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Abstract. The model-driven architecture proposes stepwise model re-
finement. The resulting model-to-model (M2M) transformation chains
can consist of many steps. For realizing the transformations two ap-
proaches exist: Exogenous transformations, where input and output use
different metamodels, and endogenous transformations, that use the
same metamodel for input and output. Due to the particularities of
embedded systems, using only endogenous transformations is not ap-
propriate. For exogenous transformations, problems arise with respect
to creation and maintenance of the subsequent metamodels. Another
problem of these M2M transformation chains is that for one transforma-
tion step typically large parts of the model data remain unchanged. The
resulting M2M transformation does often include many copy operations
that distract the developers from the “real” transformations and increase
implementation overhead. This paper introduces a generic approach that
solves these issues by a (semi-) automatic metamodel construction and
copy operation of unchanged model data between subsequent steps.

Keywords: Transformation Chain, Model-to-Model Transformation,
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1 Introduction

The model-driven architecture (MDA) [1] has been successfully used to cope
with large and complex systems. MDA suggests transforming platform inde-
pendent models (PIMs) by a series of model-to-model (M2M) transformations
into platform specific models (PSMs). Especially in the context of model-driven
software development (MDSD) [2] of embedded systems, this stepwise refine-
ment is very helpful. Embedded systems are characterized by the importance
of extra-functional requirements, timing issues, and the heterogeneity of the in-
volved components and platforms. Therefore, the transformations from PIM to
PSM have to take into account several tasks. To enhance readability and main-
tainability, every M2M transformation step should ideally perform one task.
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These tasks could be for example the mapping of software to hardware compo-
nents or the calculation of an execution schedule.

In the domain of embedded systems the metamodels used for user input and
for code generation very often differ significantly [3]. Due to this difference, a big
metamodel, whose structure is suited both for user input and code generation,
would be inadequate. The ideal transformation process consists of a series of
refinements resulting in intermediate models based on different metamodels. In
this approach of handling only one task within one M2M transformation step,
the changes between steps at the metamodel and model level are rather small
and only represent intermediate steps of the transformation towards the final
metamodel and model.

One problem of M2M transformation chains is the creation and maintenance
of the related metamodels. Successive metamodels typically have large parts
in common. As there is currently no tool support available for constructing
these metamodels, they are created manually, typically using Copy&Paste. An
additional problem arises if later a metamodel in a M2M transformation chain is
changed, e.g., by adding a new attribute. Usually the same adaptation has to be
applied to subsequent metamodels as well. A manual execution of such changes
is error-prone and tedious, hence should be avoided. Very often these problems
are avoided by reducing the number of steps in a M2M transformation chain.
This paper presents an approach to create and maintain the metamodels based
on difference descriptions.

If transformations between models with different metamodels (exogenous
transformation) [4] are implemented using an operational M2M transformation
language, such as Xtend1 or QVTOperational [5], the unchanged parts of the
system have to be copied manually. As a result, the size of the code for the
“real” M2M transformation is very often negligible compared to these manual
copy operations. To avoid the additional overhead for implementing these copy
operations, different refinement steps are very often combined or even only one
large M2M transformation is used. Such M2M transformations contradict state-
of-the-art in modern software engineering, which is based on modularity and
demands to focus on one task at a time. Therefore, this paper presents a way to
deal with the copy of data between successive models.

Section 2 clearly defines the problem statement and the focus of this paper.
An overview of our solution is given in Section 3. The approach supports both
the creation and maintenance of M2M transformation chains with respect to the
two above mentioned problems. Section 4 presents an incremental definition of
subsequent metamodels on the metamodel level. A semi-automatic conduction
of data copy and type transformation operations for unchanged parts2 between
models based on different metamodels is described in Section 5. The “real” M2M
transformation still needs to be specified manually. The implementation and the
evaluation of the approach in the context of two MDSD tools for embedded

1 Xtend/Xpand: http://wiki.eclipse.org/Xpand
2 Underlying metamodel structure has not changed.

http://wiki.eclipse.org/Xpand
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systems are contained in Section 6. The paper is concluded by a discussion of
related work in Section 7 and a summary in Section 8.

2 Problem Statement

Following the MDSD methodology [2] user-defined models are stepwise com-
bined and refined to a model adequate for code generation. This is especially
useful when applying MDSD in the domain of embedded system. Due to the
high heterogeneity of platforms and hence of implementations, PIMs abstract
from the underlying implementations to simplify the modeling task for develop-
ers. In the process of stepwise refinement, a PSM should be calculated that is an
optimal representation for code generation of a specific platform. One example
is schedule specification. While it is simpler to model the execution through de-
pendencies between tasks, the code generation is simplified if a concrete schedule
with start times is calculated during M2M transformations. The same is true for
the combination of models. To separate concerns and to reduce complexity, the
description of embedded system is very often done using several, aligned models
targeting different aspects of the system. Aligned models are models, which were
created with respect to each other. They share information and can reference
elements of each other without any problems. By working with different models,
the developers can concentrate on selected system aspects and their associated
data. Examples can be a model describing the used hardware and a model to
describe the application. The code generation is simplified when these different
“views” are merged.

Ideally the M2M transformation between the input model(s) and the final
output model is split up in many small transformations. Each of these trans-
formations then focuses on one task, e.g., schedule calculation or identifier as-
signment. Hence, a transformation changes only a small part of the model data.
The transformations in the chain can be implemented using exogenous or en-
dogenous transformations [4]. Exogenous transformations are transformations
between models based on different metamodels. In contrast, endogenous trans-
formations are transformations between models based on the same metamodel.
It is possible to perform transformations with big structural changes through
endogenous transformations. However, due to the big difference between PIMs
and PSMs for embedded systems, the use of endogenous transformations alone
is usually not advisable. Hence, this paper focuses on the support of step-wise
model refinement using exogenous transformations3.

One problem with exogenous transformations is the necessity to create and
maintain further metamodels with large common parts. Very often the similar-
ity between these metamodels leads to a construction using Copy&Paste. During
maintenance, problems can arise when metamodels are extended and adapted to
new needs. This usually requires applying the same changes in subsequent meta-
models. Depending on the length of the M2M transformation chain this can be

3 The problems with exogenous transformations discussed in the following, do not
exist for endogenous transformations.



582 G. Kainz, C. Buckl, and A. Knoll

very time-consuming. Moreover, the refactoring is tedious and error-prone. Fig-
ure 1 shows the structure of a M2M transformation chain from PIM to PSM.
Metamodel evolution [6] is very similar as it considers the migration of models,
after the corresponding metamodel has been changed. The major difference be-
tween a M2M transformation chain and metamodel evolution is the life cycles
of metamodels. In metamodel evolution, only the latest metamodel is of con-
cern as this metamodel presents the latest version of the tool. The migration
of models is only performed once. In transformation chains, all metamodels are
required and the full chain of metamodels is processed every time the tooling is
invoked for an application. This difference causes some practicability issues that
are discussed in the following sections. M2M transformation chains and meta-
model evolution are orthogonal to each other as shown in Figure 1. This paper
proposes an approach for creating and maintaining metamodels in exoge-
nous M2M transformation chains based on difference specifications
between metamodels.

Fig. 1. Relation between Transformation Chains and Metamodel Evolution

Another disadvantage of exogenous transformations is the need to transform
all the data of input model(s) into the output model. This transformation also
includes copying data, which is not modified by the current M2M transforma-
tion, but needs to be transformed into the namespace of the new model. For
operational (imperative) M2M transformation languages these copy operations
have to be specified by the developers for all model elements. This is a very
time-consuming and tedious job. Furthermore, the developers have to ensure
that all data are copied from the input model(s) to the output model. The re-
sulting M2M transformation code is very often a mixture of copy and “real”
M2M transformation operations. As a consequence, these copy operations hin-
der the identification of the essential parts and ideas of the M2M transformation
itself. To avoid the additional overhead, different M2M transformation steps are
often combined or even only one large M2M transformation is used. This pa-
per proposes an approach to (semi-) automatically copy unchanged parts
between models through the use of a function library.
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3 General Approach

The problem statement targets both the metamodel and model level of M2M
transformation chains. To simplify discussion, we will deal with each of the prob-
lems in a separate section. As model transformations are based on the metamod-
els created by metamodel transformations, they can only be executed after the
metamodel transformations. Hence, we start with the discussion of metamodel-
to-metamodel (MM2MM) transformations. Typically, the transformations on
models are executed more often than transformations on metamodels. The rea-
son for this is that metamodel transformations belong to a change in the tool,
whereas model transformations are part of the tool application to create new
applications. Performance is therefore mainly an issue for M2M transformations
and can be neglected to a certain extent for MM2MM transformations.

Figure 2 shows the proposed approach. The models / metamodels of the dif-
ferent steps are connected through transformations belonging to a M2M trans-
formation chain. Numbers indicate the designated order of steps. The developers
start with defining the input metamodels (1). Afterwards a difference model (2)
[7,8,9] is used to create the metamodel of the next step (3). Based on this new
metamodel the developer can define the model transformation containing func-
tion calls to copy unchanged model data and the “real” transformation (4). Since
the “real” transformations represent the intelligence of the tool, they still have
to be implemented by the developers without any further support. These steps
can be repeated as often as needed (5–8). To create a new application the user
needs to define the required models (9) and start the processing (10–12). In the
approach only the differences between steps are specified manually. Similarities
are handled automatically.

Fig. 2. Schematic Illustration of Model-to-Model Transformation Chain Approach.
Gray elements indicate generated artifacts and automatic steps.
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4 Metamodel-to-Metamodel Transformations

For supporting M2M transformation chains on the metamodel level, an easy way
of creating the metamodels used in the different steps is needed. To keep the
overhead for managing the metamodels as small as possible, we suggest specify-
ing only the changes between metamodels (model deltas), e.g., adding, deleting,
or modifying of packages, classes, attributes, references, or operations. This is
closely related to metamodel evolution. The main difference is that metamodel
evolution usually only focuses on calculating a difference model to (semi-) auto-
mate the M2M transformation (model migration). The difference model is either
calculated by tracking changes of the developers when changing the metamodel
or by comparing the old and new metamodel. In contrast, we use the difference
model to calculate a successor metamodel out of the given ones. It is important
to note that the predecessor metamodels might be affected by changes to the
preceding metamodel chain. Hence, the tool must also support the developers
by notifying if a difference model becomes partly invalid. In addition, our differ-
ence model must be able to specify combinations (used to merge different views)
and adaptations of more than one metamodel, whereas metamodel evolution can
only relate two metamodels with each other.

Example. Before the approach is presented in detail, a simple example is given.
A system consisting of hard- and software components is modeled using separate
models (views). These models shall be merged and then further modified. A
suitable metamodel is needed to store the newly calculated data. Therefore,
the metamodels have to be merged into one metamodel. The merge of the two
metamodels raises a conflict as both contain a class Component. To resolve the
conflict the Component classes are renamed into HWComponent respectively
SWComponent. The commonalities of the classes are moved into a new abstract
Component class. In addition, an id attribute is added to give all Components
unique identifiers. Figure 3 shows on the left side the preceding metamodels and
on the right side the newly generated metamodel. The figure also depicts an
intermediate step, which will be described in the discussion of the algorithm.

name: String

Component

HW Metamodel Composed Metamodel

Component

name: String

Component

SW Metamodel

HWComponent SWComponent

Composed Metamodel

id: int
name: String

Component

HWComponent SWComponent

Phase 2

Detail Types

Phase 1

Create
Metamodel
Structure

requires

requires

Fig. 3. Simple Example of a Metamodel-to-Metamodel Transformation



A Generic Approach Simplifying Model-to-Model Transformation Chains 585

To create a subsequent metamodel the developers only need to specify the
input metamodels and the changes, which shall be applied. A tool then creates
the new metamodel. Figure 4 shows the difference model used to create the new
metamodel. Any number of difference models can be specified to create an ar-
bitrary number of subsequent metamodels, where one MM2MM transformation
with its difference model builds upon the result of the previous one.

Transformation: composed (www.fortiss.org/tooling/m2m/composed)
Metamodel: hardware (www.fortiss.org/tooling/m2m/hardware)

Class: Component -> HWComponent [super class = Component] => Modify
Attribute: name => Delete

Metamodel: software (www.fortiss.org/tooling/m2m/software)
Class: Component -> SWComponent [super class = Component] => Modify

Attribute: name => Delete
Class: Component [abstract] => Add

Attribute: id [int] => Add
Attribute: name [String] => Add

Fig. 4. Difference Model Used to Create the new Metamodel of the Simple Example

Fig. 5. Simplified Metamodel to Specify Metamodel Transformations. ModelTransfor-
mation constitute the root element. OperationType defines the kind of operation to
perform, where none is used if only child elements are affected by transformations.

Supported Operations. To specify the adaptations of the metamodels in an
unambiguous way, we provide a metamodel for specifying the difference model for
MM2MM transformations. Figure 5 shows the basic structure of the metamodel
used to specify MM2MM transformations. Based on this metamodel, it is easy to
define all changes. The difference model allows to specify adding, deleting, and
modifying of metamodel elements. The low level specification of changes gives
high flexibility and allows a fine grained transformation of metamodels. Figure 6
shows a table with all supported operations. The column Add To / Remove From
state where the elements can be added / deleted and Modify contains a list of
changeable properties.
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Element Add To / Delete From Modify

Package package name

Class package name, abstract class, super class

Attribute class name, type, multiplicity

Reference class name, type, multiplicity, containment

Operation class name, return type, parameters

Enumeration package name

Enumeration
enumeration name, value

literal

Data type package name, instance type name

Annotation element key, value

Fig. 6. Supported Metamodel Transformations

Transformation Algorithm. For the MM2MM transformation a difference
model is taken as input, which references the metamodels of the previous step
and includes a specification of all changes to apply. As result an adapted and po-
tentially combined metamodel is returned. In addition, the specified changes are
checked for consistency to cope with potential changes to the preceding meta-
models. This prevents the generation of inconsistent metamodels, e.g., meta-
model containing classes with same name or usage of not existing data types.

The actual transformation is carried out in two phases. In the first phase,
all packages and types (classes, enumerations, and data types) are created. For
each package and type the algorithm checks, whether it is not specified to be
deleted, before creating them in the new metamodel. This is done for all packages
and types of the referenced input metamodels. New packages and types are
created in addition. The first phase takes care of creating types incorporating
type renamings, without creating the internal structure of classes. By executing
the transformation in this way, it can be ensured that all types already exist
before they are used by other metamodel elements, e.g., data type of an attribute,
super class. After creating all types in the new metamodel, a second phase takes
care of the correct construction of the internal structure of classes. This includes
the creation of attributes, references, and operations. Assignment of super classes
is also part of this second phase.

Due to the fact that only changes between subsequent metamodels are speci-
fied through a difference model, changes to metamodels are automatically prop-
agated to all subsequent metamodels along the M2M transformation chain. The
implicit propagation of changes along the M2M transformation chain relieves the
developers from applying the same adaptation many times and helps to focus on
the differences between consecutive metamodels. Furthermore, careless mistakes
are avoided by automating the metamodel adaptations.

5 Model-to-Model Transformations

The second aspect of M2M transformation chains targets M2M transformations
themselves. The focus of this paper lies on removing the burden of writing data
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copy operations in operational transformation languages from developers. This
is achieved by copying all unchanged (unaffected) model data from the input
models to the output model. The developers can then fully concentrate on the
“real” transformation. In comparison to metamodel evolution, our focus lies not
on specifying the complete M2M transformation, so we split the M2M trans-
formation in a generic part realizing the copy of unchanged data and a manual
part. The developers still have to write the code for the “real” transformation.
Furthermore, our approach supports the combination of more than one model
describing a system from different viewpoints. In addition, we want to reuse the
information from the MM2MM transformation to perform a more comprehensive
M2M transformation considering exogenous transformations including renaming
of metamodel elements.

Example. The approach is illustrated in Figure 7 based on the example of
the previous section. The transformation consists of a (semi-) automated and a
manual phase. First, generic copy operations based on the difference model are
invoked to copy as much data as possible to the successor model. Afterwards, a
manual transformation specified by the developers calculates the values for the
new id attributes.

name = “Motor“

: Component

HW Model Composed Model

id =
name = “Motor“

: HWComponent

name = “PID Controller“

: Component

SW Model

Phase 1

Deep Copy

id =
name = “PID Controller“

: SWComponent

Phase 2

Manual
Transformation

requires requires

Composed Model

id = 1
name = “Motor“

: HWComponent

id = 2
name = “PID Controller“

: SWComponent

requires

Fig. 7. Simple Example of a Model-to-Model Transformation

To reduce the effort for transformation encoding, all unchanged data between
the steps are copied through calls of library functions. The library function trans-
formObject takes care of converting the objects between the different names-
paces – a deep copy is performed. Through the information contained in the
difference model of the MM2MM transformation, the function is also capable
of handling renamings of classes, attributes, or references, e.g., class Component
→ HWComponent. Thus, the developers can concentrate on the “real” trans-
formation (assignment of unique identifiers to components). Figure 8 shows the
encoding of the M2M transformation from a HW and SW Model to a Com-
posed Model in the M2M transformation chain. The transformation is encoded
using Xtend and contains 4 library functions calls. For usual examples the num-
ber of calls shall be lower than 10 and follow a similar structure.
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//Manual transformation function
Void calculateAndAssignId(Component component):

component.setId(component.eContainer.components.indexOf(component) + 1);

//Orchestration function of M2M transformation
create ComposedModel this (hw::SWModel hwmodel, sw::SWModel swmodel,

ModelTransformation transformation)
initM2MTransformation(transformation) -> //Initialize M2M transformation

//Call M2M transformation function copying unchanged data (deep copy)
this.components.addAll(hwmodel.components.transformObject()) ->
this.components.addAll(swmodel.components.transformObject()) ->

//Manual M2M transformation
this.components.calculateAndAsignId();

finiM2MTransformation(this); //Finalize M2M transformation

Fig. 8. Manual Specification of a Model-to-Model Transformation. For simplification
reasons each model contains a root element which stores all the other elements.

Transformation Algorithm. The transformation algorithm is started on an
object of an input model. From there it traverses all reachable objects. Every
time an object is reached, the algorithm tries to create an equivalent object in the
output model and copies as much data as possible between those objects. This
includes the transformation between data types of different namespaces. The
class of the object, which has to be created in the output model, is determined
by using the information contained in the difference model of the metamodels. If
elements like classes or attributes do not exist in the next metamodel of the M2M
transformation chain, e.g., they are deleted, their data is ignored. The same holds
for newly created elements, for which no data exists. To simplify the algorithm
all objects are created when they are reached for the first time regardless whether
they are reached through a containment or normal association. For keeping track
of already created objects a map is used, which relates input objects with their
corresponding output objects. Later on, this map can be used during the manual
transformation to navigate from input to output objects and vice versa and
access their data as needed.

Since the algorithm starts at a specific object, it is possible that only a sub
tree of the input model is traversed. The developers have to orchestrate the M2M
transformation, so that all required parts are copied. This task is simplified by
the fact, that the provided transformObject abstracts whether the object has
already been transformed. The finiM2MTransformation in addition takes care
that the resulting model contains no objects without corresponding container
(storing) object.

The algorithm is provided as a Java library. This library contains func-
tions for initializing a transformation (initM2MTransformation), transforming
objects (transformObject), storing relations between input and output objects
(storeMapping), getting related objects (getDestinationObjects and getSourceOb-
jects), and finalizing a transformation (finiM2MTransformation). In the example
the library has been used from Xtend, but it can be used with any other model
transformation language. It is even possible to perform the generic transforma-
tion in Java and do the manual part with a model transformation language.
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The library can also be used directly without specifying the metamodel dif-
ferences. In this case the output metamodel needs to be specified. Unchanged
parts are then copied to the output model by relying only on the information
represented in the structure of the underlying metamodels. The type, attribute,
and reference names are than used as matching criteria. This requires unique
type names over all input metamodels, which are combined.

6 Implementation and Evaluation

In the following, the approach and its implementation are evaluated in the con-
text of two MDSD tools of the embedded systems domain: FTOS and εSOA. The
tools are built according to state-of-the-art for embedded systems development
and rely on M2M transformations to calculate data needed for code generation.
In both tools, the approach has been integrated to simplify their M2M transfor-
mations. Both tools are based on the Eclipse Modeling Framework (EMF)4 and
use the languages Xtend and Java for M2M transformations.

6.1 Implementation Details

The presented approach has been realized based on EMF, which can be consid-
ered as an implementation of the Essential Meta Object Facility (EMOF) [10].
The implementation consists of a metamodel used to specify MM2MM trans-
formations, a script to perform MM2MM transformations based on difference
models, and a library to support the (semi-) automatic copy of data in exoge-
nous M2M transformations for operational (imperative) model transformation
languages. Figure 9 shows the size of the implementation containing support for
both M2M and MM2MM transformations, where the code for MM2MM trans-
formations forms the majority. The implementation and an extended example
are available at http://tooling.fortiss.org/.

Criteria JAVA Code Xtend Code

# Functions 76 14

# Statements 999 28

Fig. 9. Size of Implementation Supporting Model-to-Model Transformation Chains

6.2 Evaluation of FTOS

FTOS [3,11] targets fault-tolerant real-time systems. It generates an applica-
tion specific run-time system including automated selection and configuration
of appropriate fault-tolerance mechanisms. FTOS is based on four input models
with their corresponding metamodels. In the hardware model, developers can
describe the hardware topology (nodes and networks). A software model is used
to specify the application components with a coarse schedule. The set of faults

4 EMF: http://www.eclipse.org/modeling/emf/

http://tooling.fortiss.org/
http://www.eclipse.org/modeling/emf/
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that might occur in the system are defined in a fault model. The fault tolerance
model is used to select fault detection tests and fault tolerance strategies.

During M2M transformations the four models are merged into one model,
appropriate fault-detection mechanisms, and a refined schedule are calculated. A
detailed discussion of the different calculations can be found in [3]. To avoid nasty
copy operations, a huge and complex M2M transformation was used instead of
applying a series of fine-grained M2M transformations. Another problem was
the manual creation of the output metamodel, since the input metamodels are
frequently extended to support further hardware components or other fault-
tolerance mechanisms.

For FTOS, we applied the approach without relying on a difference model for
MM2MM transformations. Hence, there is no support for metamodel changes in
the M2M transformation chain and for the handling of renamed objects during
M2M transformation. Figures 10 and 11 depict the results of the improvement.
As can be seen in Figure 10, the code size reduction of the M2M transformation
is significant. This results only from the elimination of copy statements. Even in
this bad setup by using only one big transformation containing a lot of calcula-
tions, the ratio of simple copy instructions contained is high. The increase of the
runtime for an equivalent transformation by using the generic library instead of
a manual optimized transformation is instead negligible, as stated in Figure 11.
Even without using MM2MM transformations the major benefits are the sig-
nificant reduction of transformation functions and statements. This reduction
can be explained by the fact that many elements and their properties are sim-
ply copied during the M2M transformation. In addition, the readability of the
manual M2M transformation code has been improved, since the remaining code
mainly contains code describing the “real” transformation.

# Meta- JAVA Code Xtend Code

model Old M2M Improve- Old M2M Improve-Tool
Elements

Criteria
Vers. Vers. ment Vers. Vers. ment

101
# Functions 124 93 25.0 % 406 286 29.6 %

FTOS
# Statements 1285 1045 18.7 % 1881 1146 39.1 %

13 # Functions 8 1 87.5 % 22 6 72.7 %
εSOA∗

(+ 79)∗∗ # Statements 59 20 66.1 % 72 22 69.4 %

Fig. 10. Evaluation Results without and with the Presented Approach (* Only code
related to M2M transformation and handling of instances of manual created metamodel
elements are considered. Other code is ignored, e.g., routing calculation or handling of
instances of generated metamodel objects. ** Generated metamodel elements).

6.3 Evaluation of εSOA

εSOA [12] is used to develop sensor / actuator networks. During M2M trans-
formations communication routes are calculated and the routing tables are pre-
pared. εSOA is based on four input models with their corresponding metamodels.
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Developers define and configure the nodes engaged in the system and their con-
nection with each other in the nodes and network model. The available services
are defined in the service model. In the application model developers can instan-
tiate services on nodes and configure their communication relations.

During M2M transformations an appropriate network routing is calculated
for the specified communication. Along with this, unique identifiers are assigned
to instantiated services. Most of the calculations and storing of data are done in
Java. This setting contradicts the main philosophy of MDSD as calculated data
is stored outside of models. The major reason why this approach was selected,
was to avoid the extension of the underlying metamodel, since the affected part of
the metamodel is generated and quite often changed. Otherwise the integration
of the manual changes had to be repeated after each regeneration of the corre-
sponding metamodel part. For comfort reasons only one M2M transformation
was implemented.

In the context of εSOA, both MM2MM and M2M transformations were ap-
plied. The advantages of the MM2MM transformation support are obvious, since
the metamodels of the input models are extended frequently. By using MM2MM
transformations, the changes between metamodels in the M2M transformation
chain needed to be specified only once and can now be reapplied whenever an
input metamodel changes. The MM2MM transformation consists of the merge of
6 metamodels. In addition, 1 new class is added and 2 are modified (not abstract
anymore, renaming due to a name conflict), 1 enumeration is renamed due to
a name conflict, 6 references are added and 1 is deleted, and 5 attributes are
added and 1 is deleted. Figures 10 and 11 depict the results of the improvement.
As can be seen in Figure 10, the code size of the M2M transformation could be
dramatically reduced. Even by ignoring the improvements on major parts. The
main reason for the huge reduction is that the M2M transformation is mainly
a model combination. Since a combination of models consists predominantly of
copy operations, it was easy to get rid of these operations by our approach.
Figure 11 shows that even a decrease in the runtime for an equivalent transfor-
mation by using the generic library has been achieved. The difference between
the run times observed in the context of εSOA and of FTOS can be motivated by
the fact that the manual M2M transformations of FTOS require an additional
traversing of the model whereas most of the transformations of εSOA are already
realized by the library. The speed up is motivated by the execution of compiled
Java code compared to interpreted Xtend code.

# Objects in Runtime
Tool

Application Model Old Version M2M Version Improvement

FTOS 121 468.2 ms 478.8 ms -2.3 %

εSOA 112 212.2 ms 199.4 ms 6.0 %

Fig. 11. Runtime without and with the Presented Approach (average over 5 runs)
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7 Related Work

The M2M transformation part of our approach is highly related to model trans-
formation languages like Xtend5, QVTOperational [5], or the imperative part
of ATL6 [13] and constitutes an extension of such languages through a library.
This extension is used to relieve the developers from specifying copy operations
for unchanged model data by providing support for deep copy. As demonstrated
in this paper, the amount of copy operations in a M2M transformation can be
rather high. For similar reasons ATL offers a refine mode, which can be used to
copy model elements, but works only for endogenous transformations.

The specification of differences between metamodels is closely related to the
representation of model differences [7] and delta models used in software product
lines (SPLs) [8,9]. Differences in SPLs are called features [14] and are used to
integrate functionality into a base configuration. Features are ordered relatively
to each other to ensure a consistent integration. When creating a new product, all
the required features are selected. The features are ordered and their applications
lead to the configured product. In our approach, we support the construction of
M2M transformation chains defining a fixed order of the transformations. We do
not only take care of transforming the model (product), but also consider the
creation of the metamodels required by M2M transformation chains.

Glue Generator Tool (GGT) [15,16] is a framework dedicated to the reuse of
PIMs and PSMs of existing applications. Composition rules are specified using
GGTs own metamodel. Correspondence rules are used to relate model elements.
For composition merge rules are used. Modifications are handled by override
rules. In contrast to GGT, our approach is more concerned with the various cal-
culations done in M2M transformation chains and their optimal support. There-
fore, only aligned models are considered.

Epsilon Merging Language (EML) [17] is a metamodel based language for
expressing model merges. It contains a model comparison and transformation
language. Like GGT it is rule based. Match rules specify matching elements,
which are then merged through according rules. Not matched elements are han-
dled by transformation rules. EML is concerned with the merge of models based
on a specification including copy operations. Our solution is focused on the au-
tomation of those copy operations based on type equality. Along with this, our
approach offers a way to describe the adaptation of metamodels.

Epsilon Flock [18] is a model migration tool build on top of EML. It contains
a rule based transformation language used to define adaptations for metamodel
evolutions. This language includes a conservative copy algorithm, which is used
to copy unchanged model elements to the new model version. As Epsilon Flock is
used to adapt models after a metamodel evolution happened, it does not consider
changing metamodels by itself. But as has been shown in this paper, the support
of metamodel changes is important for M2M transformation chains. The same
holds for other metamodel evolution tools, e.g., COPE [19] or Ecore2Ecore [20].

5 Xtend/Xpand: http://wiki.eclipse.org/Xpand
6 ATL: http://www.eclipse.org/atl/

http://wiki.eclipse.org/Xpand
http://www.eclipse.org/atl/
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Atlas Model Weaver (AMW)7 is a model composition framework that uses
a specification for model transformations called weaving model to produce an
executable model transformation. The weaving model contains composition op-
erators specifying the relation between the various input models. This weaving
model is used by AMW to compose various models. In this sense, it is more
a model transformation language. Copy operations can be automated based on
the various relations stored in the weaving model. However, the construction of
the output metamodel is not in the focus of AMW and not further supported
through weaving models.

8 Conclusions

MDA proposes a model refinement in several steps from PIMs to PSMs. However,
this requires the management of many similar metamodels and the copy of data
between the corresponding models. If large parts of the model remain unchanged,
the developers have to specify many copy operations. To avoid this problem, the
developers typically use only few steps between PIMs and PSMs.

In this paper an approach was presented that supports on the one hand the
(semi-) automatic metamodel construction to specify metamodel chains and to
cope with later changes. On the other hand the (semi-) automatic copy of un-
changed model data during M2M transformations is supported. The MM2MM
transformation support has been applied to one MDSD tool, clearly showing its
benefits there. The M2M transformation was applied to two MDSD tools. Both
tools show a significant reduction of the code for M2M transformations (up to
70 %). This reduction is only related to avoiding simple copy operations. How-
ever, besides lower effort for specifying M2M transformations, the readability is
improved drastically.
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