the diminishing influence of the exponen-
tially distributed service time sp. This is a relevant setting for
networks that consist of a large number of coordinators (that
do not have a sensing component). However, besides being
sensitive to increased network size due to bottleneck poten-
tial, vertical organization performance rises sharply with in-
creased service time cp. It reaches an optimum in the vicinity
of the lateral organization performance, and declines just
about as sharply as it has risen before reaching the optimum.
The results displayed in fig. V suggest that, in contrast to the
robustness of lateral organization performance, a vertical or-
ganization is highly sensitive to the relation of sp to cp ser-
vice times. Thus, a vertical organization is only justifiable if
this relation results in optimal or near–optimal performance.
It seems to be increasingly difficult to establish the according
range of service time values guaranteeing such performance
with increasing network sizes. The right–hand sides of the
performance plots of the vertical organization are again ex-
plained by the bottleneck characteristic of managing agents
which is directly amplified by increasing cp. The left hand–
sides, however, are not so easy to explain: With decreasing cp
service times, tasks may flow increasingly faster through the
hierarchy, leading to saturation effects in the collective sub-
sets coordinated by the middle level managers. This presump-
tion is supported by fig. VI, which displays the mean task
population of hierarchical organizations with cp service times
corresponding to those shown in fig. V. This saturation effect
within the collective subsets diminishes with increasing ser-
vice time cp until the performance reaches the optimum, and
is afterwards converted to the bottleneck effect mentioned
above. The performance increase occurring with increasing
service time cp is explained by the fact that the traffic origi-
nally (with very low cp) leading to neighbourhood saturation
is increasingly delayed at the corresponding middle level man-
ager. This increase in delay has an advantageous effect on ver-
tical organization performance until it reaches the point where
the bottleneck effect induced by that delay outweighs its ad-
vantageous effect.

V. CONCLUSIONS

The subject of sensor coordination and control may currently
appear esoteric, but it will soon turn out to be quite relevant
as the complexity of these systems continues to increase and
the prevailing ad hoc approaches will no longer provide ade-

quate solutions. This does not imply, however, that systems
with a smaller number of sensors, such as with current mo-
bile robots, could not profit from a well–structured organiza-
tion and coordination of their sensor subsystem. This aspect
comes into play when a smaller number of sensors is em-
ployed in a constantly changing scenery. In order to acquire a
maximum of environmental information, it is obviously de-
sirable to supply the sensor network with a large number of
goal–directed sensing tasks. The coordination protocol must
then ensure a high degree of “liveness”, i.e. the tasks must
be worked on in parallel by as many sensor agents as possi-
ble.

It was shown that lateral control in distributed sensor net-
works is feasible through a corresponding cooperation proto-
col motivated by considering models from organization the-
ory. Furthermore, simulation studies have revealed not only
a general quantitative superiority of lateral over pure vertical
control structures, but also an increased sensitivity of vertical
organizations to growing complexity and uncertainty when
compared to lateral organizations. However, a clear perfor-
mance–bound distinction between lateral and vertical organi-
zation will not be possible without detailed and comprehen-
sive experimenting by simulation and real multi–sensor sys-
tems. In fact, the simulation results presented here indicate
that issues of complexity and uncertainty are closely coupled
and can not be studied in isolation.
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Fig. I. Effect of network size K on V with varying uncertainty (completion
probability) b. Low failure probability f and long repair delay r.
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Fig. II. Effect of network size K on V with varying uncertainty (completion
probability) b. High failure probability f and long repair delay r.
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Fig. III. Effect of repair delay r  (“re-focus delay”) on V with varying
uncertainty (completion probability) b. High failure probability f and small

network size K.
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Fig. IV. Effect of repair delay r on V with varying uncertainty (completion
probability) b. High failure probability f and large network size K.

0.8

60

70

80

90

0.60.40.2

d=10.0
b=0.5
m=0.0
delta=0
sp=1-cp
p=0.5
f=0
r=0

hi/K=49

hi/K=25

hi/K=9

fl/K=9,25,49

V Flat/Hierarchical

cp

Fig. V. Effect of coordination component service time cp on V

0.8

200

0.60.40.2

d=10.0
b=0.5
m=0.0
delta=0
sp=1-cp
p=0.5
f=0
r=0

K=49

K=25

K=9

N Hierarchical

cp

160

120

80

40

Fig. VI. Effect of coordination component service time cp on population N
(=tasks waiting to be serviced)



- 9 -


