
FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Multi-Modal Path Planning for Solving
Abstract Robot Tasks

Sören Jentzsch

FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Multi-Modal Path Planning for Solving
Abstract Robot Tasks

Multimodale Pfadplanung zur Lösung
abstrakter Roboteraufgaben

Author: Sören Jentzsch

Supervisor: Prof. Dr.-Ing. habil. Alois Knoll

Advisor: Andre Gaschler, M.Sc.

Submission Date: January 15, 2014

Ich versichere, dass ich diese Masterarbeit selbstständig verfasst und nur die
angegebenen Quellen und Hilfsmittel verwendet habe.

I assure the single handed composition of this master’s thesis only supported by
declared resources.

Garching, den 14. Januar 2014

Sören Jentzsch

Abstract

For intelligent robots to solve real-world tasks, the problem is not only to plan
motion paths, but rather to plan for picking, pushing, sliding, and many other
diverse manipulation actions in a complex world of movable objects. In this thesis,
we present algorithms, which are able to plan for manipulation and follow the
multi-modal nature induced by these actions. We extend basic sampling-based
motion planning to integrate Diverse Action Manipulation (DAMA) [6], and show
that based on the Rapidly-exploring Random Tree (RRT), we can then solve
DAMA scenarios of various kinds. We present three DAMA solving algorithms,
which are build upon one another.

To show the generic approach of our software for solving abstract tasks with var-
ious robot platforms, we evaluate one challenging scenario for a two-dimensional
mobile robot, and one even more difficult scenario for a joint robot with ten de-
grees of freedom in three-dimensional space. The latter scenario was also executed
in a real environment to illustrate the feasibility of the whole process from mod-
eling to planning, up to execution. Results reveal that for the second scenario, in
78% of the cases, even our non-hierarchical algorithm finds a solution in under 15
minutes, despite about 93% of the time being wasted on computations related to
inverse kinematics and nearest neighbor search, which is another area of interest
and can be separated from our work.

The contribution of this thesis is to give an overview of sampling-based manipu-
lation planning, and to provide software and helpful implementation details, but
also directions for future investigation to efficiently solve DAMA problems with
various robot platforms in an environment featuring multiple objects.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 1
1.3 Outline . 3

2 Background 5
2.1 Robotics Foundations for Motion Planning 7

2.1.1 Geometric Representations and Transformations 7
2.1.2 Forward Kinematics and Denavit-Hartenberg Convention . 9
2.1.3 Workspace and Inverse Kinematics 13
2.1.4 Configuration Space . 14

2.2 Sampling-Based Motion Planning Foundations 18
2.2.1 Distance Metrics in C-Space 19
2.2.2 Sampling in C-Space . 21
2.2.3 Collision Detection . 22
2.2.4 Paths in C-Space . 22

2.3 Sampling-Based Motion Planning Algorithms 23
2.3.1 Rapidly-exploring Random Trees (RRTs) 24
2.3.2 Probabilistic Roadmaps (PRMs) 30

2.4 Multi-Modal Planning . 31

3 Diverse Action Manipulation 35
3.1 Problem Description . 35
3.2 Diverse Action RRT Algorithm (DARRT) 38

3.2.1 Empty Space Planner . 38
3.2.2 Sampling in the DAMA C-space 42
3.2.3 Distance Metrics for the DAMA C-space 43
3.2.4 DARRT Algorithm . 44

3.3 Advanced Diverse Action RRT Algorithms 45
3.3.1 Bidirectional DARRT . 45
3.3.2 Hierarchical Approach . 47

4 Diverse Action Manipulation Experiments 51
4.1 World 1: Simple Mobile Robot . 51

4.1.1 Scenario 1: Manipulation with Three Movable Objects . . 52
4.1.2 Discussion and Evaluation 52

vii

4.2 World 2: Joint Meka Robot JAMES 54
4.2.1 The JAMES Project . 54
4.2.2 Robot Hardware . 55
4.2.3 Implementation Details . 56
4.2.4 Scenario 2: Rearranging Three Bottles 61
4.2.5 Discussion and Evaluation 61
4.2.6 Execution on real Meka Robot 65

5 Conclusion 69
5.1 Future Work . 69

Bibliography 73

viii

List of Figures

2.1 Various applications of motion planning 6

2.2 Yaw, pitch, and roll rotations . 7

2.3 Kinematic 2-DOF chain of three rigid bodies (links) connected via

two revolute joints . 9

2.4 Definition of the four DH parameters 11

2.5 Basic motion planning problem 17

2.6 RRT algorithm exploring the C-space 25

2.7 Solving a motion planning query with RRT-based planning in a

maze-like C-space . 26

2.8 The PRM algorithm incrementally constructs the sampling-based

roadmap . 30

2.9 Illustration of multi-modal planning for hybrid systems 32

2.10 Example world for multi-modal planning illustrating modes and

mode families. 33

3.1 Empty space planner for a simple 2D mobile robot 41

4.1 Scenario 1: Problem description and solution paths 53

4.2 Barkeeper JAMES acts as a bartender in a bar scenario 55

4.4 Meka robot model used for simulation 56

4.5 Reachable workspace of the Meka robot 57

4.6 Manipulation poses and their derived primitives for our Meka robot 59

4.7 Scenario 2: Problem description and a solution path (1/2) 62

4.8 Scenario 2: Problem description and a solution path (2/2) 63

4.9 Hardware environment for applying a DAMA problem on the real

Meka robot . 65

4.10 Snapshot of the Meka robot solving a DAMA problem in practice 66

4.11 A solution path for Scenario 2 executed in the real environment . 68

ix

List of Tables

4.1 Averaged performance of DARRT and DARRTConnect on

Scenario 1 . 52

4.2 Averaged performance of DARRTConnect and DARRTH-

Connect on Scenario 2 . 64

xi

1 Introduction

1.1 Motivation

Imagine a robot assisting in a kitchen or within another similar environment fea-

turing many objects and obstacles of different kind. Not only does it has to avoid

undesired contact with objects and obstacles, it rather has to manipulate objects

in different ways to accomplish a certain task. Concretely, in order for a kitchen

robot to wash the dishes, it has to apply a broad range of diverse manipulation

types: grasp the dishes at the right place, possibly push other objects away, slide

along the dishes, and regulating the tap. Manipulation action can also depend on

one another. For instance, an object could be too far away to be grasped immedi-

ately, but when pushed towards the robot with its finger tips, it can be grasped.

Or for cutting vegetables, a knife has to be grasped beforehand, which serves as

a tool for the robot.

These are examples of manipulation with diverse actions, in which the robot

needs to plan for a sequence of actions to accomplish its given task. Compared

to robots, humans are quite inventive, but also very experienced when it comes

to diverse action manipulation. For instance, humans intuitively slide a piece of

paper lying on the midst of a table towards the edge of the table, in order to

subsequently grasp it. Today’s robot system still mostly lack the ability to reason

and manipulate with diverse actions.

This work contributes to solving Diverse Action Manipulation (DAMA) problems

[6]. It builds on the success of sampling-based motion planning algorithms, like

Rapidly-exploring Random Trees (RRTs) or Probabilistic Roadmaps (PRMs),

and extends them to be suitable for solving DAMA problems in various robot

environments. Another source of motivation is therefore to show the realization

and integration of the entire process, from planning to execution, for a real robot.

1.2 Related Work

Barry [6] and the previously published major papers concerning manipulation

with diverse actions [4, 5] lay the foundation for this work. They define the DAMA

1

1 Introduction

problem, in which the goal is to find a sequence of actions to move each object

to a goal configuration, given a mobile robot, a set of movable objects, and a

set of diverse manipulation actions. As a characteristic of the DAMA problem,

there are so-called non-prehensile actions available, in which the robot is not

rigidly attached to the object, as is the case when pushing an object for exam-

ple. Moreover, the robot is equipped with and has to apply diverse manipulation

actions to the same object, in order to reach its goal. The algorithms proposed

by Barry [6] extend the sampling-based approach of a Rapidly-exploring Random

Tree (RRT), which is one of the most famous algorithm for solving motion plan-

ning [36, 37, 27], to also solve for DAMA problems. The algorithms presented in

this work will be closely related to the algorithms proposed by Barry. However,

we implemented the algorithms completely on our own and made major varia-

tions concerning some implementation details, which are further described and

discussed in Chapter 3.

Miyazawa et al. [39] solves the problem of determining a sequence of fingertip

positions to move an object from start to goal configuration by graspless manipu-

lation, like sliding of a cuboid with three degrees of freedom. He shows how RRTs

can even plan for manipulation with complicated mechanics involved.

For manipulation tasks, contact points between the robot and objects define

an important subspace of the overall configuration space. In order to plan for

these accordingly, we need to model this multi-modal structure, in which usually

each mode defines a fixed contact state. Hauser [16, 17] originally proposed the

multi-model framework, which is nowadays accounted for in many manipulation

scenarios, like grasp and regrasp operations, navigation among movable objects

[8], or assembly planning [18]. Hauser applied it first to legged robots, in which

the modes represent a fixed set of footfalls, which constrain the feet to be on the

ground. His locomotion planner is based on probabilistic roadmaps (PRMs), a

sampling-based motion planning algorithm similar to the RRT, and successfully

plans for mode transitions, ultimately equipping the robot with the ability to

walk. Hauser and Ng-Thow-Hing [18] then extend the mode space to continuous

modes for a manipulation scenario, which allows a Honda humanoid robot to push

an object to a goal location on a cluttered table, equipped with infinite pushing

configurations. The robot can perform the actions walking, pushing, and reach-

ing, which partitions the infinite modes into three mode families. Planning will

be done in an 18-dimensional space, which is similar to our Meka robot scenario

with 19 dimensions presented in this work. Hauser and Ng-Thow-Hing extend

the PRM algorithm to an explicit multi-modal algorithm called Random-MMP

algorithm, which is capable of generic multi-modal planning and will be similar

to the algorithm presented in this work. However, as pointed out by Barry [6],

explicit multi-modal algorithms cannot capture dependencies between mode fam-

2

1.3 Outline

ilies. For instance, if grasping an object is only applicable after pushing it to a

certain position, modeling this dependency is not immediately provided within

the multi-modal framework. Moreover, Hauser and Ng-Thow-Hing utilize some

problem-specific domain knowledge and heuristics, which make the algorithm

even harder to generalize. Therefore, in this work, we follow the more generic

approach presented by Barry [6]. However, the problem of diverse action manip-

ulation still is of multi-modal structure. From the perspective of multi-modality,

each primitive or manipulation action of our DAMA problem defines a mode

family and each mode within the family is defined by the specific robot-object

contact and the location of all objects not being manipulated. We will further in-

vestigate multi-modal motion planning in Section 2.4 and discuss its implications

in Chapter 3.

Throughout this work, we will further direct to some related resources and work

done in the specific areas.

1.3 Outline

After presenting the motivation for this work and related material, Chapter 2

outlines crucial background knowledge for the following chapters. It starts with

an introduction to planning algorithms in general, and continues with robotics

foundations for motion planning, foundations of sampling-based motion planning,

and further examines two popular sampling-based motion planning algorithms

and the multi-modal planning framework.

Build upon this background knowledge, Chapter 3 defines the Diverse Action

Manipulation (DAMA) problem and presents multiple planning algorithms, which

extend the previously discussed sampling-based motion planning algorithms from

Chapter 2 to solve for DAMA problems.

In Chapter 4, we define different worlds and scenarios, in which we can perform

experiments to test the DAMA algorithms proposed in Chapter 3. We will eval-

uate these on challenging scenarios and show how to step from simulation and

planning to real world execution of solutions to DAMA problems with a high

dimensional joint robot.

Finally, in Chapter 5, we summarize and discuss our work and present some future

work.

3

2 Background

Let us first take a brief glance at the history of planning in general, as it comes

a long way.

In his famous book Planning Algorithms, LaValle [31] outlines how the research

area of planning (especially motion planning) emerged from and was mostly in-

fluenced by the research in the fields of robotics, artificial intelligence and control

theory. Although all three areas now share common ground concerning motion

planning, they approached it in a very different manner. Robotics focused pri-

marily on collision-free movements of objects while considering uncertainties and

dynamics of the environment, resulting in a list of transformations required to

achieve a certain goal. However, artificial intelligence focused mainly on solving

discrete planning problems, having a discrete set of states and actions and search-

ing for a valid sequence of actions to transform the start state into a goal state.

Moreover, control theory focused on finding open-loop trajectories for a nonlinear

dynamical system in order to transition from the start state to a goal state, while

dealing with issues such as optimality, feedback and stability.

The range of applications for motion planning is broadly diversified [31], among

them are interesting areas like making smart video game characters, solving slid-

ing puzzles, developing parking cars, enabling robots to seal cracks in automotive

assembly, navigate autonomous helicopters through obstacles, and countless more

fascinating applications (Figure 2.1).

An important component of a planning problem is the state space. The state

space contains all possible states of the respective planning problem including a

certain representation of these. In this thesis, we will focus on motion planning

problems in continuous state spaces as they arise in robotics, where states are

often defined by the position and orientation of a robot. We will later come back

to a precise definition of our state space representation. For now, let us also note

that planning requires a certain initial state and the definition of a goal state,

or even a set of goal states. The problem of motion planning is to then find a

trajectory from the initial to a goal state without collisions.

5

2 Background

(a)

(b) (c) (d)

Figure 2.1: Various applications of motion planning [31, pp. 5-16]. (a) Animation
sequence for a digital actor within a kitchen scenario. (b) Non-holonomic planning for
a car avoiding obstacles with differential constraints only being able to move forward
and to turn left. (c) Simulation of robots sealing cracks in automotive manufacturing at
the Volvo Cars assembly plant in Torslanda, Sweden. (d) Sliding puzzle as an example
of discrete planning, in contrast to continuous planning.

6

2.1 Robotics Foundations for Motion Planning

2.1 Robotics Foundations for Motion Planning

In this section, we will address foundations of robotics, which are required or

quite useful to know when solving motion planning problems. We will start with

basic geometric representations and transformations in a 3D world, then derive

the forward kinematics of a robot using the Denavit-Hartenberg notation, briefly

introduce the notion of a workspace and the inverse kinematics problem, and

conclude with explaining the concept of configuration spaces.

2.1.1 Geometric Representations and Transformations

For sampling-based planning meth-

α

β γ
x

z

y

Yaw

PitchRoll

Figure 2.2: Yaw, pitch, and roll rotation.
Any rotation can be described as a series of
axis rotations.

ods, which we will discuss later in

this work, a collision detection algo-

rithm has to decide whether a certain

configuration is collision-free or not.

For this, we do require a systematic

way of representing components geo-

metrically and computationally effi-

cient, in order to deal with lots of col-

lision detection queries. Fortunately

for us, in this work, the Robotics Li-

brary [2] provides us with an im-

plementation of a collision detection

algorithm using semi-algebraic mod-

els to geometrically represent objects

and check for collisions. Thus, we will

treat the actual collision detection al-

gorithm as a black box, as its ap-

proach will not be the focus of this theses. Nevertheless, in order to appropri-

ately utilize its interfaces defined by various file formats used in the Robotics

Library, we need to have basic understanding of geometric representations and

transformations.

A collision detection algorithm requires both the obstacle region and the robot to

be expressed in terms of the world frame of W , i.e., sharing the same origin and

coordinate basis vectors of W . The obstacle region is fixed and defined within

W , and covers all the points, which lie in at least one obstacle. In contrast, the

robot usually consists of multiple (rigid) bodies, in which each body is expressed

in its own body frame. Now that the robot can move within the world, a rigid-body

transformation h places the robot in W at a certain position and orientation. At

7

2 Background

first we will take a look at the basic 3D transformation for a single rigid body,

before we will cover transforming a chain of attached rigid bodies.

A rigid-body transformation consists of a translational and a rotational part. The

translation by t =
(
tx ty tz

)>
∈ R3 is rather simple:

(x, y, z) 7→ (x+ tx, y + ty, z + tz). (2.1)

Describing the rotational part in the 3D transformation requires more effort. Any

rigid body rotation in 3D space can be described as a series of rotations around the

three orthogonal axes, as shown in Figure 2.2. These three angles are called yaw,

pitch and roll, respectively, and form the so-called fixed angle representation. Now

in order to rotate arbitrarily in space, we can compose a single rotation matrix

by chaining the roll, then the pitch, and then the yaw rotation as follows:

R(α, β, γ) = Rz(α) ·Ry(β) ·Rx(γ)

=

cosα − sinα 0

sinα cosα 0

0 0 1

 ·

 cos β 0 sin β

0 1 0

− sin β 0 cos β

 ·

1 0 0

0 cos γ − sin γ

0 sin γ cos γ


=

cosα cos β cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ

sinα cos β sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ

− sin β cos β sin γ cos β cos γ

 .

(2.2)

We can combine the rotational part with the translational one by increasing the

dimension by one using homogeneous coordinates, which yields the homogeneous

transformation matrix for 3D bodies:

T =

(
R(α, β, γ) t

0 1

)

=


cosα cos β cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ tx
sinα cos β sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ ty
− sin β cos β sin γ cos β cos γ tz

0 0 0 1

 .

(2.3)

8

2.1 Robotics Foundations for Motion Planning

Figure 2.3: Kinematic 2-DOF chain of three rigid bodies (links) connected
via two revolute joints. A3 is described in A1’s body frame via the transformation
1T2

2T3 (left) and A3 is described in A2’s body frame via the transformation 2T3 (right)
[31, p. 104].

Note that while T has six degrees of freedom (DOF), the order of operations is

crucial: At first we apply the roll rotation, then the pitch, then the yaw, and finally

the translation by t. Thus, T represents a rotation followed by a translation.

2.1.2 Forward Kinematics and Denavit-Hartenberg Convention

Having introduced basic knowledge about transformations, let us now discuss

modeling traditional robot system, which consist of multiple rigid bodies [31, 41,

21].

Rigid bodies are connected by joints to form a kinematic chain, whereby each

active joint is controlled by an actuator. Note that in this section we will only

discuss robot systems with a single kinematic chain of rigid bodies. Of course, the

architecture of a robot system can be more sophisticated, resulting for example

in kinematic trees with multiple end-effectors, closed kinematic chains (featuring

loops), links attached to more than two joints, or nonrigid bodies. Most of these

architectures are discussed in [31, 21].

For a robot with m rigid bodies (also referred to as links), let Ai with 1 ≤ i < m

denote the i-th link attached to the following link Ai+1. A1 is also referred to

as the base and Am as the robot’s end-effector, which usually has some kind of

manipulator attached, for example a gripper, and thus describes the robot’s tool

frame.

Each joint in between two links provides some constrained motion for Ai with

9

2 Background

respect to Ai+1. There are many possible types of joints used to attach bodies,

among them are two most common joints, which both provide the robot system

with one additional degree of freedom (DOF): revolute joints and prismatic joints.

Whereas a revolute joint introduces rotational motion of one link with respect

to the other, a prismatic joint allows one link to slide along the other providing

translational motion.

Figure 2.3 illustrates an example of a kinematic chain with three rigid bodies

A1,A2 and A3 connected via two revolute joints in between. Altogether this

system needs eight independent parameters to be described entirely within the

world frameW : six parameters for the position and orientation of the base frame

A1 and two more joint parameters θ2 and θ3 induced by the revolute joints.

Usually, when specifying the degrees of freedom (DOF), we only consider the

independent parameters of the system itself induced by the joints, resulting in a

2-DOF system in our example.

Recall that each body of our robot is expressed in its own body frame Ai, which

also determines the axis of rotation, as visualized in Figure 2.3. Now in order to

determine the location of each link we first construct a homogeneous transforma-

tion matrix i−1Ti for each body Ai with 1 ≤ i < m, which expresses the transfor-

mation from body Ai to body Ai−1, respectively to the world frame W = A0 for

i = 1. Thus, applying 1T2 to A2 describes its points within the body frame of A1.

For example in Figure 2.3, 2T3 causes a rotation of θ3 and a certain translation

by some constant. Chaining the application of the homogeneous transformation

matrices we can then easily compute the location of any point (x, y, z) ∈ Am
within the world frame W as follows:

0T1
1T2 · · ·m−1 Tm


x

y

z

1

 . (2.4)

Such an analysis is called forward kinematics, where ultimately we are interested

in expressing the end-effector configuration, respectively the tool frame, within

the world frame or at least within the base frame of the robot system.

Now in order to construct each i−1Ti, we make use of the Denavit-Hartenberg

(DH) method [31, 41, 21]. At first, we carefully define the link coordinate frame

for each Ai:

• zi-axis is placed along the axis of joint i connecting body Ai−1 and Ai.

• xi-axis is placed along the common normal of the zi and zi+1 axes, directed

10

2.1 Robotics Foundations for Motion Planning

Figure 2.4: Definition of the four DH parameters. ai, αi, di, θi are defined for the
respective joint i, link (i), and their involved body frames Bi and Bi−1 [21, p. 258].

11

2 Background

towards the zi+1-axis.

• yi-axis is placed optionally in order to obtain a right-handed coordinate

frame.

This method yields four DH parameters ai−1, αi−1, di, θi to fully express each

transformation i−1Ti, with definition as follows:

• ai: distance between the zi and zi+1 axes along the xi axis

• αi: angle from zi to zi+1 axes about the xi axis

• di: distance between the xi−1 and xi axes along the zi axis

• θi: angle from the xi−1 and xi axes about the zi axis

Figure 2.4 further illustrates the DH convention. For a revolute joint i, θi rep-

resents the controllable joint variable, for a prismatic joint it would be di. All

the other three parameters are usually constant and depend on the structure

of the robot. Note that according to Jazar[21], our convention follows the non-

standard Denavit-Hartenberg notation, where each body frame Ai was set at joint

i instead of the distal joint i + 1. However, this has the advantage of θi really

rotating around the zi-axis, resulting in an equal number of joints and coordinate

frames. However, the homogeneous transformation matrix i−1Ti becomes a bit

more complicated concerning the indexes.

Finally, for each i such that 1 < i ≤ m, the DH parameters define our homoge-

neous transformation matrix i−1Ti:

i−1Ti =


cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 −di sinαi−1
sin θi sinαi−1 cos θi sinαi−1 cosαi−1 di cosαi−1

0 0 0 1

 . (2.5)

Thus, in order to transform from Ai to Ai−1, i−1Ti applies the following four

operations in succession:

1. Translate by di along the zi-axis

2. Rotate counterclockwise by θi about the zi-axis

3. Translate by ai−1 along the xi−1-axis

4. Rotate counterclockwise by αi−1 about the xi−1-axis

12

2.1 Robotics Foundations for Motion Planning

Note that 0T1 maps the base frame to the world frame W and is usually not

modeled using the DH notation. Instead, we just apply the general rigid-body

homogeneous transformation as defined in Equation 2.3.

2.1.3 Workspace and Inverse Kinematics

For a robot system, the workspace describes the total volume of space which

is accessible by the end-effector. Jazar [21] differentiates between reachable and

dexterous workspace. Whereas the reachable workspace is the volume of space in

which every point is reachable by the end-effector in at least one orientation, the

dexterous workspace further constrains the space to only contain points which are

reachable in all possible orientations. Note that revolute joints are often preferred

over prismatic joints as they provide a larger dexterous workspace.

With forward kinematics using the DH notation we can compute the end-effector

configuration of a robot controlled in joint space. In this work specifically, and

for robots performing manipulation in general, we also need to control the end-

effector within its workspace, which is usually a Cartesian space. In other words,

given a certain position and orientation of the end-effector configuration in Carte-

sian space, we need to compute the set of joint variables that positions the robot

accordingly. This problem is called the inverse kinematics and unfortunately, due

to its highly nonlinear nature, is much more difficult to solve than the forward

kinematics problem. Jazar [21] gives a structured overview of the inverse kine-

matics problem and introduces some of the different approaches to solve it. A

detailed introduction to inverse kinematics is not the focus of this section. How-

ever, note that in this work, we adapted the iterative technique based on the

Newton-Raphson method, which is offered by the Robotics Library [2] to solve

inverse kinematics. The adaptations we made are further explained later on, when

we present our planning algorithm applied to the Meka robot. For now, it is also

worth mentioning that the iterative technique does not always converge, and can

give a poor performance near singular and degenerate configurations, thus, when

there are less DOF available for the end-effector than is the dimensional number

of the space in which it operates. Moreover, there can be multiple joint config-

urations representing the same point in Cartesian space, but also no solution, if

the end-effector configuration is outside the workspace or some joint limits were

reached.

13

2 Background

2.1.4 Configuration Space

So far we discussed modeling and transforming a collection of bodies. Now we

will come back to motion planning problems which usually search within a well-

defined continuous state space. For this, we need to define the state space, the

set of all possible rigid-body transformations that could be applied to the robot

[31]. This state space is referred to as the configuration space or C-space, as it

describes all configurations of the system. As LaValle [31] states, the C-space is

a powerful abstraction from complicated models and transformations in order to

solve the general problem of computing a path that traverses a manifold1.

Before we discuss how to describe obstacles within our C-space, let us first analyze

the general C-space for 2D and 3D rigid bodies. We will start with describing a

single rigid body, before we continue with multiple or chains of rigid bodies.

2.1.4.1 Configuration Space for a single rigid body

In 2D, the C-space is composed of a translational (x, y) and a rotational part (θ),

resulting in the following C-space with 3 dimensions: C = R2 × S1. Whereas the

translation can be described within the space R2, the rotational part is homeo-

morphic to the 1D manifold S1 = {(x, y) ∈ R2 | x2 + y2 = 1}, which describes a

circle. The latter case induces wraparounds in our C-space, because traveling in

the same direction on a circle results in visiting the same configuration multiple

times. Knowing of wraparounds is crucial for a motion planning algorithm as they

may lead to new solutions.

Before we discuss the 3D C-space, let us first introduce two important groups for

motion planning: the special orthogonal group SO(n) and the special Euclidean

group SE(n). Whereas the special orthogonal group SO(n) describes all n ×
n rotation matrices2, combining rotation with translation leads to the special

Euclidean group SE(n) of all (n+ 1)× (n+ 1) transformation matrices:

SE(n) =

{(
R v

0 1

)∣∣∣∣∣R ∈ SO(n), v ∈ Rn

}
. (2.6)

Note that while SO(2) is homeomorphic to S1, SE(2) is homeomorphic to the 2D

C-space R2×S1. In general, SE(n) is always homeomorphic to the n-dimensional

1Please refer to LaValle (Section 4.1) [31] for an introduction to basic topological concepts, including
the definition of a topological manifold and the relation to the C-space, which will be quite helpful
for understanding motion planning in general.

2More technically, SO(n) is the set of all (nonsingular) n × n real-valued orthogonal matrices with
determinant 1.

14

2.1 Robotics Foundations for Motion Planning

C-space Rn × SO(n).

Let us now discuss the architecture of the 3D C-space SE(3). Whereas the trans-

lation easily yields R3, determining the topology of SO(3) is significantly more

complicated than its 2D counterpart. Recall from Equation 2.2 that we can de-

scribe a rotation in 3D space using axis angle representation with only three

parameters. Although being good practice for describing a single rotation, this

representation can cause serious problems when chaining multiple rotations, as

different yaw, pitch, and roll values can yield the same rotation matrix. Visually

speaking this refers to a gimbal lock, which occurs when two of the three axes are

driven into a parallel configuration, resulting in a degenerated 2D space loosing

one DOF.

Fortunately there are various ways to parametrize 3D rotations, one of the most

convenient ones in robotics are unit quaternions [21, 41, 31]. Unit quaternions

avoid the gimbal lock problem utilizing four parameters and the condition of unit

length to represent a rotation, thus still resulting in three DOF. They are simple

to compose, much more numerically stable and need fewer operations than using

rotation matrices with their nine parameters. Let H be the set of all quaternions,

each quaternion h ∈ H is defined as

h = h0 + h1i+ h2j + h3k (2.7)

with the constraint i2 = j2 = k2 = ijk = −1. Thus, the four-dimensional quater-

nion consists of a real part or scalar h0 ∈ R, and a vector (h1, h2, h3) ∈ R3

describing the imaginary components of the quaternion. For unit quaternions

needed to describe SO(3), the norm ‖h‖ has to be 1, yielding the constraint

h20 + h21 + h22 + h23 = 1. The set of all unit quaternions can be visualized as a unit

sphere in R4, also denoted as the S3 space.

A unit quaternion h can be mapped to a rotation matrix (and vice versa, but not

further outlined here) and thus to SO(3) in the following way [31]:

R(h) =

2(h20 + h21)− 1 2(h1h2 − h0h3) 2(h1h3 + h0h2)

2(h1h2 + h0h3) 2(h20 + h22)− 1 2(h2h3 − h0h1)
2(h1h3 − h0h2) 2(h2h3 + h0h1) 2(h20 + h23)− 1

 (2.8)

However, we can directly transform a point (x, y, z) ∈ R3 using a unit quaternion

h by first building its conjugate h∗ = h0 − h1i − h2j − h3k and the quaternion

p ∈ H containing the point as p = 0 + xi+ yj + zk. The rotated quaternion p is

then given by:

15

2 Background

p = h · p ·h∗ (2.9)

We can then extract the rotated point (x, y, z) ∈ R3 from the imaginary compo-

nents of p the same way we constructed p.

Note that when using unit quaternions, we have to consider that h and −h repre-

sent the same rotation, as R(h) = R(−h). These points are referred to as antipodal

or polar opposite points. According to LaValle, one way to force uniqueness of

the rotation representation is to require that for all parameters hi, 0 ≤ i ≤ 3, the

constraint hi ≥ 0 holds, further providing an appropriate mapping to the upper

(”northern”) hemisphere for paths traveling across the equator of S3 [31, 32]. The

resulting space is referred to as a 3-dimensional real projective space, denoted RP3,

yielding the six dimensional manifold or C-space for a 3D robot: C = R3 × RP3.

2.1.4.2 Configuration Space for a chain of rigid bodies

In this section we will briefly discuss describing the C-space for multiple rigid

bodies connected by revolute or prismatic joints forming a kinematic chain. As-

suming a robot with a chain of n bodies, let Ci denote the C-space of body Ai
for 1 ≤ i ≤ n.

Each revolute or prismatic joint contributes one degree of freedom to the robot

system. Whereas a prismatic joint contributes R1, we have to distinguish between

two cases for a revolute joint. In practice, a revolute joint might not be able

to take on any θ ∈ [0, 2π), thus not providing the ability to wrap-around. In

this case, the revolute joint also contributes R1, however, with the full range of

motion a revolute joint contributes S1. For example, a robot with five rigid bodies,

connected by one prismatic joint, two restricted and two revolute joints would

have the following combined C-space:

C = R1 × R1 × R1 × S1 × S1 = R3 × S1 × S1 (2.10)

Note that depending on the level of description, we also need to add the possible

transformations for the first body A1.

2.1.4.3 Configuration Space with obstacles

Motion planning would be trivial without having obstacles or the possibility for a

robot system to collide. As planning takes place in the C-space, we have to define

the obstacle region Cobs as part of the C-space.

16

2.1 Robotics Foundations for Motion Planning

For a robot with multiple bodies, a configuration of the robot q ∈ C can be

contained in Cobs if either at least one link collides with an (external) obstacle, or

some specified links of the robot collide with each other [31].

Let O ⊂ W denote the (external)

Figure 2.5: Basic motion planning problem.
The C-space is composed as C = Cfree ∪ Cobs
and we need to find a path from qinit to qgoal
traversing only within Cfree [32, p. 3].

obstacle region as a subset of the

world W = R3, recall the defini-

tion of the m bodies Ai ⊂ W with

1 ≤ i ≤ m of our robot, and let

Ai(q) denote the transformed link

i with respect to q. Furthermore

let P denote the set of pairs (i, j)

with 1 ≤ i, j ≤ m, where each

pair will cause a collision if Ai(q)
and Aj(q) overlap. P has to be de-

fined individually for each robot

depending on its architecture and

does not simply contain all pairs

of links, as adjacent links are in

contact all the time. For a robot with a kinematic chain, P usually contains all

pairs of links which are not connected by a joint.

With this notation we can now define the obstacle region Cobs ⊆ C for both cases

described previously [31]:

Cobs =

(
m⋃
i=1

{q ∈ C | Ai(q) ∩ O 6= ∅}

)⋃ ⋃
[i,j]∈P

{q ∈ C | Ai(q) ∩ Aj(q) 6= ∅}

 .

(2.11)

Finally we can formulate our basic motion planning problem, originally known

as the Piano Mover’s Problem [31, 32]. Assume a world W = R3, an obstacle

region O ⊂ W , a rigid robot A with m links each defined in W , the C-space C
capturing all possible robot transformations, and a definition of Cobs. The goal

is to find a path starting from a certain initial configuration qinit ∈ Cfree and

finishing in a goal configuration qgoal ∈ Cfree while completely traversing within

the free space Cfree = C \ Cobs. More precisely, we want to compute the continuous

path τ : [0, 1] → Cfree with τ(0) = qinit and τ(1) = qgoal. Figure 2.5 illustrates

this problem conceptually.

However, this problem is PSPACE-hard (and thus NP-hard), and in practice

neither Cfree nor Cobs can be either constructed, modeled or represented both

17

2 Background

explicitly and efficiently [31, 32]. In the next two sections we will discuss how to

solve this problem.

2.2 Sampling-Based Motion Planning Foundations

In order to solve the basic motion planning problem and to make the continuous

C-space tangible, we have to somehow discretize it [32]. There are two main meth-

ods for developing an algorithmic solution: combinatorial planning and sampling-

based planning.

Combinatorial planning tries to explicitly and exactly represent and capture the

structure of the C-space. While focusing on the representation of the C-space, they

construct a roadmap along the way, utilizing properties of the current problem

instance. For certain classes of planning problems, for example convex models, low

dimensionality, restricted motion, combinatorial planning can yield an elegant and

efficient solution. Furthermore, a combinatorial algorithm provides completeness,

defined as follows: For any input in finite time, the algorithm will either return

a solution, or it will correctly report that there is none. Although combinatorial

planning might be ideal in some settings, in most practical cases a combinatorial

explosion results in numerical issues and inefficiency making the given problem

impossible to solve [32].

Sampling-based planning abandons the idea of explicitly characterizing the C-

space. Instead, it utilizes a collision detection algorithm to incrementally probe

the C-space by determining if a certain configuration sample lies in either Cfree
or Cobs. From these samples a roadmap is constructed exploring the C-space. In

contrast to combinatorial planning, the collision detection algorithm is decoupled

from the planner itself, separating it from the particular geometric and kinematic

models. Sampling-based planning may not be as elegant as the combinatorial ap-

proach for some problem classes, but for most problems in practice they are most

widely used and offer efficient solutions, even for high-dimensional C-spaces and

systems with differential constraints. However, sampling-based planners can usu-

ally only guarantee probabilistic completeness, which is defined as follows: Given

enough time, the probability that the algorithm will find a solution converges

to one if a solution exists. The algorithm cannot determine if no solution exists.

Moreover, the rate of convergence is usually very difficult to measure, according

to LaValle [32], who also gives a well-structured introduction to motion planning.

18

2.2 Sampling-Based Motion Planning Foundations

2.2.1 Distance Metrics in C-Space

As sampling-based planning algorithms approach the exploration of the C-space

by samples, they need a function to calculate the distance between two configura-

tion points. Kuffner [28] points out that the ideal metric for robot path planning

would correspond to the minimum swept-volume containing all workspace move-

ments between both configurations, as minimizing the swept-volume maximizes

the chance of traveling collision-free through Cfree. However, he also notes that

this exact measure is not computable in practice, and that we have to apply

heuristic approaches to approximate this metric. One heuristic approach is to

use some distance measure in joint space, for example summing up the joint dif-

ferences between both configurations. Another heuristic approach, which we will

examine shortly, is to compare the pose of the end-effector in the C-space SE(3).

Therefore, we need to construct an appropriate metric space for C, with focus on

the C-space SE(3).

Let us briefly introduce the concept of a metric space. A metric space (X, ρ)

consists of a topological space X (which will be our C-space) and a distance

function ρ : X×X → R following the four conditions of non-negativity, reflexivity,

symmetry, and triangle inequality [31]. The most important metric over the vector

space Rn might be the Euclidean metric with the Euclidean distance and the

Euclidean norm defined as follows, with x, x′ ∈ X:

ρ(x, x′) =

√√√√(n∑
i=1

|xi − x′i|2
)

= ‖x− x′‖. (2.12)

Is a topological space Z composed of two metric spaces (X, ρx) and (Y, ρy), a

metric space (Z, ρz) can be constructed by defining ρz as

ρz(z, z
′) = c1ρx(x, x

′) + c2ρy(y, y
′), (2.13)

with x, x′ ∈ X, y, y′ ∈ Y , z = (x, y) ∈ Z, z′ = (x′, y′) ∈ Z, and two positive real

constants c1 > 0, c2 > 0, which weight their respective subspace and have to be

chosen individually. This concept is crucial for us, as we saw previously that in

case of multiple bodies our C-spaces are composed of multiple spaces.

Now let us construct a metric for SE(3). Recall from Equation 2.6 that SE(3) is

composed of R3 and SO(3), thus we first need a metric for both of these spaces

before we can combine them using Equation 2.13. For the vector space R3 we use

the already introduced Euclidean metric defined by Equation 2.12. Again, finding

19

2 Background

an appropriate metric for the rotational part SO(3) is more complicated. Huynh

[20] presents a detailed comparison and analysis of metrics for 3D rotations.

Recall that unit quaternions are used to describe the 3D rotational space SO(3).

We referred to this space as a real projective space, a subset of R4 taking antipodal

points into account, visualized as a unit sphere S3, where the points lie on the

surface of the sphere. It turns out that the scalar inner product of two unit

quaternions is a simple but convenient way to measuring a proper geodesic path

or distance along S3, as it is equal to cos θ with θ describing the angle between

both vectors. Thus, the distance between two unit quaternions h, h′ ∈ R4 (defined

in Equation 2.7) for S3 can be computed as follows:

ρS3(h, h
′) = cos−1(h ·h′) = cos−1(h0h

′
0 + h1h

′
1 + h2h

′
2 + h3h

′
3). (2.14)

Transitioning from S3 to SO(3) we just have to take antipodal points into con-

sideration, in which the distance is calculated as the minimum of the distance h

to h′ and the distance from h to h′’s antipodal version −h′:

ρSO(3)(h, h
′) = min{ρS3(h, h′), ρS3(h,−h′)}. (2.15)

Following Kuffner [28] we can simplify it further and compute a scalar approxi-

mate distance measure more efficient to compute as

ρSO(3)′(h, h
′) = 1− ‖h ·h′‖, (2.16)

in which we replace cos−1 with the function 1−x, both sharing the same monotony

and the same zero point at x = 1.0. Furthermore, the calculation of the minimum

distance is encapsulated within ‖h ·h′‖, transforming the range of values from the

dot product from [−1, 1] to [0,1]. Thus, the range of values returned by ρSO(3)′

lies nicely between 1 and 0.

However, combining the positional with the rotational space unfortunately leaves

constants to be defined, as mentioned earlier and introduced with Equation 2.13.

This is unavoidable, as we somehow have to relate the distance in the plane to

angular distance, which also might be measured in either rad or degree. Both

quantities are completely incompatible, and weighting them accordingly also de-

pends on the planning problem to be solved.

20

2.2 Sampling-Based Motion Planning Foundations

2.2.2 Sampling in C-Space

Sampling-based planners sample the C-space, thus they require a function to

incrementally generate such samples.

A sampling function should produce a dense sequence of samples to get arbitrarily

close to each configuration in the C-space. Considering a uniform distribution, it

prevents us from oversampling or undersampling large C-space regions, thus sig-

nificantly boosting the performance of our sampling-based planner. Furthermore,

as our planner can only operate on a finite number of samples, the order of the

samples within our sample sequence also has a major impact on the planner’s

performance.

The easiest and most straight-forward approach for defining a sampling function is

to follow the uniform random method. Given a pseudo-random number generator

function rand(), which returns uniformly distributed real numbers on the scale

of [0, 1), we can easily create a random sample for Rn. For example, as outlined

in Kuffner [28], the translation component of SE(3) can be sampled by sampling

and scaling along each axis:

(x, y, z) = (Xdimrand(), Ydimrand(), Zdimrand()). (2.17)

This illustrates how nicely random samples extend for composed C-spaces. As-

suming the abstract C-space Z = X×Y , we can combine the uniform independent

random samples x and y taken from X and Y , respectively, to create a uniform

random sample (x, y) for the C-space Z.

In order to obtain uniform sampling over the rotation component of SE(3), or

SO(3), we have to sample with a uniform probability density over the unit sphere

S3. Kuffner [28] and LaValle [31] refer to a clever and efficient way to generate a

uniformly-distributed random unit quaternion h as

h = (
√

1− u1 sin 2πu2,
√

1− u1 cos 2πu2,
√
u1 sin 2πu3,

√
u1 cos 2πu3), (2.18)

in which u1, u2, u3 ∈ [0, 1) are random numbers, generated by our function rand().

Note that uniform random sampling has also disadvantages, which emerge as

the underlying pseudo-random number generator usually cannot guarantee true

randomness. Instead, it only simulates its behavior, resulting in some undesired

irregularities. An alternative approach is deterministic sampling, such as low-

dispersion sampling, in which we minimize the largest uncovered area, or low-

21

2 Background

discrepancy sampling. Both methods are further described in LaValle [31], how-

ever, in this work, we will not pursue deterministic sampling.

2.2.3 Collision Detection

For each sample, the sampling-based planner has to decide whether that certain

configuration causes a collision or not. Formally, as outlined in LaValle [31], a

collision detection module implements a logical predicate φ : C → {true, false},
separating Cfree from Cobs.

Usually, the models involved in collision detection (robot, objects, obstacles) are

expressed as semi-algebraic models, for example as polyhedra models. Despite

certain simplifications and tricks, such as using bounding boxes, convex hulls,

body decompositions using hierarchical methods, or incremental methods, [31,

38], collision checking can be the most time-consuming task for a motion planning

algorithm.

As such a collision detection module is usually separated from the planner itself,

we will also treat its function as a black box and concentrate on the planner itself.

As mentioned previously, we make use of the collision detection module contained

within the Robotics Library [2].

2.2.4 Paths in C-Space

Beyond probing samples whether they lie in Cfree or Cobs, our basic motion plan-

ning problem wants us to find an entire collision-free continuous solution path

through Cfree. Thus, we need a method for verifying that a path segment, defined

by two certain samples, is collision-free. Formally, for a path segment defined by

τ : [0, 1] → C we want to check whether τ([0, 1]) ⊂ Cfree holds. The problem is

that usually collision detection algorithms can only check collisions for configu-

rations, not for entire paths in the C-space.

A common approach to solve this issue, which we will also follow in this work,

is to interpolate the path segment with a fixed C-space step size ε > 0 and then

check collisions only on the resulting points. The step size ε is often determined

empirically, but it is crucial to set this variable to an appropriate value for the

present motion planning problem. If the value is too small, this results in too

many unnecessary time-consuming collision checks, and if the value is too large,

we might jump over a thin obstacle.

In this work, we will interpolate a path from qstart to qend in the C-space C = Rn

by incrementally applying the following linear interpolation, starting with qprev =

22

2.3 Sampling-Based Motion Planning Algorithms

qstart and setting qprev = qnext after each step:

qnext =

(
1− ε

ρ(qprev, qend)

)
· qprev +

(
ε

ρ(qprev, qend)

)
· qend. (2.19)

We obtain a set of configuration points for a certain path segment, on which we

can then run collision checking. In this approach we simply traverse the discretized

path until we end up in a collision or in the end configuration. The advantage is

that we can determine the last valid collision-free configuration, traversing right

before the collision configuration. However, if we simply want to check whether

the path is collision-free or not, a recursive binary strategy checking the middle

point of the yet unexplored path segment yields more efficient results[31].

Note that interpolation becomes more complicated for other C-space composi-

tions, e.g. representing revolute joints with wrap-around or directly planning in

SE(3). Kuffner [28] outlines how to interpolate two configurations in SE(3),

particularly interpolating quaternions using spherical linear interpolation, also

denoted as slerp.

2.3 Sampling-Based Motion Planning Algorithms

In this section, we will discuss sampling-based motion planning algorithms. These

can be divided into two classes: single-query models and multiple-query models.

Whereas for a single-query model, we are only interested in solving a single start-

goal query for a certain static workspace, multiple-query models utilize precom-

putation to answer multiple queries more efficiently.

We will first present the rapidly-exploring random tree (RRT), which is a single-

query model and will be the foundation of our upcoming manipulation planning

algorithms in this work. We then present probabilistic roadmaps (PRMs) as one

of the most famous multiple-query models, compare them with RRTs and discuss

some tradeoffs.

Note that there are many more basic sampling-based motion planning algorithms,

as further examined in [31]. For instance, we can adapt discrete search algorithms

like A* to define a grid over our C-space and incrementally refine the resolution

until we find a solution. Moreover, randomized potential fields utilize random

walks and clever heuristic functions to solve more challenging tasks than discrete

search algorithms can usually do. However, RRTs and PRMs are directly devel-

oped for the continuous C-space, do not require much parameter tuning or many

heuristic parameters, and are widely and successfully used today [36, 37, 27].

23

2 Background

2.3.1 Rapidly-exploring Random Trees (RRTs)

In this section we will cover the basics of one of the most famous sampling-

based planning algorithm, the rapidly-exploring random tree (RRT). As opposed

to grid-based searching approaches, the RRT abandons the concept of having a

certain fixed grid resolution. Instead, it iteratively constructs its tree to gradually

cover the C-space more and more, requiring hardly any parameter tuning. The

RRT belongs to the family of the rapidly-exploring dense trees (RDTs), which in

the limit densely cover the C-space, however, the RRT uses a sequence of samples

chosen at random for the tree construction.

The RRT does not immediately solve a planning query. Instead, starting from

an initial configuration, it incrementally constructs a tree to quickly reduce the

expected distance of any randomly-chosen configuration to the tree. In the original

form, the RRT does not try to reach any goal configuration, it rather explores

the space.

Algorithm 1
RRT(C, qinit, Qgoal, ρ), as outlined by Barry [6, p. 20]
Input: C-space C, Initial configuration qinit, Goal set Qgoal, Distance metric ρ
Output: A path from qinit into Qgoal

1: V0 ← {qinit}
2: k ← 1
3: while Vk−1 ∩Qgoal = ∅ do
4: qsample ← Sample(C)
5: qnear ← arg minv∈Vk−1

ρ(v, qsample)
6: Vk ← Vk−1 ∪Extend(qnear, qsample)
7: k ← k + 1
8: end while
9: return ExtractPath(Vk−1)

Algorithm 1 shows a possible implementation of the basic RRT. Given a C-space

with a distance metric, an initial configuration and a goal set, we start with

creating the tree at the initial configuration, which will be our root vertex. Then,

until our tree does not contain any goal configurations, we repetitively execute

the following steps:

1. Sample a new configuration qsample in the C-space

2. Search in the vertices of the tree for the nearest neighbor of qsample, which

we will denote as qnear, using the distance metric of the C-space.

3. Extend the tree by moving along the shortest possible path from qnear in

the direction of qsample. For example, consider to simply add the new vertex

qsample and the new edge connecting qnear with qsample to the tree.

24

2.3 Sampling-Based Motion Planning Algorithms

(a) 15 iterations, ∆q = 100 (b) 2000 iterations, ∆q = 100 (c) 2000 iterations, ∆q = 1

Figure 2.6: RRT algorithm exploring the C-space. C = [0, 100]2, qinit = (50, 50),
ρ is the Euclidean metric. (a) An RRT after 15 iterations with ∆q = 100 quickly
exploring the largest yet unexplored regions. (b) An RRT after 2000 iterations with
again ∆q = 100, densely covering the C-space in the limit. (c) An RRT with a much
lower incremental distance ∆q = 1 after 2000 iterations, which again nicely illustrates
the strong bias towards regions not yet visited. All three RRTs were visualized using
RRTExplorer, a tool developed by Knispel [26].

In the literature about RRTs you will find different implementations of each of

these basic steps, therefore it is important to accurately define the RRT approach

we will use in this work.

Firstly, for the nearest neighbor search, we will only consider the vertices already

contained in the tree, instead of also considering the infinite number of points

lying on the edges of the tree. In order to compensate for ignoring edges in the

nearest neighbor search at all, we will replace the edge splitting technique with

an easier method to insert intermediate vertices along path segments. Each time

covering a distance of δ > 0 when extending the tree while traversing a path, an

intermediate vertex will be added to the tree. Throughout the planning algorithm

implementations in our work, we will use the k-d tree data structure to efficiently

find nearest points, which is already implemented within the Robotics Library

[2]. The k d-tree operates as a multi-dimensional binary search tree, in which it

efficiently organizes points in a k-dimensional space, where k will be the dimension

of our C-space.

Secondly, let us briefly outline the basic implementation of our function Extend.

When extending the tree, we have to take collision checking into consideration.

Recall from the previous section about paths in the C-space to interpolate the

path segment from qnear to qsample with a fixed C-space step size ε > 0. We then

traverse along the discretized path checking collisions until we end up in a collision

configuration or reach qsample. The last valid collision-free configuration will be

added to the vertex list of the tree, along with the edge connecting it with qnear.

25

2 Background

(a) Single RRT: 1604 branches, ω = 0.1 (b) RRTConnect: 201 branches (99 and 102)

Figure 2.7: Solving a motion planning query with RRT-based planning in a
maze-like C-space. The green dot illustrates the starting and the red dot the goal
configuration. Let again be ∆q the maximum step size and ρ the Euclidean metric. (a)
The single RRT with 10% goal sampling solves this maze after evolving 1604 branches
(red path). (b) In contrast, the bidirectional RRT requires much less branches to pass
through the narrow passages. Here, a solution is found after 99 branches of the left
tree (black, red) and 102 branches of the right tree (blue, purple). Again we used the
tool RRTExplorer, developed by Knispel [26], in order to create and visualize these
scenarios.

Besides the very small step size ε to interpolate path segments, and the step

variable δ to define the maximum distance of two consecutive vertices in the tree,

let us introduce one more fixed step variables, which should not be confused with

the other two. Often in RRT implementations, we do not really extend all the way

from qnear to qsample, which might be a long path and unlikely to be collision-free.

Rather, we are satisfied with only traversing an incremental distance, which we

will denote as ∆q, in the direction of qsample.

Figure 2.6 shows three RRTs after a certain iteration count and with a certain

incremental distance ∆q, respectively, and how they explore the obstacle-free

C-space defined by C = [0, 100]2. Whereas Figure 2.6a and 2.6c illustrate the

aggressive exploration of the largest not yet visited places in the beginning, 2.6b

already kind of gradually refines the C-space demonstrating how RRTs ensure a

dense cover in the limit. With a much smaller incremental distance ∆q as shown

in Figure 2.6c, the exploration phase of the C-space will be much slower, but

with higher resolution. Figure 2.6c nicely illustrates the main branches of the

tree trying to reach the far corners of the C-space.

Now that we discussed how the RRT explores the C-space, strictly speaking only

the obstacle-free C-space Cfree, let us now discuss how planning algorithms can

use this data structure to solve a planning query.

26

2.3 Sampling-Based Motion Planning Algorithms

2.3.1.1 Single RRT-based Planning

The simplest approach for motion planning with RRTs is to just integrate a single

RRT into planning. Algorithm 1 already outlines the implementation, but we still

have to discuss how to incorporate the goal set. If the goal set only consists of

a finite number of points in the continuous C-space, there is zero chance that

our exploring RRT will contain any of these points in its vertex list in finite

time3. Therefore, a rather simple method to consider the goal set in the tree

construction is to periodically sample a goal instead of a random configuration.

Let ω ∈ [0, 1] denote the proportion or percentage of a goal configuration being

sampled instead of a random one. For example, if ω = 0.1, every 10th sample will

be a goal configuration, thus forcing the RRT to attempt to connect to the goal

set. Choosing the right value for ω means balancing greediness and (uniform)

exploration.

Finally, when the RRT reaches a certain goal configuration qgoal ∈ Qgoal,

ExtractPath(Vk−1) returns the path from qinit to qgoal. This will be done most

efficiently for the RRT, which is a directed graph, by starting with qgoal, traversing

the single incoming edge and its respective vertex, and keep iteratively travers-

ing until there is no more incoming edge, that is when we reached the starting

configuration. Now we just have to reverse the path. Figure 2.7a illustrates an

example of motion planning with a single RRT and its resulting solution path.

2.3.1.2 Bidirectional RRT-based Planning

A more advanced version of RRT-based planning is the bidirectional search, re-

ferred to as the RRTConnect algorithm, in which we grow two trees. The first

tree grows forward from the starting configuration and the second tree backwards

from the goal set, in which connecting both means that we found a solution path.

Algorithm 2 outlines the implementation of RRTConnect. The basic idea is to

pick one of both trees, denoted as Va, and extend it as usual by random sampling

(here sampling goal configurations is not needed). If the extension step induced

at least one additional vertex in Va, RRTConnect then extends the other tree,

referred to as Vb, towards the last point added to Va, denoted as ql. In other words,

while Va explores in random fashion, Vb will be extended towards the result of

Va’s extension, thus trying to connect both trees. If extending Vb succeeds, thus

the last added configuration rk being equal to ql, we indeed found a solution

3As outlined by Barry [6] in Chapter 2.2.1, this is an example of the C-space consisting of an ”‘im-
portant”’ measure-zero set, in which case the RRT algorithm is not probabilistically complete. In
general, the C-space and the choice of the extend and distance functions determine whether an RRT
algorithm will be probabilistically complete.

27

2 Background

Algorithm 2
RRTConnect(C, qinit, Qgoal, ρ), as outlined by Barry [6, p. 38]
Input: C-space C, Initial configuration qinit, Goal set Qgoal, Distance metric ρ
Output: A path from qinit into Qgoal

1: Va ← {qinit}
2: Vb ← {Sample(Qgoal)}
3: F ← true � True when extending forwards
4: while true do
5: if F then
6: � Add a goal configuration to the backwards tree
7: Vb ← Vb ∪ {Sample(Qgoal)}
8: end if
9: qsample ← Sample(C)

10: qnear ← arg minv∈Va ρ(v, qsample)
11: {q0, ..., ql} ← Extend(qnear, qsample, F)
12: Va ← Va ∪ {q0, ..., ql}
13: if l > 0 then
14: � Extend Vb towards Va
15: qnear ← arg minv∈Vb ρ(v, ql)
16: {r0, ..., rk} ← Extend(qnear, ql,¬F)
17: Vb ← Vb ∪ {r0, ..., rk}
18: if rk = ql then
19: return ExtractPath(Va, Vb)
20: end if
21: end if
22: swap(Va, Vb)
23: F ← ¬F
24: end while

28

2.3 Sampling-Based Motion Planning Algorithms

path. In this work, we will use the unbalanced version of the bidirectional search,

which means that we will swap both trees in every iteration, not taking care of

equal size, however to define the size of a tree. A balanced version can also be a

challenging task when taking into account that the backward tree has to ideally

cover the whole goal set, which, unlike for the starting point of the forward tree,

might consist of multiple or even infinite configurations. In order to cope with

this issue, we simply add a sample from the goal set to our backward tree in

every iteration. Note that the variable F keeps track of whether we extend with

forward or backward motion, which will be crucial for the Extend function in

non-holonomic cases, which we introduce shortly and have to deal with later on

in this work.

Figure 2.7b illustrates the RRTConnect algorithm growing two trees to solve

motion planning in a maze with narrow passages much more efficient than single

RRT-based planning. In practice, bidirectional search yields better performance,

especially when dealing with narrow passages or escaping bug traps in the C-

space. Growing even more trees from different parts of the C-space might be even

better, but developing and efficiently controlling such an algorithm is in fact not

intended within the scope of this work.

2.3.1.3 RRT-based Planning in Non-Holonomic Spaces

So far, the Extend function was meant to handle holonomic systems, where the

whole C-space is directly controllable, as is the case for a point robot in a 2D

maze shown in Figure 2.7. However, we can easily modify the Extend function to

also handle non-holonomic systems and differential constraints, where we cannot

directly move along straight lines in the C-space anymore. For instance, when

steering a car, we cannot move sidewards.

Algorithm 3
Extend(qI , qG, F), as outlined by Barry [6, p. 36]
Input: Initial configuration qI to extend from, Goal configuration qG to extend to,
Boolean F to keep track of whether extending with forward or backward motion
Output: A collision free path from qI towards qG

1: {q0, ..., qm} ← EmptySpacePlanner(qI , qG, F)
2: for qi ∈ {q0, ..., qm} do
3: if Colliding(qi) then
4: return {q0, ..., qi−1}
5: end if
6: end for
7: return {q0, ..., qm}

Algorithm 3 shows an implementation of the Extend function for non-holonomic

29

2 Background

Ϲobs

Ϲobs
qs

Figure 2.8: The PRM algorithm incrementally constructs the sampling-based
roadmap. For a new collision-free sample qs, the PRM tries to connect it to nearby
vertices.

spaces. It makes use of an empty space planner, which return an executable path

for the robot from start to end configuration in the absence of obstacles. Then, this

path is checked for and possibly truncated to the first collision, taking previous

discussions about the Extend function into account. The empty space planner

will be crucial for multi-modal planning or solving manipulation problems, due

to its ability to ”‘manually”’ travel through low-dimensional subspaces of the C-

space. It is problem dependent and will be a crucial part of the input to our

multi-modal planning algorithm, as clarified by Barry [6].

2.3.2 Probabilistic Roadmaps (PRMs)

Now let us briefly outline the sampling-based roadmap idea of multiple-query

models, based on the most famous algorithm of probabilistic roadmap (PRM).

In order to efficiently solve multiple queries for the same static C-space, the

PRM first constructs a topological graph, referred to as a roadmap. Figure 2.8

illustrates the construction phase of the roadmap, which works as follows. The

PRM iteratively samples in the free C-space Cfree, adds the new configuration

to the roadmap and attempts to connect it to each of its neighbors, using a

local planner like the Extend function we introduced previously. Thereby, the

neighborhood of a vertex can be defined very differently, for example based on

the k-nearest neighbor method or defining a certain radius. Finally, the roadmap

should be large enough to cover most of the free C-space Cfree, in a way that it

will be easily reachable from the initial and goal configurations of our queries.

Given the roadmap, we can then proceed to the query phase, in which we attempt

to find a path from the initial to the goal configuration of each query. This can be

30

2.4 Multi-Modal Planning

done by connecting these two configuration to the roadmap and then search for

a solution path using graph search methods, for example Dijkstra’s algorithm.

In comparison to RRTs, PRMs are much more efficient for answering multiple

queries in a static environment due to their precomputed roadmap. However, in

this work, we are more interested in solving a single query problem, which RRTs

can solve more efficiently. Moreover, RRTs can more effectively handle differen-

tial constraints and non-holonomic systems, as is usually the case for multi-modal

planning. Thus, RRTs were found to be more suitable to use in this work. How-

ever, there are many powerful variations and extensions improving both of these

basic algorithms, and even combinations of RRTs and PRMs.

2.4 Multi-Modal Planning

In this section, we will briefly outline the concept of multi-modal planning [16, 17,

18], which lays another foundation for our later work on manipulation planning

with diverse actions.

In many important planning problems, we have to plan for a so-called hybrid sys-

tem, in which the state space additionally consists of a discrete finite (or count-

ably infinite) set called the mode space. In other words, the system moves not

only between configurations, but also among a set of modes. Depending on the

current mode, the robot is further constrained to traverse only a certain lower

dimensional subspace of the actual C-space.

As pointed out by Hauser [16, p. 9], robot systems with contact move between

modes, in which each mode defines a fixed contact state. For instance, Hauser

[16] uses this concept for legged locomotion, in which the modes represent a fixed

set of footfalls, which constrain the feet to be on the ground. Transitioning to

one another, these modes ultimately ensure walking. Also manipulation planning

exhibits a multi-modal structure. For instance, when a robot pushes an object in

a fixed contact point, it traverses one and the same mode. However, when it then

plans to push the object in another contact point, it first has to pass through the

mode specifying no contact at all, in order to finally reach the mode specifying

the new contact point. Compared to conventional robot motion planners, a multi-

modal planner has to find a discrete sequence of mode transitions for reaching

the goal and continuous paths within each mode to achieve them.

Assume a system’s hybrid state (q, σ) with q ∈ C as a conventional continuous

configuration and σ as a mode in a mode space Σ. For each mode σ ∈ Σ, the

corresponding feasible space Fσ ⊆ C consists of all configurations that satisfy

certain mode-specific constraints, and is usually a lower dimensional submanifold

31

2 Background

(a) (b) (c)

Figure 2.9: Illustration of multi-modal planning for hybrid systems. (a) For a
valid path from q ∈ Fσ to q′′ ∈ Fσ′ of an adjacent mode σ′, we have to travel through the
transition configuration q′ ∈ Fσ ∩Fσ′ . (b) For a single mode family Σf ∈ {Σ1, ...,ΣF },
each instantiation of the continuous coparameter θ defines a different mode σ ∈ Σf

(four are illustrated), which is also uniquely represented by its configuration qi. (c) In
order to transition between modes of the mode family Σf from q1 to q2, we first have
to transition to a configuration q′, from which we can transition to a mode of another
mode family. From this we can then ultimately transition back to the goal mode of our
original family Σf and plan towards the goal configuration q2. All figures from [16, pp.
24, 26].

of C [18]. The multi-modal planner now has to find a collision-free path from a

starting hybrid state (qs, σs) to a goal state (qg, σg), by planning within a sin-

gle mode, but also through transition configurations q ∈ Fσ ∩ Fσ′ , in order to

achieve a transition between the modes σ and σ′. A so-called mode adjacency

graph describes all allowed transitions between modes. Thus, only if σ and σ′ are

adjacent, a transition configuration q ∈ Fσ ∩ Fσ′ can lead to a mode switch, if

such a configuration exists and is reachable for the robot. Figure 2.9a illustrates

multi-modal planning we discussed so far.

In case of Σ being infinite and uncountable, we can partition Σ into the set

{Σ1, ...,ΣF} of F disjoint mode families, where each mode of a mode family is

defined uniquely by a coparameter θ. Moreover, all modes of a mode family are

disjoint, too. Thus, in order for our system to transition between two modes of

one and the same family, it must first transition to at least one mode of another

family. As a final condition, the coparameter θ must be uniquely derived given

the mode family and a configuration q ∈ C. Figure 2.9b and 2.9c illustrate multi-

modal planning with mode families. Figure 2.10 illustrates continuous modes and

discrete mode families for a simple 1D world.

The sampling-based planners we discussed so far can easily be used to plan within

a single mode. However, the do not respect the multi-modal nature of manipu-

lation planning and therefore have to be adapted accordingly. For instance, in

order to cope with mode transitions, we should explicitly sample from mode tran-

32

2.4 Multi-Modal Planning

(a) A mode instance (b) Same mode (c) Same mode family (d) Different family

Figure 2.10: Example world for multi-modal planning illustrating modes and
mode families. Only one object can be moved at a time. A mode family is defined by
specifying which object to move, and each mode within a mode family is defined by its
coparameter, which specifies the exact locations of all the other objects. Thus, there are
three mode families for manipulating each object and infinite and uncountable modes,
as objects can be located anywhere along the 1D line. (a) A mode instance of the green
mode family. (b) Within the same mode of the green mode family, we can move the
green object arbitrary. (c) As the locations of the other objects have changed, so has
the mode of the mode family. Note that, in order to transition from mode (a) to this
mode, we first have to transition to the mode family of moving the blue object. (d) By
moving the red object we change the mode family. Illustration idea inspired from [6, p.
47].

sitions, which usually exist only in low-dimensional subspaces, and therefore will

not be sampled when sampling uniformly at random. As summarized by Barry

[6], explicit multi-modal algorithms essentially work as follows. Given a current

hybrid state (q, σ), we first sample an adjacent mode σ′ from the mode adjacency

graph, then sample a transition configuration q′ from Fσ ∩ Fσ′ , and finally plan

a collision-free path within σ from q to q′.

The algorithms for diverse action manipulation we present in the following chapter

have to and will follow this structure of multi-modal planning.

33

3 Diverse Action Manipulation

In this chapter, we discuss diverse action manipulation and its foundation as

multi-modal path planning. After defining the Diverse Action Manipulation

(DAMA) problem, we present three sampling-based algorithms for solving the

DAMA problem. The first algorithm will be based on the RRT, outlined in Algo-

rithm 1, and named as Diverse Action Rapidly-exploring Random Tree (DARRT)

algorithm. The second algorithm will extend the first one to DARRT-Connect,

following the idea of extending RRT to RRTConnect (Algorithm 2). Finally,

the third algorithm DARRTH will solve the DAMA problem in multiple steps by

applying a hierarchical approach.

This chapter and its notation is closely based on the PhD thesis of Jennifer L.

Barry Manipulation with Diverse Actions [6], who first made the DAMA prob-

lem public, and her previously published major papers concerning multi-modal

manipulation [4, 5]. However, we implemented the algorithms completely on our

own and made major variations concerning some implementation details. When

suitable, we will further discuss differences between our work and the work of

Jennifer L. Barry.

3.1 Problem Description

Assume a robot with configuration space (C-space) R and n movable objects and

their corresponding C-space O1, ..., On. For a planning algorithm to be able to

plan for the robot and the objects, we combine all C-spaces to the final cross-

product composition X = R×O1 × ...×On, as pointed out in Chapter 1. Thus,

a configuration x ∈ X includes the configuration for the robot, as well as for the

n objects. We can formally define the concept of a trajectory as follows:

Definition 3.1 (Trajectory):

For configuration xS, xG ∈ X, a function τ : [0, 1]→ X is a trajectory from xS to

xG if and only if τ(0) = xS and τ(1) = xG.

Now we need a set of so-called manipulation primitives, which describe the actions

and manipulations the robot is allowed to perform in the composed C-space X.

35

3 Diverse Action Manipulation

Manipulation primitives return a trajectory, which usually only traverses a sub-

space of X. Furthermore, they can only operate within their domain, this means a

manipulation primitive can only begin at or reach a certain set of configurations.

Formally:

Definition 3.2 (Manipulation Primitive):

Given an initial configuration xS and a goal configuration xG, a manipulation

primitives p returns a trajectory from xS to xG. It is applicable only to pairs of

configurations within its domain, denoted as X(p):

X(p) = {(xS, xG) ∈ X ×X | (xS, xG) is in domain of p}. (3.1)

Thus, we can define the set of valid initial configurations XS(p) and the set of

reachable configurations XG(p) as follows:

XS(p) = {xS ∈ X | ∃xG ∈ X : (xS, xG) ∈ X(p)} (3.2)

XG(p) = {xG ∈ X | ∃xS ∈ X : (xS, xG) ∈ X(p)}. (3.3)

Finally, given a certain initial configuration xS ∈ X, XG(p|xS) gives us the set of

reachable configurations from xS using the primitive p:

XG(p|xS) = {xG ∈ X | (xS, xG) ∈ X(p)}. (3.4)

Note that usually, XS(p) and XG(p) are lower-dimensional spaces than X, thus

preventing our traditional RRT-based algorithm from being able to solve manip-

ulation problems, as it lacks sampling in these spaces, for instance.

Manipulation primitives can be separated into two classes:

Definition 3.3 (Transit/Transfer Primitive):

For a primitive p, let (xS, xG) ∈ X(p) and τ = p(xS, xG). The primitive p is a

transit primitive if and only if for all α ∈ [0, 1], the configuration of every object

in τ(α) remains unchanged with respect to τ(0). Otherwise, p is called a transfer

primitive.

In order to make the concept of primitives more tangible, let us introduce two

basic manipulation primitives we will use throughout this work, one transit and

one transfer primitive. We will introduce more primitives later on, and the imple-

mentation details and possible variations of both of these will be further discussed

when presenting the DAMA scenarios.

Transit describes moving the robot alone while not changing any object config-

uration. The domain of Transit are only configuration pairs (xS, xG) ∈ X,

where all objects are placed on a support surface in xS and xG and do not

36

3.1 Problem Description

change their configuration between xS and xG. Transit then returns a tra-

jectory from initial to goal configuration following a straight line in the joint

space of the robot.

Push describes the robot pushing an object in a certain direction. The domain of

Push consists of configuration pairs (xS, xG) ∈ X, in which all objects rest

on a support surface in xS, only one object moves on its support surface

between xS and xG, and the robot is in pushing contact with this object

in xG along the pushing way. Push calls the primitive Transit to move the

robot to the initial pushing position, in which usually the robot’s gripper

is in contact with the object and their respective center points are aligned

along the pushing path. Push then returns a trajectory sequence, in which

the robot first moves to the pushing pose via Transit, and then along the

pushing path.

Note that primitives can also be nested, as Push itself calls Transit to return a

trajectory. In contrast to Barry [6], we found it useful to provide Push with the

ability to Transit to the pushing pose, as it makes sampling more easy later on.

However, this leads us to the concept of a trajectory sequence {τ0, ..., τl}, which

can be generated by sequencing the output of the set of primitives P = {p0, ..., pl}.
With having a set of trajectories instead of one enlarged trajectory, we can more

easily identify the primitive which generated a certain trajectory. In the same

way we defined applicability for a single manipulation primitive, we can extend

it to the set of primitives P . For instance, X(P) denotes the set of configurations

for which P can generate a trajectory sequence:

X(P) =

{
(xS, xG) ∈ X ×X

∣∣∣∣∣ some sequence of the primitives in P can

generate a trajectory sequence from xS to xG

}
.

(3.5)

With this brief introduction, we can formally define the diverse action manipula-

tion problem, as stated by Barry [6]:

Definition 3.4 (DAMA Problem):

The Diverse Action MAnipulation (DAMA) problem P is a tuple

〈R, {O1, ..., On}, {B0, ..., Bq}, {p0, ..., pm}, x0, XG〉, in which R is the config-

uration space for a robot, {O1, ..., On} are the configuration spaces for the

movable objects, {B0, ..., Bq} is a set of fixed obstacles, {p0, ..., pm} is a set of

manipulation primitives, x0 is an initial configuration, and XG is a set of goal

configurations.

Recall that the C-space of the DAMA Problem is the cross product of both the

37

3 Diverse Action Manipulation

robot and the object C-spaces, thus X = R × O1 × ... × On. Furthermore, in

practice, the goal set for a DAMA problem often contains infinite configurations,

as we are usually only interested in the goal configurations of the objects. Thus

for the robot itself, any configuration may be a goal configuration in the end.

Barry [6] introduces the concept of primitives being able to permit certain colli-

sions. For instance, Push can disable collision checking between the robot’s gripper

and the object. However, in this work for planning, we avoid permissible real con-

tact between bodies completely. Thus, when moving an object, the robot never

touches it in simulation, and objects float slightly above their support surfaces

instead of real contact. Nevertheless, in our implementation, the collision check-

ing routine knows about the currently processed primitive and thus only checks

collisions appropriately. For example, when processing Transit, collision check-

ing between objects and non-robot bodies (other objects and fixed obstacles) is

disabled, because objects do not move during the robot transition.

Let the free space Xfree(P) for a DAMA problem P be the set of all configurations

in which there is no contact between the robot bodies, objects, or fixed obstacles.

We then define a collision free trajectory sequence as follows, omitting the concept

of primitives allowing certain contacts:

Definition 3.5 (Collision Free):

A trajectory τ generated by primitive p is collision free in DAMA problem P if,

for all α ∈ [0, 1], τ(α) ∈ Xfree(P). A trajectory sequence is collision free if all of

its trajectories are collision free.

To conclude, a solution to a DAMA problem is a collision free trajectory sequence

generated by the given primitives from x0 to any configuration in XG. Let us now

discuss RRT-based algorithms to solve the DAMA problem.

3.2 Diverse Action RRT Algorithm (DARRT)

In this section, we discuss the Diverse Action Rapidly-exploring Random Tree

(DARRT) algorithm. The DARRT algorithm modifies and extends the basic RRT

algorithm (Algorithm 1) to solve a DAMA problem. Before presenting the pseudo-

code for DARRT, we have to revise and discuss three crucial issues for diverse

manipulation to be solvable: The empty space planner, sampling, and distance

metrics.

3.2.1 Empty Space Planner

38

3.2 Diverse Action RRT Algorithm (DARRT)

Algorithm 4
Extend(xS , xG, X, {B0, ..., Bq}, {p0, ..., pm}), as outlined by Barry [6, p. 60]
Input: Start configuration xS , Goal configuration xG, Composed C-space X, Fixed
obstacles {B0, ..., Bq}, Manipulation primitives {p0, ..., pm}
Output: A collision free trajectory sequence from xS towards xG

1: {τ0, ..., τl} ← EmptySpacePlanner(xS , xG, {p0, ..., pm})
2: for all i ∈ {0, ..., l} do
3: for all α ∈ [0, 1] do
4: �α is usually discretized in practice
5: if Collision(τi(α), {B0, ..., Bq}, X) then
6: return {τ0, ..., τi−1} ∪ {τi from 0 to α}
7: end if
8: end for
9: end for

10: return {τ0, ..., τl}

In diverse action manipulation, the C-space X = R × O1 × ... × On is not fully

controllable, because the n objects cannot move by themselves. Thus, we have to

replace the straight-line extension of a holonomic system with the non-holonomic

version of the Extend function (Algorithm 3) we discussed in Section 2.3.1.3.

Recall the idea of using an empty space planner (ESP), which returns an exe-

cutable path for the robot from the initial to the end configuration in the absence

of obstacles. Thus, in case of our DAMA problem, the ESP uses the predefined

primitives in order to return a trajectory sequence from a given start configura-

tion xS to a goal configuration xG with xS, xG ∈ X(P). Algorithm 4 illustrates

the implementation of the non-holonomic Extend function in case of solving a

DAMA problem. After calling the ESP to return a trajectory sequence for the

empty space, it checks this trajectory for collisions, truncates it if needed, and

finally returns a collision free trajectory sequence.

We can think of the ESP as being a small planner itself, trying to solve the task

without any collision checking. With the ESP and its use of the primitives, we

will plan through low-dimensional subspaces of the composed DAMA C-space

X. Inspired by Barry’s implementation [6, p. 62] of the empty space planner,

each primitive has to implement two functions: propagate and isUseful. The

function propagate of a primitive p applies the primitive’s manipulation to a

given starting configuration xS in order to move towards a goal configuration xG,

ultimately returning a trajectory sequence from xS to xG. However, if (xS, xG) /∈
X(p), propagate returns an empty sequence. Therefore, we will check with

isUseful function of p whether it is applicable to (xS, xG). The ESP then works

as follows: As long as there are useful primitives to move from the last reached

configuration of the ESP towards the goal xG, we pick one at random and apply

39

3 Diverse Action Manipulation

its propagate function. In other words, the ESP chains propagate steps of useful

primitives, until there are no more useful primitives. Algorithm 5 illustrates the

basic implementation.

Algorithm 5
EmptySpacePlanner(xS , xG, {p0, ..., pm}), as outlined by Barry [6, p. 62]
Input: Start configuration xS , Goal configuration xG, Primitives {p0, ..., pm}
Output: Trajectory sequence from xS towards xG

1: if xS = xG then
2: return ∅
3: end if
4: p← pickRandomUsefulPrimitive(xS , xG, {p0, ..., pm})
5: {τ0, ..., τl} ← p.propagate(xS , xG)
6: return {τ0, ..., τl} ∪EmptySpacePlanner(τl(1), xG, {p0, ..., pm})

In practice, when solving more sophisticated DAMA problems with our Meka

robot, we soften the constraint of (xS, xG) ∈ X(p) for propagating primitive p.

Instead, we usually just require xS ∈ XS(p) and let primitive p propagate to-

wards xG, potentially projecting xG to some nearby x′G ∈ XG(p|xS). Moreover,

in our implementation, isUseful does not fully check if propagate returns

an empty sequence. Rather, we implement such a function manually checking

for xS ∈ XS(p) and possibly adding some heuristic function. Thus, propagate

can ensure that xS ∈ XS(p) has been checked and isUseful avoids the com-

putational overhead of propagate, especially the potential inverse kinematic

computations. Note that the propagate function can still fail and return an

empty sequence, even if the primitive was found useful, for instance when the

computation of the inverse kinematics does not converge. Thus, in our implemen-

tation, the pickRandomUsefulPrimitive function keeps track of and ignores

primitives, which failed since the ESP’s last successful propagate step.

For our previously introduced primitives Transit and Push, both functions are

basically implemented as follows:

• Transit:

isUseful returns true only if all objects are placed on a support surface in

xS and object configurations do not change between xS and xG, but

the robot position changes.

propagate returns a trajectory sequence from xS to xG following a straight

line in the joint space of the robot.

• Push:

isUseful returns true only if all objects are placed on a support surface in

40

3.2 Diverse Action RRT Algorithm (DARRT)

(a) Empty space plan (b) Possible DARRT solution

Figure 3.1: Empty space planner for a simple 2D mobile robot. Within a 2D
world without obstacles, assume xS in which a robot (yellow) has to move an object
(green) to its goal location and finally reach the location right underneath the object
(xG is illustrated by the less visible drawings). Trajectories generated by Transit are
drawn in blue, trajectories generated by Push are drawn in red. (a) Empty space plan
generated by the ESP from xS to reach xG: First Transit to the initial pushing location,
then Push the object to the goal, finally Transit to the robot goal position. (b) Despite
the world being obstacle-free, the empty space plan in 3.1a causes collisions between
the robot and the object, when approaching or retreating from pushing positions. Here
a possible collision-free solution path after several iterations of the DARRT algorithm
is shown.

xS and at least one object moves on its support surface between xS and

xG.

propagate returns a trajectory sequence from xS towards xG by pushing

the object, which is nearest to the robot, as follows: We first compute

the initial robot pushing position (via inverse kinematics for a joint

robot) and propagate via Transit to this location. Next, we calculate

the final robot pushing position (again usually via inverse kinematics),

in which the respective object has reached its goal, and append the

trajectory for this pushing path.

Figure 3.1a shows an empty space plan generated by the ESP for a simple 2D

mobile robot in a world without obstacles. However, when extending from that

trajectory sequence, the path will be truncated before reaching the initial pushing

position, due to robot-object collision. A solution to this problem would require

the robot to bypass the object, or simply move around in the world alone, as illus-

41

3 Diverse Action Manipulation

trated in Figure 3.1a. Our non-holonomic RRT we discussed so far still samples

at random uniformly in the C-space, so there is zero probability in our continuous

space of sampling a configuration with the object being placed the same as in

xS, for instance. Moreover, if the robot is initially blocked by a huge obstacle

preventing it from reaching any pushing configuration, the non-holonomic RRT

fails to solve any manipulation scenario. Thus, we have to revise sampling in our

C-space.

3.2.2 Sampling in the DAMA C-space

We just reviewed that sampling in our composed C-space cannot be done uni-

formly at random anymore. Sampling configurations has to respect important

low-dimensional subspaces of the DAMA C-space. For instance, our RRT algo-

rithm has to be able to only move the robot for a certain configuration within

one iteration.

Barry solves this problem by defining and using primitive projection functions.

For each primitive pi, she defines a projection function fi(xI , xS), which projects

xS to some constrained subspace defined by the primitive pi and the configuration

xI . The resulting configuration should be reachable for the respective primitive

within the ESP. For instance, the primitive projection function for Transit would

return the robot position defined by xS and the object positions defined by xI .

Altogether, we sample xS uniform at random, pick the nearest neighbor xT , apply

a randomly chosen primitive projection function fi(xI , xS) and connect from xT
towards the projected configuration. Formally, as stated by Barry, the set of

primitive functions has to ensure that there is a non-zero probability of the ESP

returning every possible set of primitives.

Algorithm 6
SampleDama(X)
Input: C-space X = R×O1 × ...×On
Output: Sample xS respecting important subspaces of our DAMA problem

1: r ← PickRand({0, ..., n})
2: for all i ∈ {0, ..., n} do
3: if i = r then
4: FillSubspace(X,xS , i,PickRand({rand, goal}))
5: else
6: FillSubspace(X,xS , i,PickRand({start, goal, free}))
7: end if
8: end for
9: return xS

In this work, however, we developed another approach, which should yield sim-

42

3.2 Diverse Action RRT Algorithm (DARRT)

ilar results, but is more direct and powerful: Right from the start, we construct

each subspace of our sample individually. Instead of generating a fully uniformly

random sample, from the (n + 1) subspaces of the composed C-space X we first

pick one. Only this subspace can be filled with random values, or the values from

the respective subspace of the overall DAMA query’s goal configuration. All the

other subspaces will be filled with either the DAMA initial configuration, the

goal configuration, or the indication of being free. Algorithm 6 illustrates the

basic sampling procedure. The indication of free for a particular subspace means

that it will be overwritten by the respective subspace of any configuration when

searching for the nearest neighbor in the next step.

Compared to Barry’s approach of using a primitive projection function after sam-

pling and determining the nearest neighbor, our nearest neighbor search can really

rely on the sample not changing anymore, thus the neighborhood will be well-

defined. Moreover, we intrinsically have the opportunity of sampling a whole goal

configuration, which is needed for convergence of the single RRT-based plan-

ner. Also, when dealing with more complex puzzles and manipulation of multiple

objects, sampling combinations such as (free, goal, rand, free) can guide the

planner to connect from a certain configuration, in which object 1 is in its goal

configuration, towards a configuration in which only object 2 has to move some-

where, completely ignoring the position of object 3 when searching for the nearest

neighbor. However, the downside of this approach compared to Barry is the fine

tuning of many parameters, as we do not want to pick uniformly at random from

the sets shown in Algorithm 6. For instance, when picking a subspace to generate

random values for, we should guarantee that subspace 0 for the robot will be

chosen with appropriate frequency, as only this yields a single Transit of the

robot.

3.2.3 Distance Metrics for the DAMA C-space

As the DAMA C-space is composed of robot and object configuration spaces, we

have to revise our distance metric we discussed in Section 2.2.1, which dealt with

only a single movable component in SE(3). Thus, for each subspace Si of our

DAMA C-space X = R×O1× ...×On = S0× ...×Sn, we can define an individual

distance metric ρi as discussed beforehand. By following Barry’s approach of using

the maximum distance of all subspaces, we can combine these subspace metrics

to form our overall distance metric ρ. Formally, the distance from configuration

xI ∈ X to xF ∈ X can be defined as

ρ(xI , xF) = max
i∈{0,...,n}

ρi(xI,i, xF,i), (3.6)

43

3 Diverse Action Manipulation

with xj,i denoting the projection of configuration xj onto subspace Mi. Alterna-

tively, instead of taking the maximum of all subspaces, we can also sum them up,

yielding the following metric:

ρ(xI , xF) =
∑

i∈{0,...,n}

ρi(xI,i, xF,i). (3.7)

However, there is a conflict when defining an appropriate distance metric for

our DAMA C-space. On the one hand, as stated out by Barry, the distance

between two configurations should reflect how likely both configurations are to-

gether members of either Cfree or Cobs. Thus, the distance metric should consider

each subspace individually. On the other hand, our distance metric is responsible

for selecting the nearest neighbor from which we propagate towards our sample,

and we want that movement to be short in order to minimize the path length and

thereby also the probability of colliding. However, following Equation 3.6 or 3.7

does not reflect the real motion in our non-holonomic space at all. For instance,

if the distance between each subspace ρi is larger than zero but still small, the

overall distance will be small, too. Nevertheless, the empty space planner returns

a long path, in which the robot has to slightly move all objects.

In practice, executing the empty space planner to return an accurate measure for

the robot distance yields immense computational costs for the nearest neighbor

search. Therefore, we utilize either Equation 3.6 or 3.7 to give us a heuristic

function for ρ(xI , xF). Although Barry could only prove that her algorithm was

exponentially convergent for taking the minimum distance (Equation 3.6), in this

work, we use the sum metric (Equation 3.7). The latter yields better results in our

scenarios, and somewhat more reflects the non-holonomic system we are dealing

with, as every subspace is really contained in the resulting distance approximation

ρ(xI , xF).

3.2.4 DARRT Algorithm

With the previously discussed issues we can extend the non-holonomic RRT to

yield the DARRT algorithm, which is shown in pseudo-code in Algorithm 7.

Similar to the sampling-based RRT, it starts with an initial configuration and

then iteratively samples from the C-space, computes the nearest neighbor, and

extends the tree by utilizing the empty space planner from the nearest neighbor

towards the sample. The resulting collision-free trajectory then yields new vertices

and edges, and we continue until we reach a goal configuration. Finally, if the

algorithm finds a solution in finite time, we can obtain a trajectory sequence

from the initial to a goal configuration.

44

3.3 Advanced Diverse Action RRT Algorithms

Algorithm 7
DARRT(X, {B0, ..., Bq}, {p0, ..., pm}, x0, XG, {ρ0, ..., ρn}), adapted from Barry [6, p.
60]
Input: C-space X = R × O1 × ... × On, Fixed obstacles {B0, ..., Bq}, Primitives
{p0, ..., pm}, Initial configuration x0, Goal set XG, Distance metrics {ρ0, ..., ρn}
Output: Trajectory sequence from x0 into XG

1: V ← {x0}
2: while V ∩XG = ∅ do
3: xS ← SampleDama(X)
4: xT ← arg minv∈V ρ(v, xS)
5: {τ0, ..., τl} ← Extend(xT , xS , X, {B0, ..., Bq}, {p0, ..., pm})
6: V ← V ∪

⋃
τ∈{τ0,...,τl}

⋃
α∈[0,1] τ(α)

7: end while
8: return ExtractTrajectorySequence(V)

3.3 Advanced Diverse Action RRT Algorithms

In this section, we extend the basic DARRT algorithm for solving DAMA prob-

lems. We presend two advanced algorithms based on DARRT, which are capable

of solving more complex DAMA problems. These are the bidirectional DARRT

algorithm and the hierarchical DARRT algorithm.

3.3.1 Bidirectional DARRT

Similar to extending RRT to RRTConnect (Algorithm 2), we can extend

DARRT to DARRTConnect. Recall the idea of growing two trees, referred

to as bidirectional RRT-based planning discussed in Section 2.3.1.2. Combining

DARRT (Algorithm 7) and RRTConnect (Algorithm 2) leads to a straight-

forward version of the DARRTConnect algorithm, presented with pseudo-code

in Algorithm 8.

When planning bidirectional in a non-holonomic system like in our DAMA prob-

lem, we have to make a major refinement to the Extend function. The empty

space planner has to ensure to always execute primitives with forward control,

otherwise pushing when extending in the backward tree becomes pulling. Instead

of redefining each primitive with inverse control, we can apply the following strat-

egy: When extending backwards, the empty space planner swaps starting and end

configuration, propagates as usual, and finally reverses the trajectory sequence

and each trajectory inside. Thus, we obtain a path for the backward tree, which

still follows forward control.

45

3 Diverse Action Manipulation

Algorithm 8
DARRTConnect(X, {B0, ..., Bq}, {p0, ..., pm}, x0, XG, {ρ0, ..., ρn}), adapted from
Barry [6, p. 68]
Input: C-space X = R × O1 × ... × On, Fixed obstacles {B0, ..., Bq}, Primitives
{p0, ..., pm}, Initial configuration x0, Goal set XG, Distance metrics {ρ0, ..., ρn}
Output: Trajectory sequence from x0 into XG

1: Va ← {x0}
2: Vb ← {Sample(XG)}
3: F ← true � True when extending forwards, false backwards
4: while true do
5: if F then
6: � Add a goal configuration to the backwards tree
7: Vb ← Vb ∪ {Sample(XG)}
8: end if
9: xS ← SampleDama(X)

10: xT ← arg minv∈Va ρ(v, xS)
11: {τ0, ..., τl} ← Extend(xT , xS , X, {B0, ..., Bq}, {p0, ..., pm}, F)
12: Va ← Va ∪

⋃
τ∈{τ0,...,τl}

⋃
α∈[0,1] τ(α)

13: if l > 0 or there are new configurations in τ0 then
14: � Extend Vb towards Va
15: xT ← arg minv∈Vb ρ(v, τl(1))
16: {σ0, ..., σk} ← Extend(xT , τl(1), X, {B0, ..., Bq}, {p0, ..., pm},¬F)
17: Vb ← Vb ∪

⋃
σ∈{σ0,...,σk}

⋃
α∈[0,1] σ(α)

18: if σk(1) = τl(1) then
19: return ExtractTrajectory(Va, Vb)
20: end if
21: end if
22: swap(Va, Vb)
23: F ← ¬F
24: end while
25: return ExtractTrajectorySequence(V)

46

3.3 Advanced Diverse Action RRT Algorithms

3.3.2 Hierarchical Approach

Both algorithms DARRT and DARRTConnect discussed so far can be de-

scribed as flat algorithms, because they try to solve the DAMA problem in one

step. However, as described in detail by Barry [6], we can break down the DAMA

problem to planning for each manipulation primitive separately. For instance, for

pushing an object, our robot first has to transit to the pushing contact point,

and then push the object. However, if we know the contact point in advance, we

can plan for transit and push separately. Algorithms, which solve the DAMA

problem in multiple steps by breaking it down into smaller parts, can be referred

to as hierarchical algorithms.

Solving the DAMA problem hierarchically is closely related to its multi-modal

nature, which we discussed in Section 2.4. For the DAMA problem, we can define

a mode family for each primitive. Each mode of a mode family then defines the

contact between the robot and the respective object, and the locations of the

objects not being manipulated. For instance, a mode of the mode family push

specifies the pushing configuration (i.e., the direction), and the configuration of

all the other objects.

Closely related to the research of re-grasping an object, Barry [6]’s hierarchical

approach is to first plan a sequence of mode families and then plan within each

mode. Usually, transfer primitives can only transition to a transit primitive, so

Barry further reduces her hierarchical approach to first plan a sequence of trans-

fer mode families, and then plan each set of transfer and transit trajectories.

Concretely, she first plans an object path by executing a flat planner as usual,

but checking collisions only for the objects. In the next step, Barry converts the

object path to a sequence of manipulation transfer primitives, which defines the

sequence of primitive subgoals for the hierarchical algorithm. For each primitive

subgoal, a flat planner tries to find a path to a configuration in which that prim-

itive is applicable. Finally, Barry’s DARRTH algorithm solves for the solution

path from the last subgoal to the final goal set.

In this section, we will present a slightly different, simple version of the DARRTH

algorithm proposed by Barry [6]. Note again that despite the same name, the

DARRTH algorithm presented in this work is not similar to the implementation

proposed by Barry [6]. In contrast to Barry’s algorithm, our DARRTH algorithm

will be able to handle manipulating multiple objects, without the requirement of

defining new primitives for each object we want to manipulate. Furthermore,

instead of only planning for mode families, our object path will provide us with

the actual mode sequence, i.e. with the actual contact points and the location of

the objects not being manipulated. Here are the steps taken by our DARRTH

47

3 Diverse Action Manipulation

algorithm:

1. Disable collision checking between robot bodies and all movable objects

2. Execute the flat planner to find a solution from x0 to some xG ∈ XG

3. Extract the object path from the solution path, yielding the list of configu-

rations {o1, o2, ..., ok}

4. Enable collision checking between robot bodies and all movable objects

5. Set SolutionPath = {}

6. For each object configuration oi ∈ {o1, o2, ..., ok}:

a) If oi = o1, then x′0 = x0, otherwise set x′0 = SolutionPath.back()

to the latest configuration added to our solution path

b) If oi = ok, then X ′G = XG, otherwise set X ′G to oi with arbitrary robot

pose

c) Execute the flat planner to find a solution from x′0 to some x′G ∈ X ′G
d) Append the solution path to SolutionPath

The object path is extracted from a certain solution path by appending the

respective configuration, each time we first apply a certain manipulation action

to an object. Also, the goal configuration is appended. Thus, the object path is the

minimal set of the solution path, which still can reconstruct all object movements

correctly. The object path is also smoothed with respect to applying the same

primitive to a single object multiple times in a row. For instance, pushing a certain

object from A to B and then to C, before manipulating any other object, will be

shortened to pushing it directly from A to C.

The downside of this algorithm planning the actual modes clearly is that the

objects are not guaranteed to be manipulable at all points along the object path.

When planning among movable objects, as pointed out by Berg et al. [8], an

object path should guarantee a path that is collision free for the objects, but also

that the moved object stays manipulable at all points along the path. As we plan

the object path with disabled robot-object collisions, the robot can place objects

in an intermediate step, where they are not reachable when enabling the collision

checking again.

Finally, let us conclude with two more notes concerning the hierarchical algorithm.

Firstly, depending on the flat planner we use, we refer to either DARRTH or

DARRTHConnect. In most cases, we will only use the latter, bidirectional

planner. Moreover, we can specify two different restart conditions for the hier-

archical algorithm. On the one hand, we can restart the inner execution of the

48

3.3 Advanced Diverse Action RRT Algorithms

flat planner solving subgoals. On the other hand, we can also restart the entire

algorithm to plan for a new object path.

49

4 Diverse Action Manipulation
Experiments

In this chapter, we present results for the DAMA algorithms DARRT, DARRT-

Connect, and DARRTHConnect, which were introduced in Chapter 3. To

show that our algorithms are capable of solving for various robots, environments,

and manipulation primitives, this chapter is divided into two worlds.

In the first world, a simple holonomic mobile robot manipulates three objects

in a simulated two-dimensional world. We will compare the DARRT with the

DARRTConnect algorithm in a challenging scenario.

The second world features a ten degrees of freedom joint robot manipulating three

bottles in a bartender-like scenario, resulting in a configuration space of nineteen

dimensions. Besides transit, the robot will be able to pickup objects, transfer

the rigidly grasped object (transfer-rigid), and push objects with the interior

(push-interior) and the exterior surface (push-exterior) of the hand. We will

compare the flat DARRTConnect algorithm with the hierarchical counterpart

DARRTHConnect in a challenging scenario. Furthermore, we will solve exactly

the same scenario with the real robot in a real environment, and present the steps

taken from planning to successful execution.

The following experiments were performed on a Dell Latitude E6520 notebook

with an Intel Core i5-2520M processor (2.5 GHz), 8 GB working memory, Nvidia

NVS 4200M graphics card and an OCZ Vertex 2 SSD running Ubuntu 12.04

and the Robotics Library [2] with our DAMA algorithm software added (roughly

5.000 lines of code).

4.1 World 1: Simple Mobile Robot

In this world, a simple holonomic mobile robot already introduced in Section

3.2.1 (Figure 3.1) has to solve DAMA problems in a two-dimensional five-by-five

meter square world with multiple obstacles and objects. The robot can transit

and push objects within the world.

51

4 Diverse Action Manipulation Experiments

solved #iter #vert tGlobal tSam tNN tProp tConn

DARRT 81% 10,911 13,387 28.5s 0.3% 84.1% 0.6% 8.5%

DARRTCon. 97% 7,255 14,588 21.4s 0.3% 72.9% 0.8% 10.1%

(a) Algorithm properties. Columns (left to right): proportion of terminated runs, number of
iterations (averaged on the terminated runs, as are the following values), number of vertices,
time needed for solving, proportion of time spent on sampling, nearest neighbor search, prop-
agating using the empty space planner, and on connecting configurations or path truncation
using the collision checking module.

#vert lengthGlob lengthManip #Transit #Push-Mobile

DARRT 101 22.9m 3.3m 4.8 3.8

DARRTCon. 119 27.8m 3.6m 5.5 4.5

(b) Solution path properties. Columns (left to right, averaged on the terminated runs):
number of vertices, length of the entire solution path, length of the path segments in which
objects are manipulated, number of times each primitive is executed (only counting primitive
transitions, i.e. removing successive duplicates).

Table 4.1: Averaged performance of DARRT and DARRTConnect on Sce-
nario 1. We ran each algorithm 100 times starting with a different random seed. For
both algorithms we imposed a time limit of 3 minutes to solve this scenario.

4.1.1 Scenario 1: Manipulation with Three Movable Objects

Figure 4.1a illustrates the problem description of this scenario. Within a square

world with three obstacles, the robot and the blue object have to move to their

corresponding goal. The goal set is infinite and uncountable, as are goal positions

for the red and the green object. The challenging task of this scenario is to move

the red or the green object (or both) before the robot can manipulate the blue

object. Our DAMA algorithm of course does not have any knowledge about the

objects blocking the path and therefore need to be moved. After the robot has

moved the blue object to its goal, however, he also has to transition back to its

goal, avoiding obstacles and possibly moving objects once again.

4.1.2 Discussion and Evaluation

We run this scenario 100 times with each algorithm, DARRT and DARRT-

Connect. Thereby, we enforce a time limitation of three minutes to solve this

scenario. After three minutes, nearest neighbor search consumes more than 80%

of the time, therefore making the algorithm much less efficient.

Table 4.1 presents notable averaged performance values and their detailed de-

scription when running both DAMA algorithms 100 times. Let us now discuss

two major differences in performance between DARRT and DARRTConnect.

52

4.1 World 1: Simple Mobile Robot

(a) Problem Description (b) An average solution path

(c) Shortest path found (d) Path found the fastest

Figure 4.1: Scenario 1: Problem description and solution paths. We ran DARRT
and DARRTConnect separately 100 times. All illustrated solution path were com-
puted by DARRTConnect. The individual goal configurations are shown more trans-
parently than the initial configurations. Paths drawn in red correspond to push, the
blue ones to transit. (a) In this scenario, the robot (yellow) and the objects (red, blue,
green) start at their indicated positions. The goal is specified only for the robot and
the blue object, which have to move to their illustrated goal positions. In order to move
the blue object, the robot has to move either the red or the green object first. (b) An
average solution path found after 26.2s with a solution path length of 18.4m. (c) The
shortest solution path found after 28.4s with a solution path length of 14.8m. (d) The
solution path found the fastest after 191ms with a solution path length of 22.7m.

53

4 Diverse Action Manipulation Experiments

Whereas DARRT succeeded in 81 out of the 100 runs, DARRTConnect found

a solution for 97 of the 100 runs within three minutes. Moreover, DARRTCon-

nect needs less time on average to solve this scenario, and also less iterations.

This is remarkable, as intuitively, spanning a tree starting from the infinite and

uncountable goal set does not seem to be promising at all. However, the path

found the fastest, but also the path with the shortest solution path length, was

computed by DARRTConnect.

When investigating not the performance on finding a solution path, but rather the

properties of the solution path itself, DARRT seems to yield better results than

DARRTConnect in this scenario. Compared to DARRTConnect, DARRT

finds paths, which are about 18% shorter than the ones computed by DARRT-

Connect on average. Thus, DARRT paths consist of less transit and push

transitions.

To conclude, it is worth mentioning that with our DAMA algorithm implemen-

tation, we can solve this scenario in 191ms (Figure 4.1d), and only fail to find

a solution in about 3% of the cases for a time limitation of three minutes using

DARRTConnect. Whereas DARRTConnect seems to be more efficient in

finding a solution at all, DARRT is more effective in terms of finding the shorter

solution path.

Note that in this scenario, a hierarchical approach like DARRTHConnect

would not be much useful, as the object path would not reflect that the robot

needs to move objects he would otherwise collide with, which is the key to finding

a solution.

4.2 World 2: Joint Meka Robot JAMES

In this world, we simulate and really control a ten degrees of freedom joint robot

solving DAMA problems. Before introducing the scenario for evaluating DAMA

algorithms, we will start with an introduction to the JAMES project (Joint Ac-

tion for Multimodal Embodied Social Systems). Next, we present the robot hard-

ware and important details concerning some modifications and extensions of our

DAMA software, in order to solve DAMA problems with this robot.

4.2.1 The JAMES Project

The research of the JAMES project (Joint Action for Multimodal Embodied So-

cial Systems) [44, 11] is focused upon robots showing socially appropriate behavior

54

4.2 World 2: Joint Meka Robot JAMES

while dynamically interacting with multiple humans [12]. In the main demonstra-

tion scenario, as shown in figure 4.2, the robot works as a bartender and interacts

with human guests by taking orders and serving drinks. Here, detection of so-

cial aspects, signals and activities of a single persons but also of human groups

are crucial in order for a robot to fulfill the role of a human bartender in a so-

cially appropriate way. However, also traditional robot tasks have to be solved,

for instance generating a non-colliding safe robot arm movement.

With regard to our work, this bar-

Figure 4.2: Barkeeper JAMES acts as a
bartender in a bar scenario.

tending scenario intrinsically de-

mands diverse action manipulation.

The robot not only has to manage

differently shaped drinks, he also has

to cope with their various arrange-

ments combined with limited end-

effector accessibility. For example, if

the robot decides to clean up the ta-

ble after a group of guests left the

bar, the robot might find itself in

a situation where empty bottles are

clumped up in a way that disallows straight-forward grabbing, thus requires some

other kind of manipulation motion like pushing with the finger tips or the palm.

Furthermore, introducing new manipulation capabilities like pushing with vari-

ous hand parts really expands the reachable workspace of the robot. For instance,

the robot could push a bottle towards him using the finger tips before grasping

is applicable.

4.2.2 Robot Hardware

The robot was designed by Meka Robotics[1] and features force-torque control

at each joint, absolute joint angle encoders and compliant, human-safe actuators

by placing a spring between the motor and the load. Our robot for the JAMES

project is composed of the T2 Humanoid Torso, the A2 Compliant Arm and the

H2 Compliant Hand (see [1] for detailed information). Whereas the arm has seven

degree of freedom (7-DOF), the torso has two degrees of freedom (2-DOF) with

two of the three hip joints being mechanically coupled. The Meka hand, as shown

in figure 4.10, features a dual durometer urethane construction in approximately

human size and a well suited deformable link structure for manipulation tasks in

unstructured environments. Its five Series Elastic Actuators drive twelve joints,

one for each finger and one for thumb abduction, resulting in five actuated degree

of freedom (5-DOF). All in all, our barkeeper Meka robot JAMES is a 14-DOF

55

4 Diverse Action Manipulation Experiments

(a) Original Meka robot model (b) Convex decomposition (except thumb)

Figure 4.4: Meka robot model used for simulation. (a) The original CAD model
of the Meka robot. (b) Meka model obtained after applying a 3D mesh approximate
convex decomposition of the original model [38, 14, 15, 13]. This decomposition allows
collision detection to run much faster and more robust due to a drastically decrease
in mesh triangles while increasing the volume of the model. However, the thumb was
manually modified and is not part of the convex decomposition. Both models show the
starting pose of our robot for this world.

robot system.

4.2.3 Implementation Details

Before we can apply our DAMA problem to the Meka robot, we have to discuss the

robot model and several modifications and extensions to our DAMA algorithm.

Let us first take a look at how the robot subspace of the C-space looks like. For

the Robotics Library [2], the Meka robot is modeled as a 10-DOF robot, waiving

the hand and including all three hip joints of the torso. For planning our path

of actions, we indeed do not have to consider the joints of the hand and will

leave them static pointing straight ahead all the time. Thus, planning will per-

form more efficient, as the dimension of the robot C-space significantly decreases.

Really controlling the hand will take place after planning during execution time.

However, note that collision checking will not be as accurate. Furthermore, as

the torso consists of three free hip joints in our Robotics Library model, we have

to consider the mechanical coupling of two of them within our algorithm manu-

ally. Concretely, we must guarantee that at any point during computation, both

joints have the same value. This affect the sampling step, as well as the inverse

kinematics.

56

4.2 World 2: Joint Meka Robot JAMES

(a) Rear upper view (b) Top view

Figure 4.5: Reachable workspace of the Meka robot. We can visualize approxi-
mately the workspace of the Meka robot by sampling only configurations for transit.
Here the result is shown after roughly 7.000 iterations and a tree consisting of 10.000
edges.

Figure 4.4 illustrates the robot model and its starting pose we will use throughout

this world for simulation. The detailed CAD model shown in Figure 4.4a will be

used for visualization only. A 3D mesh approximate convex decomposition of this

original model shown in Figure 4.4b is the actual model when checking collisions,

following the work of [38, 15, 14, 13]. For collision checking to be computationally-

efficient in sampling-based motion planning, it is crucial to represent objects,

obstacles, and the robot model as sets of convex polyhedra. Therefore, for collision

checking, we not only decomposed the robot model, we also replaced the movable

bottles presented shortly with a cylinder of equal radius and height. Moreover,

all static obstacles are modeled as simple boxes.

For our joint robot we will sample, compare and interpolate configurations in

the ten-dimensional joint space R10, instead of planning for a rigid body defined

in SE(3), as discussed in Section 2.2 concerning sampling and distance metrics.

Concretely, sampling for the robot subspace in the composed DAMA C-space

will be done uniformly at random per joint within the joint limits. For computing

the distance in the robot subspace, we apply forward kinematics to our joint

configuration and then use the formulas discussed in Section 2.2.

Figure 4.5 illustrates an approximation of the reachable Workspace of the Meka

57

4 Diverse Action Manipulation Experiments

robot for its bartending environment. For collision checking, , we use the en-

vironment shown there, including the wall on the left, as it is part of the real

environment. Also, the workspace is limited by the minimum and maximum val-

ues for each joint, which we defined appropriately. From this illustration, we can

conclude that the robot can hardly reach the corners of the upper surface and

nearby center areas of the upper and the lower support surface. Furthermore,

when constructing the tree, the robot needs a lot of time to first reach the lower

support surface at all. With objects placed there, it will be even harder to find

any valid paths. Thus, we waive the lower support surface of the bar environment

for our future scenarios and focus our attention on the upper support surface

with possible extensions on top of it.

Now we can introduce the manipulation poses and their derived primitives we

defined for our Meka robot. Figure 4.6 illustrates the three hand poses we will

use throughout this world for manipulating objects. These are grasping, pushing

with the palm or the interior surface of the hand, and pushing with the exterior

surface of the hand. The respective primitives are pickup and transfer-rigid

(both utilize the grasping pose), push-interior, and push-exterior. Whereas

pushing an object is fully constrained concerning the contact configuration or

direction of the hand, when picking up or transferring a rigidly attached object,

the grasp can be from any direction. Thus, together with transit, the robot has

five primitives available.

Let us now describe the implementation of the five primitives, namely their re-

spective functions isUseful and propagate. Whereas transit is implemented

as usual, both primitives push-interior and push-exterior follow the basic

push primitive, except for the different pushing pose. Moreover, we restrict a sin-

gle push propagation to a distance of 10 centimeter, because path interpolation

is done in joint space, and therefore, the object being pushed will not follow a

straight line in Cartesian space. In practice, however, for a distance below 10

centimeter, the deviations are negligible and the object successfully reaches its

goal. Of course, multiple pushes can be concatenated to push along a longer dis-

tance. The only downside to this approach is the accumulated computation of the

inverse kinematics for each push propagation, which slows down the algorithm a

bit. Finally, the new primitives pickup and transfer-rigid are implemented as

follows:

• Pickup:

isUseful returns true only if all objects are placed on a support surface in

xS and at least one object either moves at least 20 centimeter on its

support surface or has a different height value between xS and xG.

58

4.2 World 2: Joint Meka Robot JAMES

(a) (b)

(c) (d)

Figure 4.6: Manipulation poses and their derived primitives for our Meka
robot. (a) Comparison of all three hand poses for manipulation viewed from the ceil-
ing: grasping (top left), push-interior (top), push-exterior (down). (b) For grasping an
object, the hand has to be more stretched out, compared to pushing an object. (c)
Pushing with the interior (left) and exterior (right) surface of the hand. This front
view illustrates the slightly angled hand poses used for smoothly pushing an object
with the Meka robot in practice, shifting the contact point near the center of mass of
the object. (d) Both primitives pickup and transfer-rigid use the same grasp hand
pose shown here. However, before transfer-rigid is applicable, the object has to be
picked up a certain height, as illustrated.

59

4 Diverse Action Manipulation Experiments

propagate returns the following trajectory sequence starting from xS and

manipulating the nearest object to the robot, which should be picked

up: We first compute a grasping configuration via inverse kinematics

(note that there are infinite and uncountable grasping configurations,

as we can grasp from any direction). We then Transit to this location,

if not already there, and append the trajectory from this configura-

tion to the configuration, in which the robot arm and the object is 10

centimeter higher. The latter configuration with its grasp will also be

computed via inverse kinematics.

• Transfer-rigid:

isUseful returns true only if an object is not placed on a support surface in

xS and either this object or the robot moves between xS and xG.

propagate returns a trajectory sequence from xS towards xG by computing

the final grasp configuration via inverse kinematics when transferring

the rigidly attached object to its goal and then propagate to this loca-

tion. Note that for xS, we can ensure that we are already grasping the

respective object.

In order for our joint robot to apply these primitives, we need to map configura-

tions for the end-effector in Cartesian space to robot configurations in joint space.

Recall the brief outline we gave in Section 2.1.3 concerning the concept of inverse

kinematics. There are two modifications of the standard iterative approach for

solving inverse kinematics worth mentioning in the context of the Meka robot. As

there are usually infinite solutions to an inverse kinematics problem for the Meka

robot, we further constrain the iterative process to stay away from joint limits,

both the minimum and maximum values. This posture optimization not only tries

to find a more natural robot pose, it also ensures to stay away from configurations

near singularities of the robot, if possible. Secondly, when computing the inverse

kinematics for the Meka robot, we have to permanently couple the second and the

third joint during the iterative approach, because the hip joints are mechanically

coupled. The details of this procedure would require a more detailed introduction

to inverse kinematics, which is out of the scope of this paper.

This world will feature multiple support surfaces, which requires the following

adaptation to our sampling routine. When sampling a random position (rand)

for an object, we will either sample a position in free space or on one of the

support surfaces. Both, the volume defining the possible object locations in free

space, as well as the dimensions of the support surface will be defined by the

scenario or domain we are planning for. Moreover, when sampling in free space,

in order for it to become a valid configuration, we also have to deliver a grasp

60

4.2 World 2: Joint Meka Robot JAMES

configuration of the robot for the respective object. Thus, sampling now also

involves computing the inverse kinematics.

Finally, in this world, we will use the distance metric defined by Equation 3.7

and add an additional 2 meters for each object which moved between both con-

figuration, in order to somewhat incorporate that the robot path length increases

significantly for each object to be moved (and so does the chance to collide).

However, this is a manually tweaked heuristic and determined empirically.

4.2.4 Scenario 2: Rearranging Three Bottles

Figure 4.7a illustrates the problem description of this scenario. Starting at the

plotted position, the robot has to rearrange three bottles as indicated in the

Figure. Finally, he has to move back to his starting position.

There are many challenges involved in solving this task. First of all, the solution

path will be quite long, as the robot not only has to find a collision-free path for

raising and lowering his arm when starting and finishing the work, respectively,

he also has to plan for many transfer primitives. All primitives are highly recom-

mended for solving this task, if not required. For instance, the blue bottle cannot

be grasped immediately in its initial configuration, first it has to be pushed with

the palm towards the robot, in order to then be reachable for a grasp. However, it

has to be grasped, in order to move it to the lower support surface. Moreover, if

the green bottle has already been moved to its goal configuration, the red bottle

can only be moved via push-exterior. Finally, the order in which objects are

moved is crucial for finding a solution. For instance, if the blue bottle first reaches

its goal configuration, manipulating the green bottle will become nearly impossi-

ble without colliding with the blue bottle. Compared to Scenario 1, however, the

goal set only consists of a single goal configuration.

The C-space is highly dimensional with nineteen dimensions, ten for the robot

subspace and three dimensions each for the translational description of the bot-

tles. The volume of the free space, in which objects can be sampled, is roughly

the intersection of the robot’s reachable workspace and the area above the lower

support surface.

4.2.5 Discussion and Evaluation

We run this scenario 50 times with each algorithm, the flat DARRTConnect

and the hierarchical counterpart DARRTHConnect. Thereby, for DARRT-

Connect, we enforce a time limitation of fifteen minutes to solve this scenario.

61

4 Diverse Action Manipulation Experiments

(a) Problem Description (b) Front view of the solution path

(c) Top view of the solution path (1/3) (d) Rear view of the solution path (1/3)

Figure 4.7: Scenario 2: Problem description and a solution path (1/2). The il-
lustrated, randomly picked solution path was computed by DARRTHConnect. Edges
drawn in red correspond to transfer primitives being applied, the blue ones to the only
transit primitive transit. Vertices of the solution path are drawn as small black dots.
(a) In this scenario, the robot has to start and finish in the same illustrated position,
after rearranging the three bottles all on the lower support surface as indicated by the
arrows. (b)-(d) Different views of the solution path and robot poses.

62

4.2 World 2: Joint Meka Robot JAMES

(a) Top view of the solution path (2/3) (b) Rear view of the solution path (2/3)

(c) Top view of the solution path (3/3) (d) Rear view of the solution path (3/3)

Figure 4.8: Scenario 2: Problem description and a solution path (2/2). The il-
lustrated, randomly picked solution path was computed by DARRTHConnect. Edges
drawn in red correspond to transfer primitives being applied, the blue ones to the only
transit primitive transit. Vertices of the solution path are drawn as small black dots.
(a)-(d) Different views of the solution path and robot poses.

63

4 Diverse Action Manipulation Experiments

solved #iter #vert tGlobal tIK tSam tNN tProp tConn

Flat 78% 7,546 16,509 514.7s 32.9% 3.7% 59.9% 29.4% 6.6%

Hier. 46% 4,046 10,688 131.8s 53.3% 8.4% 31.0% 45.4% 14.6%

(a) Algorithm properties. Description of columns see Table 4.1a. New: proportion of global
time spent on solving inverse kinematics (tIK), which is needed for sampling and propagating.

#vert lengthGlob lengthManip #Tr. #P-I #P-E #Pick #T-R

Flat 181 13.8m 2.0m 8.3 2.6 0.7 4.5 4.5

Hier. 214 16.1m 2.5m 8.2 2.2 0.8 4.8 4.8

(b) Solution path properties. Description of columns see Table 4.1b. Primitives: transit
(Tr.), push-interior (P-I), push-exterior (P-E), pickup (Pick), transfer-rigid (T-R).

Table 4.2: Averaged performance of DARRTConnect (Flat) and DARRTH-
Connect (Hier.) on Scenario 2. We ran each algorithm 50 times starting with a
different random seed. For DARRTConnect we imposed a time limit of 15 minutes,
for DARRTHConnect five minutes for solving the object path and additional five
minutes for each partial solution.

For DARRTHConnect, both solving the object path and solving for interme-

diate goals have a time limitation of five minutes each. We do not allow any

restarts.

With these restrictions, DARRTConnect was able to succeed in 39 out of the

50 runs, and DARRTHConnect in 23 runs. However, the restrictions for a

DARRTHConnect run were harder than for a DARRTConnect run. On av-

erage, DARRTHConnect failed after 362.8 seconds (roughly six minutes), none

of them when searching for an object path. Note that even given 20 minutes and

ten runs, the most simple DAMA algorithm DARRT was not able to terminate

once.

Table 4.2 presents notable averaged performance values and their detailed de-

scription. Let us now discuss major differences in performance between DAR-

RTConnect (Flat) and DARRTHConnect (Hier.).

Examining the algorithm properties presented in Table 4.2a, Hier. needs much

less time to find a solution on average. Due to its hierarchical nature, it spends

less time for nearest neighbor search, but still the inverse kinematic calculations

consume more than half of the overall computation time. Despite the low percent-

age of solved runs compared to Flat, Hier. can be run twice as often. Overall,

we can conclude that the hierarchical version solves this scenario more efficiently

than its flat counterpart.

Together, inverse kinematics and nearest neighbor search consume 92.8% (Flat)

and 84.3% (Hier.) of the overall computation time. Sampling and propagating

64

4.2 World 2: Joint Meka Robot JAMES

Meka RobotMeka Server

Router

DAMA Executor

Ice Interface

DAMA Planner

Path EtherCAT

Figure 4.9: Hardware environment for applying a DAMA problem on the real
Meka robot. The DAMA planner software transmits the planned path to the DAMA
executor software, which communicates the interpolated path via an Ice interface to
the Meka server, which finally controls the real Meka robot via EtherCAT.

nearly only consists of calculating the inverse kinematics in terms of time costs.

The solution path properties presented in Table 4.2b show that Flat finds better

solutions than Hier.. Note that only in at most 70% (80%) of the runs, we

apply push-exterior to the red bottle. Furthermore, the number of pickup and

transfer-rigid primitives applied are completely equal, as each pickup has to

be followed by a transfer-rigid.

To conclude, DARRTHConnect is more efficient in finding a solution, but must

be restarted more often. However, DARRTConnect is more effective in finding

a good solution, but needs much more time and reaches its limits with respect to

tree size and nearest neighbor search.

4.2.6 Execution on real Meka Robot

In this section, we present the steps needed to execute a planned path consisting

of vertices and edges on the real Meka robot JAMES in practice.

Figure 4.9 illustrates the underlying architecture and hardware environment of

this Section. So far, we discussed the DAMA planner software, which creates so-

lution paths for our DAMA problem. For execution, we let the planner store the

path in an external file and programmed a separate DAMA executor software

component for path execution, which can ultimately run on a separate computer

connected to the Meka server via an Ethernet connection. The Meka server con-

65

4 Diverse Action Manipulation Experiments

trols the Meka robot via EtherCAT, an open real-time Ethernet-based fieldbus

system, and offers a ZeroC Ice interface1, in order to control the robot within the

local area network the server is connected to. But for now, let us focus on the

DAMA executor software.

Executing the planned path in a simulated robot

Figure 4.10: Snapshot of the
Meka robot solving a DAMA
problem in practice.

environment or in the real world makes a huge

difference. In practice, for example, joints might

drive with different velocities, having different

static frictions (stiction), and different maxi-

mum velocities. Therefore, with increasing dis-

tance between vertices of our solution path, it

becomes more likely that we cannot ensure fol-

lowing the direct connection or shortest path be-

tween both vertices anymore.

Thus, we need to manually process our solution

path generated by the planner in order to obtain

the same path but with higher resolution, which

we can then utilize to steer our robot. In our

rather simple approach, we will avoid controlling

or regulating the robot using a PID controller,

for example. The Meka robot already internally

applies these mechanisms, and an additional controller might only cause prob-

lems, such as undesirable oscillations. Furthermore, we have to restrict ourselves

to linear interpolation between points, which defines the only path our planner

guarantees to be collision-free, avoiding any shortcuts or smooth transition tra-

jectories between points which might contain obstacles.

Now let us briefly discuss our approach. For each joint we define an appropriate

velocity limitation, measured in degree per second. Then for each line segment

in our planner path, we calculate the time each individual joint needs to reach

its goal traveling with its maximum joint velocity. We then take the time of the

slowest joint (i.e., the most time consuming joint) as the reference time for all

joints. Thus, at any point in time, all joints are guaranteed to travel at most

with their respective maximum joint velocity, and the overall execution time is

limited by the maximum velocity of the slowest joint in each line segment. After

calculating the execution time of each line segment we sample the path with a

sample time of 20ms and obtain our final high resolution path ready for execution.

A positive side-effect of this approach is that we do not pause or stop motion at

intermediate points.

The resulting interpolated path is then send to the Meka server point by point via
1http://www.zeroc.com/ice.html

66

http://www.zeroc.com/ice.html

4.2 World 2: Joint Meka Robot JAMES

asynchronous Ice function calls followed by a sleep of 20ms, which corresponds

to the path sample time. In other words, we steer our Meka robot by sending a

new joint position every 20ms, ultimately executing our planned path.

For planning we used a static hand model, which meets the requirements for

pushing only. However, for execution, we really have to transition between grasps

and stretched pushing poses of the robot’s manipulator. Concretely, when a new

pickup primitive is being executed, the hand grasps and incrementally modifies

its dynamic model by increasing the end-effector’s payload, in order to account

for the additional weight. Accordingly, as soon as the primitive transfer-rigid

ends, we incrementally decrease the end-effector’s payload again, open the hand

and transition back to the stretched pushing pose.

To conclude, Figure 4.11 presents snapshots of a video recording the execution of

a solution path for Scenario 2, following the methods we discussed in this section.

67

4 Diverse Action Manipulation Experiments

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.11: A solution path for Scenario 2 executed in the real environ-
ment. After picking up and transferring the middle bottle to its goal position, the
robot reaches out to push the leftmost bottle towards him. He then picks it up and
transfers it to its goal. Finally, the rightmost bottle moves to its goal position by being
pushed with the exterior surface of the hand. In the end, the robot transits back to its
starting configuration. The overall execution time is about 112 seconds. The full video
is available on the website youtu.be/uUKXgkq5Qsk.

68

youtu.be/uUKXgkq5Qsk

5 Conclusion

In this work, we first presented background knowledge for manipulation planning

in the areas of robotics, sampling-based motion planning, and multi-modal plan-

ning. We then examined the Diverse Action Manipulation (DAMA) problem,

and developed two flat (DARRT and DARRTConnect) and one hierarchi-

cal algorithm (DARRTH(Connect)) to solve for it. All three are based upon

the sampling-based Rapidly-exploring Random Tree (RRT) algorithm, includ-

ing some constraints and approaches, which were derived from the multi-modal

nature of the DAMA problem. These three algorithms can plan for multiple, pos-

sibly non-prehensile actions manipulating multiple objects. Finally, we evaluated

them on two challenging scenarios, each in a different world with either a mobile

or a joint robot, showing the generic approach of our DAMA algorithms. Also, we

presented the entire process from planning to execution on a real robot solving a

DAMA problem in a real environment.

Compared to the work of Barry [6], we successfully solved DAMA problems with

up to three objects, and showed that our implementation can handle various

robots and environments without much adaptation, even for challenging scenarios.

5.1 Future Work

In this thesis, there is much room for future work.

First of all, Barry [6, pp. 162-166] presents many future avenues of research for

DAMA problems. Among them are planning for uncertainty in manipulation

primitives, solving for cluttered domains with goals for multiple objects, and

implementing more dynamic manipulation actions like shoving or throwing. In

addition to her list of issues, let us now examine some more important topics of

interest.

The RRT algorithm, which lays the foundation of the DAMA algorithms in this

work, can be extended in many ways, in order to solve problems more efficiently

and effectively. For instance, RRT* provides us with an asymptotically optimal

algorithm, which converges to optimal path lengths, along with probabilistic com-

pleteness and no substantial computational overhead [23, 24]. This algorithm is

69

5 Conclusion

especially intended for planning in real-time. RRT* can then be further refined, for

example to a memory efficient version, limiting the memory required for storing

the tree [3]. We can also think of replanning with RRTs, when the configura-

tion space changes [10]. Balancing exploration and exploitation is also a crucial

point, as further examined by [42]. Another extension of RRTs are Resolution-

Complete-RRTs (RC-RRTs), in which basically there is a limit in expanding from

each vertex in the tree, when connecting from it keeps on failing. This can soften

the problem of being stuck at local minima, in which two configurations are near,

but still cannot connect. Also, RC-RRTs can also be motivated by the fact that

for DAMA problems, the distance function is only a manually tuned heuristic

function and therefore quite inaccurate. Exactly determining the nearest neigh-

bor with respect to minimizing the swept volume of movements, which occurs

when propagating from one to the other configuration, is far from being compu-

tationally efficient. Therefore, we can relax the nearest neighbor determination a

bit.

Instead of sampling uniformly at random in a certain subspace, we can apply

more intelligent sampling strategies. For example, we can apply sampling on the

Cfree boundary, Gaussian sampling, or bridge-test sampling. Furthermore, Khan-

mohammadi and Mahdizadeh [25] proposes density avoided sampling for RRTs.

All of these are approaches to sample more useful points in our configuration

space, in order to find a solution faster.

After finding a solution with a sampling-based planning algorithm like the RRT,

the path is usually jagged and we should apply some path smoothing to clean it

up, before evaluating or executing it on a robot. This can be done by iteratively

picking a pair of path configurations at random and attempt to directly connect

both of them. If the resulting connection is collision-free and feasible, we use this

segment and discard the configurations, which originally were in between. Other-

wise, we start over again, until the path does not improve anymore. Considering

path smoothing, for our DAMA algorithms to actually find a path at all will be-

come more important than finding a short path, because we can smooth jagged

paths.

The algorithm implementations in this work for solving DAMA problems with

multiple objects are not guaranteed to follow exponential convergence. Barry [6]

proved exponential convergence for her algorithms, however, the strong assump-

tions concerning sampling or the usage of projection functions are certainly not

met in this work. We can further investigate on this topic, in order to extend our

work to a exponentially convergent version.

As evaluated in Chapter 4, our algorithms spend most of the time on computing

the inverse kinematics or searching for the nearest neighbor of a certain con-

70

5.1 Future Work

figuration in our tree. Both algorithms can and should be improved completely

separated from the DAMA algorithms presented in this work, in order for our

algorithm to be more efficient in even more complex scenarios.

Also, there are some technical and implementation-dependent details to be solved.

For example, when planning to grasp an object, the inverse kinematics always

returns the single best grasp configuration, in which ”‘best”’ refers to posture

optimization, i.e. staying away from joint limits. However, the inverse kinematics

does not check, if a grasp configuration leads to robot bodies colliding. Therefore,

even if collision-free grasps exist for the respective object, the inverse kinematics

can always return a configuration which leads to a collision.

Instead of terminating as soon as a collision between the robot and an object

occurs, we can also think of modeling deformable object, or objects which are able

to move also unintended. Simulating physics, we can for instance model the effect

of the robot colliding with an object, and consider the result in our sampling-

based roadmap somehow. Recall the problem description of Scenario 1. With

this approach, the robot could transit right through the left or the right object

blocking the path, without him actively and intentionally applying a pushing

manipulation.

Furthermore, we can add initial sensing of object placements, but also visual

feedback while the planned path is executed, in order to compensate for errors in

robot’s odometry or object locations.

71

Bibliography

[1] Meka robotics - dexterous mobile manipulators and humanoids. http://

mekabot.com/. Accessed October 20, 2013.

[2] Robotics library (rl). http://roblib.sourceforge.net/. Accessed Octo-

ber 28, 2013.

[3] Olzhas Adiyatov and Huseyin Atakan Varol. Rapidly-exploring random tree

based memory efficient motion planning. In IEEE International Conference

on Mechatronics and Automation (ICMA), pages 354–359, August 2013.

[4] Jennifer Barry, Kaijen Hsiao, Leslie Pack Kaelbling, and Tomás Lozano-

Pérez. Manipulation with multiple action types. In Experimental Robotics,

volume 88 of Springer Tracts in Advanced Robotics, pages 531–545. Springer

International Publishing, June 2012.

[5] Jennifer Barry, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. A hierar-

chical approach to manipulation with diverse actions. In IEEE Conference

on Robotics and Automation (ICRA), 2013.

[6] Jennifer L. Barry. Manipulation with Diverse Actions. PhD thesis, Mas-

sachusetts Institute of Technology, June 2013.

[7] Dmitry Berenson, Siddhartha S. Srinivasa, Dave Ferguson, Alvaro Collet, and

James J. Kuffner. Manipulation planning with workspace goal regions. In

IEEE International Conference on Robotics and Automation (ICRA), pages

618–624, 2009.

[8] Jur Berg, Mike Stilman, James Kuffner, Ming Lin, and Dinesh Manocha.

Path planning among movable obstacles: A probabilistically complete ap-

proach. In GregoryS. Chirikjian, Howie Choset, Marco Morales, and Todd

Murphey, editors, Algorithmic Foundation of Robotics VIII, volume 57 of

Springer Tracts in Advanced Robotics, pages 599–614. Springer Berlin Hei-

delberg, 2009.

[9] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer

Science + Business Media, LLC, 8 edition, 2006. http://research.

microsoft.com/~cmbishop/PRML.

73

http://mekabot.com/
http://mekabot.com/
http://roblib.sourceforge.net/
http://research.microsoft.com/~cmbishop/PRML
http://research.microsoft.com/~cmbishop/PRML

Bibliography

[10] Dave Ferguson, Nidhi Kalra, and Anthony Stentz. Replanning with rrts.

In Proceedings of the 2006 IEEE International Conference on Robotics and

Automation (ICRA), pages 1243–1248, 2006.

[11] fortiss GmbH. James - joint action for multimodal embodied social systems.

http://www.fortiss.org/en/research/projects/james/. Accessed Oc-

tober 20, 2013.

[12] Mary Ellen Foster, Andre Gaschler, Manuel Giuliani, Amy Isard, Maria Pat-

eraki, and Ronald P. A. Petrick. Two people walk into a bar: Dynamic multi-

party social interaction with a robot agent. In Proceedings of the 14th ACM

International Conference on Multimodal Interaction (ICMI 2012), 2012.

[13] A. Gaschler, R. P. A. Petrick, O. Khatib, and A. Knoll. A knowledge of

volumes approach to robot task planning. Artificial Intelligence, 2014. in

revision.

[14] Andre Gaschler, Ronald P. A. Petrick, Manuel Giuliani, Markus Rickert,

and Alois Knoll. KVP: A Knowledge of Volumes Approach to Robot Task

Planning. In IEEE/RSJ Intl Conf on Intelligent Robots and Systems (IROS),

pages 202–208, November 2013.

[15] Andre Gaschler, Ronald P. A. Petrick, Torsten Kröger, Oussama Khatib, and

Alois Knoll. Robot task and motion planning with sets of convex polyhe-

dra. In Robotics: Science and Systems (RSS) Workshop on Combined Robot

Motion Planning and AI Planning for Practical Applications, June 2013.

[16] Kris Hauser. Motion Planning for Legged and Humanoid Robots. PhD thesis,

Stanford University, December 2008.

[17] Kris Hauser and Jean-Claude Latombe. Multi-modal motion planning in

non-expansive spaces. The International Journal of Robotics Research, 29(7):

897–915, June 2010.

[18] Kris Hauser and Victor Ng-Thow-Hing. Randomized multi-modal motion

planning for a humanoid robot manipulation task. International Journal of

Robotics Research, 30(6):678–698, February 2011.

[19] David Hsu, Jean-Claude Latombe, and Rajeev Motwani. Path planning in

expansive configuration spaces. In Proceedings of the IEEE International

Conference on Robotics and Automation, volume 3, pages 2719–2726, April

1997.

[20] Du Q. Huynh. Metrics for 3d rotations: Comparison and analysis. Journal

of Mathematical Imaging and Vision, 35(2):155–164, 2009.

74

http://www.fortiss.org/en/research/projects/james/
http://dx.doi.org/10.1109/IROS.2013.6696354
http://dx.doi.org/10.1109/IROS.2013.6696354

Bibliography

[21] Reza N. Jazar. Theory of Applied Robotics: Kinematics, Dynamics, and

Control. Springer Publishing Company, 2nd edition, 2010.

[22] Sertac Karaman and Emilio Frazzoli. Incremental sampling-based algo-

rithms for optimal motion planning. In Robotics: Science and Systems (RSS),

Zaragoza, Spain, June 2010.

[23] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal

motion planning. International Journal of Robotics Research, 30(7):846–894,

June 2011.

[24] Sertac Karaman, Matthew R. Walter, Alejandro Perez, Emilio Frazzoli, and

Seth Teller. Anytime motion planning using the rrt*. In IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 1478–1483,

May 2011.

[25] Sohrab Khanmohammadi and Amin Mahdizadeh. Density avoided sampling:

An intelligent sampling technique for rapidly-exploring random trees. In

Eighth International Conference on Hybrid Intelligent Systems (HIS), pages

672–677, 2008.

[26] Lukáš Knispel. Advanced robot path planning (rrt). Master’s thesis, Brno

University of Technology, 2012. URL https://sites.google.com/site/

rrtexplorer/home.

[27] Lukas Krammer, Wolfgang Granzer, and Wolfgang Kastner. A new approach

for robot motion planning using rrt. In 9th IEEE International Conference

on Industrial Informatics (INDIN), pages 263–268, 2011.

[28] James J. Kuffner. Effective sampling and distance metrics for 3d rigid body

path planning. In Proceedings of the 2004 IEEE International Conference

on Robotics & Automation, volume 4, pages 3993–3998, 2004.

[29] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publish-

ers, Norwell, MA, USA, 1991.

[30] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path

planning. Tr 98-11, Department of Computer Science, Iowa State University,

October 1998.

[31] Steven M. LaValle. Planning Algorithms. Cambridge University Press, Cam-

bridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[32] Steven M. LaValle. Motion planning: The essentials. IEEE Robotics and

Automation Society Magazine, 18(1):79–89, 2011.

75

https://sites.google.com/site/rrtexplorer/home
https://sites.google.com/site/rrtexplorer/home

Bibliography

[33] Steven M. LaValle. Motion planning: Wild frontiers. IEEE Robotics and

Automation Society Magazine, 18(2):108–118, 2011.

[34] Steven M. LaValle and James J. Kuffner. Rrt-connect: An efficient approach

to single-query path planning. In IEEE International Conference on Robotics

and Automation (ICRA), volume 2, pages 995–1001, 2000.

[35] Steven M. LaValle and James J. Kuffner. Randomized kinodynamic plan-

ning. International Journal of Robotics Research, 20(5):378–400, May 2001.

[36] Steven M. LaValle and James J. Kuffner. Rapidly-exploring random trees:

Progress and prospects. In B. R. Donald, K. M. Lynch, and D. Rus, editors,

Algorithmic and Computational Robotics: New Directions, pages 293–308,

2001.

[37] Stephen R. Lindemann and Steven M. LaValle. Current issues in sampling-

based motion planning. In Paolo Dario and Raja Chatila, editors, Robotics

Research: The Eleventh International Symposium, volume 15 of Springer

Tracts in Advanced Robotics, pages 36–54. Springer-Verlag, Berlin, 2005.

[38] Khaled Mamou and Faouzi Ghorbel. A simple and efficient approach for

3d mesh approximate convex decomposition. In 16th IEEE International

Conference on Image Processing (ICIP), pages 3501–3504, 2009.

[39] K. Miyazawa, Y. Maeda, and T. Arai. Planning of graspless manipulation

based on rapidly-exploring random trees. In The 6th IEEE International

Symposium on Assembly and Task Planning (ISATP): From Nano to Macro

Assembly and Manufacturing, pages 7–12, 2005.

[40] Takahiro Otani and Makoto Koshino. Applying a path planner based on rrt

to cooperative multirobot box-pushing. Artificial Life and Robotics, 13(2):

418–422, 2009.

[41] Markus Rickert. Efficient Motion Planning for Intuitive Task Execution

in Modular Manipulation Systems. Dissertation, Technische Universität

München, Munich, Germany, May 2011. URL http://nbn-resolving.de/

urn/resolver.pl?urn:nbn:de:bvb:91-diss-20110719-981979-1-6.

[42] Markus Rickert, Oliver Brock, and Alois Knoll. Balancing exploration and

exploitation in motion planning. In IEEE International Conference on

Robotics and Automation (ICRA), pages 2812–2817, 2008.

[43] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Pearson Education, 3 edition, 2010.

[44] JAMES project. Joint action for multimodal embodied social systems. http:

//www.james-project.eu. Accessed October 20, 2013.

76

http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20110719-981979-1-6
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20110719-981979-1-6
http://www.james-project.eu
http://www.james-project.eu

Bibliography

[45] Anna Yershova and Steven M. LaValle. Improving motion planning al-

gorithms by efficient nearest-neighbor searching. IEEE Transactions on

Robotics, 23(1):151–157, February 2007.

[46] Anna Yershova and Steven M. LaValle. Motion planning for highly con-

strained spaces. Technical Report UIUCDCS-R-2008-2975, Department of

Computer Science, University of Illinois, 2008.

[47] Anna Yershova, Léonard Jaillet, Thierry Siméon, and Steven M. LaValle.

Dynamic-domain rrts: Efficient exploration by controlling the sampling do-

main. In Proceedings IEEE International Conference on Robotics and Au-

tomation, pages 3867–3872, 2005.

77

	Introduction
	Motivation
	Related Work
	Outline

	Background
	Robotics Foundations for Motion Planning
	Geometric Representations and Transformations
	Forward Kinematics and Denavit-Hartenberg Convention
	Workspace and Inverse Kinematics
	Configuration Space

	Sampling-Based Motion Planning Foundations
	Distance Metrics in C-Space
	Sampling in C-Space
	Collision Detection
	Paths in C-Space

	Sampling-Based Motion Planning Algorithms
	Rapidly-exploring Random Trees (RRTs)
	Probabilistic Roadmaps (PRMs)

	Multi-Modal Planning

	Diverse Action Manipulation
	Problem Description
	Diverse Action RRT Algorithm (DARRT)
	Empty Space Planner
	Sampling in the DAMA C-space
	Distance Metrics for the DAMA C-space
	DARRT Algorithm

	Advanced Diverse Action RRT Algorithms
	Bidirectional DARRT
	Hierarchical Approach

	Diverse Action Manipulation Experiments
	World 1: Simple Mobile Robot
	Scenario 1: Manipulation with Three Movable Objects
	Discussion and Evaluation

	World 2: Joint Meka Robot JAMES
	The JAMES Project
	Robot Hardware
	Implementation Details
	Scenario 2: Rearranging Three Bottles
	Discussion and Evaluation
	Execution on real Meka Robot

	Conclusion
	Future Work

	Bibliography

