
TRANSLATING SIGNAL FLOWCHARTS INTO MICROCODE
FOR CUSTOM DIGITAL SIGNAL PROCESSORS†

A. Fauth and A. Knoll
Technische Universität Berlin, Sekr. FR 2-2

Franklinstr. 28, W–1000 Berlin 10, Germany

ABSTRACT

The retargetable microcode compiler CBC suited for appli-
cation specific DSP (ASDSP) system software development
is presented. The compiler is capable of generating code for
various single instruction architectures. During the retarget-
ing of the compiler a formal description of the target ma-
chine is analyzed in order to extract the machine-specific in-
formation needed for code generation. The tasks of the
compiler comprise control flow transformations, code selec-
tion, data-routing and scheduling, address assignment and
code mapping. The problems are discussed, the structure of
the microcode compiler is given and future research direc-
tions are briefly outlined.

INTRODUCTION

In the domain of medium-throughput DSP (e.g. telecom-
munications, consumer electronics), microprogrammable
processor kernels with additional dedicated hardware units
are a good choice for system realization. Advanced reusable
processor kernels are parameterized in their number of pro-
cessor building blocks (e.g. ALUs, AGUs), in the instruc-
tion set, in their bus structure and their bus width.
Obviously, every change in the kernel architecture entails
the need to adapt and hence completely rewrite the software
tools used to program it (assembler, debugger, simulator,
compiler). The approach taken here to solve the problem of
adapting the tools is based on a machine description, which
contains all machine-specific information necessary for ef-
ficient code generation. Our description formalism nML [1]
was designed with the goal of compactness and readability
in mind. The formalism is powerful enough to enable com-
pilers being generated automatically solely out of this de-
scription [2][3]. Every change of the machine requires only
a change of the corresponding part of the machine descrip-
tion.
Once a compiler was generated, code can be produced. The
code generation script consists of several tools; each per-
forming a specific task. The user can thus iterate the script
and refine the algorithm in parallel with the architecture.
The tools provide the programmer with statistics. These can
be displayed in various diagrams in order to give a rapid
overview about an implementation decision’s impact on the
design (e.g. overall execution time and hardware operator
loads).

MACHINE DESCRIPTION AND ITS ANALYSIS

The target machine is described in terms of its instruction
set; a description is thus related very directly to the standard
description as found in the usual programmer’s manuals. To
allow for easy retargetability, the target machine is concise-

 † Part of this research is supported by the ESPRIT 2260
(“SPRITE”) project of the European Community.

ly described by its instruction set. The formalism nML was
designed for the modeling of single instruction stream archi-
tectures. nML is based on attribute grammars allowing for
sharing of common properties (e.g. addressing modes) be-
tween different instructions. Fig. 1 gives an example.
The description of the target processor is analyzed to extract
all information necessary for code generation [2][3]. As
some stages of the compiler are based on information de-
duced in this step, this task comprises the retargeting of the
code generator. Mainly the following information is gath-
ered:
• A set of hardware entities representing the operators

and the interconnection netlist.
• A set of operations is created for each hardware operator

and for each complete datapath. These sets are merged
forming the base of code selection.

• A set of match-replace patterns displaying chains of
operations that can be executed on a specific datapath
within a single cycle.

op instruction = jump | aluOp | ...
op aluOp (a:aluAction,s1:src,s2:src,d:dst)
 action = { tmp1 = s1; tmp2 = s2;
 a.aluAction; d = tmp3; }
 syntax = format("%s %s,…", a.syntax;...)
 image = format("...
op aluAction = plus | minus | ...
op plus ()
 action = { tmp3 = tmp1 + tmp2; }
 syntax = "add"
 image = "00000"
mode src = reg | ...
mode reg (n:card(3)) = R[n]
 syntax = format ("D%d",n)
 image = format ("%3b",n)

Fig. 1: A fragment of an nML instruction set description.

CODE GENERATION CONSTRAINTS

The retargetable microcode generator is part of a design
environment for application specific digital signal proces-
sors. The design philosophy is based on predefined but tun-
able, i.e. parametric, instruction set processor kernels.
Therefore, several constraints are imposed on the code gen-
eration tasks:
• Encoding restrictions. With respect to the size of the

microprogram ROM the length of the instruction word is
crucial. Vertical encoding and the removal of several
combinations of micro-operations from the instruction set
are accomplished to shorten the instruction word.
Conflicts in the use of instruction word fields can then
arise.

• Limited register resources and fixed interconnections.
The size of register files and the hardware operator

netlist are fixed at compile-time. The resulting restric-
tions on the placement of temporary values must not be
violated. The set of data routes is restricted and some
registers may not be spillable. Deadlock situations must
be avoided and conflict-free data routes must be found
during scheduling.

OVERVIEW OF THE COMPILER

The intermediate representation of the algorithm common
to all code generation tasks is based on a control/data flow
graph (CDFG). A CDFG is a directed graph with nodes re-
presenting operations and arcs displaying dependencies
between nodes. These dependencies are related either to
control or to data flow. The CDFG describes the main exe-
cution loop of an application. Therefore, cycles in the graph
result from algorithmic delay operations which are used to
refer to values from earlier incarnations of loops. The
framework described in [4] is used as an implementation
backbone.
For the different stages of code generation, three disjunct
sets of arithmetic and logic operations exist in a common li-
brary:
• Abstract operations. This set of operations mirrors the

high-level operations which are available in the initial
input-level flowcharts. Besides these machine-indepen-
dent operations, some canonical operations identifying
the action on dedicated hardware (such as accelerator
paths) can also be included in the algorithm.

• Machine executable operations. This set consists of op-
erations which correspond to primitives of the nML de-
scription. All initial CDFG operations must be mapped to
members of this set.

• Datapath operations. The third set are operations which
use all operators on a datapath. They are the basic entities
for the scheduling process. These operations are formed
out of the second set during chaining.

Besides the different sets of arithmetic and logic operations,
two more groups exist:
• Transfer operations. These are used to describe assign-

ments of data to memory locations and moves on buses.
They are inserted into the CDFG during data routing.

• Control flow operations. All conditional and uncondi-
tional jumps are members of this set.

Next, the main tasks of code generation are given (there ex-
ists a special tool for performing each of the operations
mentioned):
• Control flow transformations. Transformations con-

cerning the mutually exclusive execution of operations
depending on certain conditions are performed to reduce
the overall execution time. A pure data-driven representa-
tion is translated into a hybrid data/control-driven repre-
sentation reflecting the requirements of branch con-
trollers used in programmable ASDSP systems.

• Code selection. Subsets of the algorithm are mapped to
datapaths. First, high level operations of the algorithmic
input are expanded into primitive machine operations.
Then, chains of expanded operations are merged forming
more complex operations provided by the machine.

• Scheduling. The operations in the signal flowchart are
ordered in time. To produce high quality code, efficient
scheduling is a must. The goal of scheduling is minimum
execution time for a given algorithm for an architecture
which is fixed at compile-time [5].

• Code mapping. At the last stage of code generation, the
code is mapped to program memory and a specific en-
coding (binary or assembly code) is emitted.

Besides these, an additional tool exists for user interaction.
A good user-feedback is essential. Diagrams showing oper-
ation quantities, operator loads and other details of the algo-
rithm are generated automatically as different stages of
translation are passed. As some tools can be parameterized,
an environment for convenient control of their functionality
is provided.
We will now look at the main tasks of code generation in
greater detail.

1. Control flow transformations

An optimal schedule keeps all processor building blocks
working in parallel as often as possible. To enable the
scheduler to order instructions so as to achieve this goal, the
data flow graph is modified and enriched with hints to the
scheduler. A typical simple example for optimization arises
from the situation shown in Fig. 2.b: two operands o1 and
o2 are to be either added or subtracted depending upon the
value of a condition c. For an arbitrary reason, the value of
c, however, can be determined only after both the subtrac-
tion and the addition could be carried out. Furthermore, two
adders are available to perform the operation at this particu-
lar instant in time. Then it makes sense to actually carry out
both operations and take the result depending on c after its
value is known rather than to wait for c to be determined
and only then perform the subtraction or the addition.

select
OUT

SEL

n

IN1 IN2 INn

o1

select c

o2

Fig. 2.a: The template for
an n-way select operation.

Fig.2.b: An example for con-
ditional selection of a com-
puted value.

if SEL=1
SEL

IN4IN3IN2IN1

if SEL=2 if SEL=3 else

r r r r

OUT

Fig. 2.c: Four different definitions of an operand are merged.
The definitions are merely renamings. Each operand de-
pends upon a condition which is the equality of the selector
with the appropriate setting.

This example serves only to clarify the issue of reordering
conditional computations to obtain better schedules. For the
CBC environment a technique for data-dependent clustering
and conditional branch handling has been developed. It can
be considered as a generalization of conventional instruc-
tion reordering techniques like delayed branching, jump
look-ahead and multiple prefetching, which are all confined
to a rather small scope in the vicinity of branches. In the
initial flowcharts, conditional computations are expressed
via select operations (see Fig. 2.a). The input to the selec-
tor SEL determines which of the operands is transferred to

the output. Fig 2.c shows the atomic interpretation of a 4-
way select.
Although the select operation is convenient for the defi-
nition of algorithms, its semantics are not strict: It is obvi-
ously not necessary to carry out all operations along all
(independent) paths leading to the select node. It is there-
fore desirable both to defer the operations along alternative
paths until the decision can be made which path is to be
chosen and to pursue the paths as far as possible before the
decision is taken if and only if processor resources are
available. A reasonable compromise must be found to en-
sure an optimized schedule.
To achieve this, for each selectable input operand the set of
all operations required to generate the operand is clustered
and marked with the appropriate condition by introducing
scopes. All operations depending on the same condition are
within the same scope. This scope is indicated by a sur-
rounding box. The different definitions of an operand are
merged in the enclosing scope. Figures 3.a and 3.b show an
example where a hierarchy of conditions is established.

if sel=1 else
rr

Fig. 3.a: Conditional operations and data-dependent clusters
prior to the transformation

if sel=1 else

rr

Fig. 3.b: The clusters are marked with the conditions. This
transformation is applied recursively to the CDFG possibly
resulting in nested conditions.

A pure control-driven interpretation of these clusters would
force all operations inside a scope to be delayed until the
decision can be taken. This would again result in a sub-op-
timal schedule. (Similar considerations are given in [6].)
Our model for scheduling is based on a hybrid data/control-
driven select operation: Binary conditional jumps are in-
serted into the CDFG. This concept can be adapted to n-ary
jumps. Two arcs (in Fig. 4 the arcs ending in black dots)

emanate from a conditional jump node. One is labeled
TRUE, the other is labeled FALSE. These arcs point to opera-
tion nodes meaning that the execution of a node is only
necessary when a certain control flow is selected but can
possibly be scheduled if it is ready even though the condi-
tion has not yet been computed. These arcs therefore do not
represent true dependencies. They are used to identify mu-
tually exclusive operations and to steer the priority func-
tions of the list-scheduler.
An unconditional jump is also inserted for each pair of mu-
tually exclusive control flows implementing the back jump
to the enclosing scope. Control flow arcs (the dashed arcs in
Fig. 4) are inserted from all operations of exclusive scopes
to the back jump, forcing it to be scheduled after these op-
erations. This enforces the simultaneous completion of all
exclusive scopes. The independence of execution times
from selected execution paths is ensured which is important
to guarantee a conflict-free schedule.

f

a c d e

jump

jump

b

cj

cj f := if d
 then a+b
 else if e
 then a+c
 else b+c

Fig. 4: A CDFG with jumps inserted and the corresponding
nested conditional expression.

2. Code Selection

Code selection consists of two interleaved phases: machine
parameterized macro expansion and mapping to machine
executable operations.
During macro expansion operations in the CDFG are ex-
panded into operations available on the machine. For ex-
ample, multiplications are broken down to combinations of
additions and shifts or into Booth-multiplication steps. This
process is controlled by rules which are parameterized by
the set of specific hardware operators offered by the target
machine. This set is identified during the analysis of the
nML machine description.
In the mapping to machine executable operations, limited
word lengths have are taken into account. For example, an
addition of two 32 bit values could be performed on a 16 bit
datapath with two additions (assuming an addition with
carry is possible). This task is based on the framework pre-
sented in [4].
Once all CDFG operations are refined to machine exe-
cutable operations, the mapping of operation clusters to da-
tapaths takes place. Thereby, chains of operations are
merged, thus forming more complex operations which are
provided by the machine. These datapath operations can be
executed within a single clock cycle. In Fig. 5 the CDFG is
clustered to be executed on the depicted datapath. The shift
operations (>>) are executed on the SHIFTER and the arith-
metic operations (+ and -) are executed on the ALU CORE.
The basic technique is based on tree parsing and dynamic
programming [7]. We enhanced the BURG tree parser gen-
erator to generate code including match conditions [8].

These conditions are used to catch structural properties and
operator constraints. Graph patterns can be matched to
graphs and type constraints can be expressed. The database
which forms the base of this task is a set of match-replace
pairs (see Fig. 6.a and 6.b). Two possibilities for graph pat-
terns can be identified:
• In “pure” chaining all operators of a specific datapath are

involved in the matched operation. Here, graph patterns
exits only if the datapath is graph-like.

• Local optimizations are included in the patterns. This is
the case when some local transformations make only
sense in combination with a specific mapping (Fig. 6.b).

SHIFTER

ALU CORE

datapath

register file

Fig. 5: A CDFG with possible clustering and a simplified da-
tapath for which the clustering was constructed.

MATCH
 c const val={-4..3};
 s shift ops=(i1 c);
 n neg ops=(i2);
 o add ops=(s n);
REPLACE
 o shsub ops=(i1 c i2);
END

Fig. 6a: A match-replace pair with a constrained shift range.

MATCH
 a add ops=(i1 i1);
 o add ops=(a i2);
REPLACE
 c const val=1;
 o shadd ops=(i1 c i2);
END

Fig. 6b A match-replace pair with a graph pattern. Here, a
common sub-expression is resolved.

Points of major differences between our code selection ap-
proach and similar tasks in high level synthesis (HLS) and
“classic” code generation (CG) are:
• Encoding restrictions. Not all possible combinations of

operations on the hardware operators in a certain data-
path are allowed whereas in HLS the instruction set is
synthesized by the compiler.

• Complexity of datapaths. CBC has to deal with highly
specialized and optimized datapaths. The hardware units
make the efficient execution of frequently used operation
sequences can possible. Operation patterns for these da-
tapaths are much more complex than for standard micro
processors..

• Bit-true mapping. DSP algorithms may include a large
variety of different word lengths. The operators are re-
stricted to processable word lengths. A correct mapping
must always be found. In HLS the appropriate hardware

is allocated. In CG this topic is of no interest because
most compilers are restricted to “implementation-depen-
dent types”.

3. Scheduling and data-routing

In our compiler, scheduling is the ordering of datapath ope-
rations. The modified list scheduling scheme reported in [5]
is adapted to the aforementioned handling of conditions.
Data-routing is the combined task of register allocation and
generation of transfer operations. For load/store architec-
tures, all datapath actions read from and write to registers.
Here, the proper transfer operation to move values between
RAM/ROM and registers must be inserted into the program.
For ASDSP this task can be even more complicated as criti-
cal resources may exist in the design. Incorrect use of these
resources may result in deadlocks of the schedule.
Therefore, scheduling and data-routing are performed in
parallel.

4. Address assignment and code mapping

Finally, symbolic values are mapped onto physical ad-
dresses. RAM usage is optimized by performing a lifetime
analysis for all values. Code is mapped to program memory,
jump distances are computed and the appropriate encoding
is emitted. The encoding functions make use of the object
oriented approach. The syntax and image attributes of the
machine description were transformed into methods belong-
ing to the according datapath operations. Now, all opera-
tions in the CDFG can simply be “dumped” to emit the
proper code.

CONCLUSION

We have shown how microcode generation is performed in
CBC. Mappings and optimizations are based on machine
independent techniques, parameterized tools and generated
methods. The use of a formal machine description allows
for easy retargetability giving the system designer good
possibilities to experiment with the design. Future efforts
will concentrate on the refinement of the presented tech-
niques. Code selection and scheduling are of special interest
as is the inclusion of multiple datapath and Harvard archi-
tectures.

[1] M. Freericks, “The nML Machine Description Formal-
ism”, Tech. Rep. 1991/15, TU Berlin, Germany

[2] A. Fauth, A. Knoll, “Automated generation of DSP pro-
gram development tools using a machine description
formalism”, in Proc. ICASSP 1993

[3] A. Fauth, A. Knoll, “Automated Generation of DSP
Program Development Tools Utilizing a Machine
Description Formalism”, Tech. Rep. 1992-31, TU
Berlin, Germany

[4] D. Lanneer et al., “An Object-Oriented Framework sup-
porting the full High-Level Synthesis Trajectory”, in
Proc. CHDL 1991

[5] R. Hartmann, “Combined scheduling and data routing
for programmable ASIC systems”, in Proc. EDAC 1992

[6] M. Rim, R. Jain, “Representing Conditional Branches
for High-Level Synthesis Applications”, in Proceedings
29th DAC, 1992

[7] C.W. Fraser, R.R. Henry, T.A. Proebsting, “BURG –
Fast Optimal Instruction Selection and Tree Parsing”,
ACM SIGPLAN Notices, Vol. 27, No. 4, 1992

[8] C. Müller, A. Fauth, “Pattern Matching Based Chaining
in Dataflow Graphs”, ESPRIT 2260 Tech. Rep.
CBC.b/Siemens/Y4m12/1, 1992

