
FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Kinect-enabled activity recognition of
multiple human actors for a service robot

Sören Jentzsch

FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Kinect-enabled activity recognition of
multiple human actors for a service robot

Kinect-basierte Aktivitätserkennung
mehrerer menschlicher Akteure für einen

Serviceroboter

Author: Sören Jentzsch

Supervisor: Prof. Dr.-Ing. habil. Alois Knoll

Advisor: Dipl.-Ing. Claus Lenz

Manuel Giuliani, M.Sc.

Andre Gaschler, M.Sc.

Submission Date: October 17, 2011

Ich versichere, dass ich diese Bachelorarbeit selbstständig verfasst und nur die
angegebenen Quellen und Hilfsmittel verwendet habe.

I assure the single handed composition of this bachelor’s thesis only supported
by declared resources.

München, den 17. Oktober 2011

Sören Jentzsch

Abstract

The purpose of this bachelor’s thesis is to present a machine learning based ap-
proach to recognize several activities of persons interacting with a robot, based
on the position of their joints. In order for service robots to understand human
behavior and to interact with humans, this thesis investigates human-robot inter-
action within the JAMES project (Joint Action for Multimodal Embodied Social
Systems) on the basis of a bar scenario, in which a robot bartender serves human
actors. Motivating hidden Markov models (HMMs) to fulfill our activity recog-
nition task, we first focus on the theory behind them. Whereas the joint data
is obtained by the Kinect, a motion sensing device, this thesis further examines
how to develop a software program to provide us with our final number of 2307
labeled activities we utilize to train and test our HMM. The results of the 695
labeled activities used for testing reveal that about 90% of these were correctly
recognized. Considering activities which were recognized without occurrence in
the test data, we obtain an accuracy of over 70%. As this performance is in
the same order of magnitude as the training results, our approach for solving the
activity recognition task in our bar scenario is fairly reliable and robust. The con-
tribution of this thesis is to provide initial research in activity recognition within
the JAMES project and hopefully to lay a foundation for further investigation
and improvement in this area of research.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Outline . 3

2 Hidden Markov Models 5
2.1 Introduction to Markov models 5
2.2 Extension to hidden Markov models 7

2.2.1 Different types of hidden Markov models 9
2.3 Solving fundamental problems for hidden Markov models 10

2.3.1 Evaluation and the forward-backward algorithm 10
2.3.2 Decoding and the Viterbi algorithm 14
2.3.3 Learning and the EM algorithm 16

2.4 Extension to continuous multidimensional HMMs 20

3 Scenario 23
3.1 JAMES environment . 23
3.2 Bar scenario description . 23

4 Implementation 27
4.1 Hardware: Kinect-Sensor description and technical aspects 27
4.2 Software: HTK . 29

4.2.1 Data preparation . 30
4.2.2 HTK Tools . 31
4.2.3 Final notes . 33

4.3 Software: Kinactivity . 34
4.3.1 The Control Center . 35
4.3.2 The Learning Center . 36

5 Evaluation 39
5.1 Variable mixture count . 40
5.2 Variable state count . 41
5.3 Performance of the bar scenario model 44
5.4 Conclusion and future work . 47

Bibliography 49

vii

List of Figures

2.1 Graphical structure of hidden Markov models in general over the

course of time . 7

2.2 Example of a hidden Markov model (HMM) 8

2.3 Lattice (or trellis) diagrams for N -state HMMs over time 13

2.4 HMM lattice (or trellis) diagram illustrating the Viterbi algorithm 16

3.1 JAMES robot . 23

3.2 Resulting state transition diagram of our bar scenario 24

4.1 Picture of the Microsoft Kinect 27

4.2 Instances of skeleton poses belonging to the possible states in our

bar scenario . 29

4.3 Processing stages with our four HTK tools 31

4.4 Screenshot of Kinactivity’s Control Center 35

4.5 Screenshot of Kinactivity’s Learning Center 37

5.1 Clustered column chart showing the overall performance with six

states and a variable mixture count from 1 up to 10 41

5.2 Clustered-stacked column chart showing a more detailed perfor-

mance analysis having a variable mixture count and six states . . 42

5.3 Clustered column chart showing the overall performance with six

Gaussians and a variable state count from 3 up to 10 43

5.4 Clustered-stacked column chart showing a more detailed perfor-

mance analysis having a variable state count and six Gaussians . . 43

5.5 Performance of our 6-6-HMM based on scenario #29 (upper dia-

gram) and scenario #33 (lower diagram) 44

5.6 Confusion matrix comparing the classification of our testing data

between our reference labels (rows) and the recognized ones

(columns) gained by our 6-6-HMM (headline) 45

ix

1 Introduction

Human-robot interaction is said to have a huge impact on our life as science

advances. For now, robots, in this case rather called machines, mainly operate

in environments excluding real interaction with humans. In order to achieve the

change towards social robots, besides the shape of them, they have to reliably

detect, track and understand the activities of humans and then react appropri-

ately. As current research on human-robot interaction takes great steps forward,

this thesis will try to contribute to the field of human activity recognition.

1.1 Motivation

The work of this thesis is based upon the goals of the JAMES project (Joint

Action for Multimodal Embodied Social Systems) [28]. The JAMES project re-

searches the area of social robots in terms of interacting with humans in a socially

acceptable way, as stated by the robotics partner of the project, fortiss GmbH

[8]. There are many tasks for a robot to become a social robot. For example,

he has to understand what humans are saying, doing and, if possible, intend to

do. Among tasks like motion planning, dialogue management and body language

detection, the robot should be able to recognize the current activitiy of humans

in his field of vision. The latter task lays the foundation for this thesis.

With this work, we provide initial research in activity recognition based on a bar

scenario, which is the main demonstration scenario of the JAMES project. A robot

bartender serves humans and should be able to provide appropriate human-robot

interaction in a socially acceptable way. Our task shall be to recognize activities

of humans at a bar, for example if they are drinking or requesting the attention

of the bartender. According to these states, the robot can interact with them. For

example, the robot can avoid talking to a drinking person, or when he is clinking

glasses, the robot can respond with ”Cheers!”. These are interactions which might

help the robot to behave in a more social way, so that humans might feel more

comfortable interacting with him and accepting his role as a bartender.

Another motivation for activity recognition is to study the machine learning based

approach to solve this task. As we will discuss in the next section, we make use

1

1 Introduction

of hidden Markov models (HMMs) and hence are interested in their resulting

performance on this problem. In combination with the Kinect, a motion sensor

device providing joint data of tracked persons, we will try to learn an activity by

examples.

1.2 Related Work

Let us now take a look at related work concerning our activity recognition task.

At first, Sotzek [26] and Lenz et al. [17] present a workflow recognition for com-

plex assembly tasks for the hybrid assembly demonstration platform JAHIR [2]

(Joint-Action for Humans and Industrial Robots). Thereby, to detect different

movements both arm, left-to-right continuous hidden Markov models (HMMs)

are used. Evaluation of the results reveals that this is a convincing solution and

robust to several changes in the environment, providing an accuracy value of

about 90%. It is shown that HMMs are able to compensate different speed and a

different trajectory of the arm movement. Moreover, Sotzek presents a solid foun-

dation for the use of the Hidden Markov Model Toolkit (HTK) with non-speech

related data. These results reveal that hidden Markov models might be a very

good choice for our activity recognition task.

Whereas Ji and Liu [15] present an HMM based human action recognition based

on image sequences resulting in a reasonable recognition tool, even Yamato et al.

[32] in 1992 applied HMMs to images of sport scenes resulting in a recognition

rate of more than 90%.

Berndt and Dietmayer [4, 5] present an intention recognition of human drivers in

a car, based on HMMs and several environment observation signals. According

to Berndt and Dietmayer, initial tests showed promising recognition results, but

further work is needed to improve and adjust this approach. Hasan’ et al. [10]

and Sanchez et al. [25] also apply HMMs for activity recognition in their studies.

Moreover, Wang et al. [30] uses haptic data and HMMs to estimate the human

intention to move his or her arm. However, this emphasizes that HMMs should

be a reasonable technique for our activity recognition task.

Kerstin Huth [13] investigates characteristics and behaviors of humans in a bar

scenario by evaluating videos from real bars. Inspired by the results of her work,

we can later derive some reasonable and useful activities for our bar scenario.

For example, Huth shows that guests most likely do not use gestures to request

attention. Moreover, the body alignment and, to emphasize attention requests,

leaning forward towards the bartender are strong social signals. Thus, we can

make use of the skeleton data to differentiate between those activities.

2

1.3 Outline

1.3 Outline

Having discussed the motivation for applying hidden Markov models to our prob-

lem, in the second (next) chapter, we will review the theory of hidden Markov

models (HMMs).

Starting with the formalization of Markov models, we extend them and introduce

the hidden part. Focusing on a clear and comprehensible mathematical derivation,

we will discuss the most important algorithms for HMMs with the goal to actually

train our model to learn from training data. At the end, we extend our HMM

structure further to pave the way for us to implement them in our context.

In the third chapter, we will discuss our scenario, which is based on human-robot

interaction at a bar. First, we introduce the JAMES environment we are working

at, then we deliver a detailed description of our bar scenario including possible

activities and transitions between them.

The actual implementation part will be presented in the fourth chapter. There, we

introduce the hard- and software tools helping us to put the theory discussed so

far into practice. In the process, we especially focus on the usage of our software

program ”Kinactivity”, which we will use to record data, train and test our HMM.

In the final and fifth chapter we first evaluate the results given by different HMMs,

in order to find the best HMM structure for our data. We then analyze this HMM

in detail and discuss the results in the context of our bar scenario. Finally, we

summarize our work and briefly discuss future work.

3

2 Hidden Markov Models

In order to gain a deeper understanding of most processes in our world, one

has to consider the relationship between the observed states of that process over

time. Whereas we could also treat every data we observe as independent and

identically distributed (i.i.d), we will now take a look at a model which discards

that constraint and hence is designed to describe sequential data.

Our first approach to deal with sequential data will introduce Markov models. On

this basis, we will then discuss in detail the extension to hidden Markov models.

After formalizing them, we can finally turn to solving fundamental problems

with the focus on the learning part of our model. To conclude, we finally consider

continuous multidimensional models, as up until then we only assume discrete

one-dimensional models. With this knowledge we can then apply hidden Markov

models to our activity recognition task in the upcoming chapters.

Note that Rabiner [23] and Bishop [6] serve as the scientific basis of this chapter.

2.1 Introduction to Markov models

Sequential data can be of any kind, for instance measurement of time series,

nucleotide base pairs along a strand of DNA or the sequence of characters in an

english sentence, as stated in Bishop [6, p. 605], but in most cases we consider

temporal sequences, as we will do in this chapter.

In opposition to deterministic models, where we exploit known specific properties

of the process, we will deal with statistical (and thereby non-deterministic) mod-

els, in which we try to characterize only the statistical properties of the process,

so does Rabiner [23] distinguish between these models.

Let us further assume that we view the process as a series of snapshots (discrete

time slices)1 and that at each time t, we can describe the current state of the

process by a single discrete random variable Xt. The values of this variable are

the states S = {S1, ..., SN} of the N -state model.

1We assume the interval between time slices is fixed, so we can label times by integers, as pointed out
by Russell and Norvig [24].

5

2 Hidden Markov Models

First of all, we can express the joint distribution for a sequence of T observations

using the product rule by

p(X) = p(X1)
T∏
t=2

p(Xt|X1, ..., Xt−1) (2.1)

where X = {X1, ..., XT} denotes the set of the T random variables with Xi ∈
S, i ∈ {1, ..., T}.

Let us consider a small example given by Bishop [6]. Imagine, we have a time

series of recent observations of binary variables denoting whether on a particular

day it rained or not. We wish to predict whether it will rain on the next day. In

order to solve this and especially any other more complex problem utilizing (2.1),

in practice, we need to make two more important assumptions.

First of all, from now on, we assume our (stochastic) process to be stationary,

so that the joint probability distribution (and with it the statistical properties of

that process [23]) does not vary over time. In other words, as stated by Bishop [6],

the conditional distributions p(Xt|X1, ..., Xt−1) from which the states evolve in

time remain the same. A model satisfying this assumption is called a homogeneous

model.

Secondly, our current state should just be affected by a finite set of preceding

states. As Bishop [6] explains, future predictions should be independent of all

but the most recent observations. This assumption is called Markovian assump-

tion and processes satisfying it are called Markov models, named by the russian

statistician Andrey Markov2. The degree of dependency is given by the order of

the model.

From now on, we will just consider first-order (homogeneous) Markov models,

in which the current state just depends on the previous one. This leads us to a

simplified version of (2.1) given by

p(X) = p(X1)
T∏
t=2

p(Xt|Xt−1). (2.2)

Furthermore, the conditional distributions correspond to a static state transition

matrix A of dimension N ×N . For any time t, the elements of A are known as

transition probabilities and defined by

Ajk = p(Xt = Sk|Xt−1 = Sj), 1 ≤ j, k ≤ N (2.3)

2http://en.wikipedia.org/wiki/Andrey_Markov

6

http://en.wikipedia.org/wiki/Andrey_Markov

2.2 Extension to hidden Markov models

X1 X2 Xt
…. XT

Z1 Z2 Z t ZT

….

Figure 2.1: Graphical structure of hidden Markov models in general over the
course of time - Two stochastic processes take place: the hidden state
transition (Markov process) at each time slice (upper arrows) and the re-
sulting observation at each state (lower arrows).

where
∑N

k=1Ajk = 1 and 0 ≤ Ajk ≤ 1 because of standard stochastic constraints.

In order to calculate the special case p(X1) we introduce the initial state proba-

bility vector π of dimension N . Their elements are defined by

πi = p(X1 = Si), 1 ≤ i ≤ N (2.4)

where again
∑N

i=1 πi = 1 and 0 ≤ πi ≤ 1. Our Markov model is hence defined by

the model parameter set λ = (π,A).

2.2 Extension to hidden Markov models

Being more realistic, many processes in real-world can not be observed directly,

but we can often observe their signals and their effects on the environment.

Strictly speaking, our only way to identify the environment is by using our sen-

sors and senses. It is impossible to directly observe concepts like ”rain”, we can

just observe the effects of ”rain” to our senses, for example seeing or hearing

raindrops or feeling the wet ground. Let us thereby now differentiate between

the random variables concerning the states X and the observations, denoted by

Z = {Z1, ..., ZT}.

Introducing unobserved (hidden) states leads us to the concept of hidden Markov

models (HMMs), which are instances of state space models3. In contrast to regular

Markov models we discussed before, the states X are not directly observable,

but still form the Markov process. Figure 2.1 illustrates the resulting concept of

HMMs.

The observable variables Z can either be discrete or continuous, and a variety

of different conditional distributions can be used to model them, as pointed out

3Besides HMMs, linear dynamical systems are one of the most important examples of state space
models in which the state and observable variables are Gaussians, as described by Bishop [6].

7

2 Hidden Markov Models

Passing
Ball

Scoring
Chance

Goal

Silent Cursing Moaning Screaming

transition matrix (N×N)
A

hidden states (N)
S

emission matrix (N×M)
B

observations (M)
O

A32

B34

S2

O1

Figure 2.2: Example of a hidden Markov model (HMM) - N=3 hidden states
and M=4 possible observations (discrete variables) illustrated in a state
transition diagram with the corresponding labelling.

by Bishop [6]. Let us in first instance consider discrete observations, so that

Zi ∈ O, 1 ≤ i ≤ T with O = {O1, ..., OM} being a discrete set of M possible

observations. We will later discuss the continuous case. However, at any time t, the

observable variable Zt does only depend on the current hidden state of Xt. Vice

versa, at each time t the state Xt has a probability distribution over the observable

states and hence emmits a randomly picked observation. We can denote this

emission distribution by bj(k) = p(Zt = Ok|Xt = Sj), 1 ≤ j ≤ N, 1 ≤ k ≤ M

at any time t, as does Rabiner [23]. Again, because of our homogeneity, the

emission distributions for each state do not change over time. Furthermore, in

case of discrete observations, we will store them in a single emission matrix B of

dimension N×M with entries Bjk = bj(k) and the standard stochastic constraints∑N
k=1Bjk = 1 and 0 ≤ Bjk ≤ 1.

For a sequence of T observations, this leads us to the complete joint distribution

over both hidden states and observable variables, as stated by Bishop [6] and

Russell and Norvig [24], given by

p(X,Z|λ) = p(X1|π)

[
T∏
t=2

p(Xt|Xt−1,A)

]
︸ ︷︷ ︸

transition

T∏
t=1

p(Zt|Xt,B)︸ ︷︷ ︸
emission

(2.5)

in which the set of model parameters λ = {π,A,B} completely governs our

HMM.

Before we move on, let us now take a brief look at a simple example of a hid-

8

2.2 Extension to hidden Markov models

den Markov model. Assume the following scenario. You are watching an exciting

football match in the middle of a vast crowd of people not being able to see the

screen. By listening to the surrounding noises you imagine to infer the ongoing

action on the screen. Figure 2.2 shows a possible hidden Markov model for such

a task in a state transition diagram. Whereas you can observe a silent, cursing,

moaning or screaming crowd, the actual states of the game (e.g. passing ball,

scoring chance, goal) are hidden.

2.2.1 Different types of hidden Markov models

To take account for specific properties of the observed process, according to Ra-

biner [23], we can think of different types of interconnections between states. This

is done by imposing constraints on the transition matrix A. In our preceding ex-

ample (Figure 2.2), every hidden state of our HMM could be reached from every

other state within a finite number of time slices. We call this an ergodic model.

Let us now shortly discuss left-to-right models, another important and popular

type of HMMs. With left-to-right models, we want to model processes whose

properties change over time. Thereby, our model should be designed so that our

state index can just increase or stay the same with every new period of time (i.e.

states proceed from left to right). Before we formalise left-to-right models, let

us take a brief look at an example provided by Bishop [6] of their applications.

Assume, our goal is to create a model for on-line character recognition. That

means, each character is represented by the trajectory of the pen as a sequence

of pen coordinates. Thus, the character recognition properties change over time,

because the trajectory is a function of time. For example, the digit ’2’ starts at

the top left with a sweeping arc down to the cusp (or loop) at the bottom left,

followed by a second more-or-less straight sweep ending at the bottom right, as

stated in [6]. It should be clear that the model can not cope with writing the

character in reverse order. Another huge application field for left-to-right models

is speech recognition. Modelling each word as an own hidden Markov model,

we use left-to-right models to represent the acoustic development of that world,

which of course changes over time.

Left-to-right models are mathematically described as follows. We first start in

state S1, so that π1 = 1. Our model is then constrained by Aij = 0, j < i

with 1 ≤ i, j ≤ N , so that it can just proceed from left to right. Furthermore,

we can think of an additional constraint to prevent large state changes (jumps)

of more than ∆ states. In that case, our preceding constraint on A would be

supplemented by Aij = 0, j > i+ ∆. To conclude with an example, the following

state transition matrix corresponds to a 4-state left-to-right HMM with no more

9

2 Hidden Markov Models

than two jumps (i.e. ∆ = 2):

A =


A11 A12 A13 0

0 A22 A23 A24

0 0 A33 A34

0 0 0 A44

 (2.6)

2.3 Solving fundamental problems for hidden Markov models

With respect to Rabiner [23], let us now address three fundamental problems that

should be solved in order to apply our HMM to real-world applications:

1. Evaluation: How can we calculate the probability of a sequence of obser-

vations generated by a specific HMM?

2. Decoding: How can we determine the most likely sequence of hidden states

of a specific HMM given a sequence of observations?

3. Learning: How can we adjust the model parameters of a specific HMM so

that it generates a sequence of observations with maximum likelihood?

Note that Leonard E. Baum et al. [20, 19, 18, 3] and Andrew Viterbi [29] con-

tributed essentially to solving these problems.

2.3.1 Evaluation and the forward-backward algorithm

The evaluation problem is based upon the task of calculating p(Z|λ). Given the

observation sequence (stored in Z) and our HMM (defined by λ) we want to

evaluate how well that model matches that observation sequence. Evaluation is

needed for choosing correctly among several competing models for that one that

best matches the observations. For example, a simple isolated word speech recog-

nizer based on HMMs recognizes an unknown word (i.e. the observation sequence,

which consists of speech vectors) by evaluating each word-model and choosing the

word whose model has the highest likelihood of generating the unknown word.

A first naive attempt to solve the evaluation problem can be done based on (2.5)

by marginalizing over all possible state sequences giving

10

2.3 Solving fundamental problems for hidden Markov models

p(Z|λ) =
∑
all X

p(X,Z|λ) (2.7)

=
∑
all X

[
p(X1|π)

[
T∏
t=2

p(Xt|Xt−1,A)

]
T∏
t=1

p(Zt|Xt,B)

]
. (2.8)

Solving term on the right is highly inefficient, because we have N reachable states

for each time t, which results in NT possible state sequences. Thus, the calculation

grows exponentially with the lenght of the observation sequence and results in

computational cost that scale like O(NT).

Around the year 1970, Leonard E. Baum et al. [20, 19, 18, 3] laid the foundation

for a much more efficient way to solve the evaluation problem which is known

as the forward-backward algorithm and uses a recursive approach. At first, let us

define the forward variable αi(Xt) as

αi(Xt) = p(Z1, ..., Zt, Xt = Si|λ), 1 ≤ i ≤ N, 1 ≤ t ≤ T (2.9)

which represents the joint probability of the partial observation from start up

to time t and that our model is in state Si at time t. Then we can express the

desired calculation of p(Z|λ) by marginalizing over all possible end-states at time

t = T as follows:

p(Z|λ) =
N∑
i=1

αi(XT). (2.10)

Not let us take a look at how to calculate the forward variables αi(Xt). In line

with Bishop [6, p. 620] we will first derive the terms recursively by means of basic

conditional independence properties, and then illustrate the solution with help of

a HMM lattice diagram as presented by Rabiner [23].

At first, in order to start our recursive approach, we calculate the initial term

given by

αi(X1) = p(Z1, X1 = Si|λ) (2.11)

= πi · p(Z1 = Ok|X1 = Si,λ) 1 ≤ k ≤M (2.12)

= πi · bi(k) 1 ≤ k ≤M. (2.13)

11

2 Hidden Markov Models

In the next step we will derive the recursive relation between the forward variables.

To keep the derivation clear and short we reduce the expression Xt = Si and

Xt−1 = Sj, respectively, to Xt and Xt−1 instead, which should be clear in the

context:

αi(Xt) = p(Z1, ..., Zt, Xt)

= p(Z1, ..., Zt|Xt) · p(Xt)

= p(Zt|Xt) · p(Z1, ..., Zt−1|Xt) · p(Xt)

= p(Zt|Xt) · p(Z1, ..., Zt−1, Xt)

= p(Zt|Xt)
∑

all Xt−1

p(Z1, ..., Zt−1, Xt−1, Xt)

= p(Zt|Xt)
∑

all Xt−1

p(Z1, ..., Zt−1, Xt|Xt−1) · p(Xt−1)

= p(Zt|Xt)
∑

all Xt−1

p(Z1, ..., Zt−1|Xt−1) · p(Xt|Xt−1) · p(Xt−1)

= p(Zt|Xt)
∑

all Xt−1

p(Z1, ..., Zt−1, Xt−1) · p(Xt|Xt−1) (2.14)

= p(Zt|Xt)
N∑
j=1

αj(Xt−1) · p(Xt|Xt−1) (2.15)

= bi(k)
N∑
j=1

αj(Xt−1) ·Aji. (2.16)

Up to incl. (2.14) we made use of basic conditional independence properties writ-

ten down in Bishop [6, p. 619]. We then obtain the recursive core in (2.15) by

applying definition (2.9). To conclude, we express this solution by using our basic

model parameters and the definition Zt = Ok, 1 ≤ k ≤M which leads to (2.16).

The left lattice diagram in figure 2.3 illustrates the sum-term of the forward

recursion solution (2.16): If we consider (i.e. sum up) the αj’s of each state in the

previous time segment weighted by the transition probability Aji, which results

in state Si, we almost obtain αi for the current time segment. All that is left is to

account for the new observation (in (2.16 called Ok) which leads to multiplying

the previous result with bi(k) and we are done.

In contrast to our first naive attempt (2.8) which led to computational cost that

scale like O(NT) we now just have overall costs of O(N2): At each time t (there

are T time segments) for each state (there are N states) we have to compute the

N terms on the right of (2.16) which results in TN2 calculations. This refinement

12

2.3 Solving fundamental problems for hidden Markov models

. . .

SN

S2

S1

. . .

SN

S2

S1

. . .

SN

S2

S1

. . .

α t(X)

AN2

A22

A12

t - 1 t t + 1

. . .

. . .

. . .

. . .

. . .

α t+1(X)i 2

. . .

SN

S2

S1

. . .

SN

S2

S1

. . .

SN

S2

S1

. . .

β t(X)

A2N

A22

A21

t - 1 t t + 1

. . .

. . .

. . .

. . .

. . .

β t+1(X)i2

Figure 2.3: Lattice (or trellis) diagrams for N-state HMMs over time - Left:
Illustration how the forward variable α2(Xt+1) is related to its predecessors
αi(Xt). Right: Illustration how the backward variable β2(Xt) is related to
its successors βi(Xt+1) .

really plays a huge role in order to scale our algorithm with the length of the

observation sequence.

Let us now introduce the counterpart of the forward variables αi(Xt), these are

the backward variables βi(Xt). Although we do not need them solving the problem

of evaluation which we have already done with our forward variables, they will

be used to help solve fundamental upcoming problems concerning decoding and

learning. The backward variable βi(Xt) is defined by

βi(Xt) = p(Zt+1, ..., ZT |Xt = Si,λ), 1 ≤ i ≤ N, 1 ≤ t ≤ T (2.17)

which represents the joint probability of the partial observation from time t + 1

up to the end given that our model is in state Si at time t. Note that we will

define a backward algorithm (used for message passing as we will discuss later) so

that our recursion will start at t = T with the initial term (necessarily) defined

as

βi(XT) = 1, 1 ≤ i ≤ N. (2.18)

We will skip the complete derivation of the recursive relation between the back-

ward variables as it is quite similar to the derivation of the forward variables:

13

2 Hidden Markov Models

βi(Xt) =
N∑
j=1

βj(Xt+1) · p(Xt+1|Xt) · p(Zt+1|Xt+1) (2.19)

=
N∑
j=1

βj(Xt+1) ·Aij · bj(l). (2.20)

Again this result can be well illustrated by the right lattice diagram in figure

2.3 showing the first two terms of the marginalization step of (2.19). In addition,

we need to account for the observation of each successor which leads to the term

p(Zt+1|Xt+1). One can easily verify that this result is in line with definition (2.17).

Finally, applying our basic model parameters and the definition Zt+1 = Ol, 1 ≤
l ≤M leads to (2.20).

2.3.2 Decoding and the Viterbi algorithm

Our next problem is about decoding and deals with uncovering the hidden part of

an HMM. Given the observation sequence (stored in Z) and our HMM (defined

by λ) we want to decode the state sequence (stored in X) which explains our

observations with maximum likelihood. Solving this problem will help us gain-

ing a better understanding of the model structure and especially the (physical)

meaning of the model states in order to adjust our model accordingly in the next

step. Furthermore, for example in the context of speech recognition, decoding can

be used to find the most probable phoneme sequence given the acoustic signal

observations.

First of all we should clarify that we are not interested in searching the set

of states that are individually the most probable, as it does not consider the

state transitions. Two successive states that are individually the most probable

can represent a sequence having zero probability if the state transition proba-

bility between them is zero. That is why we are interested in finding the single

most probable state sequence, i.e. in maximizing p(X|Z,λ) which is equivalent

to p(X,Z|λ). An efficient way to calculate p(X,Z|λ) is given by the so called

Viterbi algorithm.

The Viterbi algorithm was first described by Andrew Viterbi in 1967 [29] in the

context of decoding convolutional codes and was further reviewed by Forney [7]

in 1973. This algorithm belongs to the class of dynamic programming algorithms

and hence solves our problem by breaking it down into simpler subproblems. As

a result of having a first-order hidden Markov model, our most likely sequence of

hidden states up to time t depends only on the most likely sequences up to time

14

2.3 Solving fundamental problems for hidden Markov models

t − 1, the observation at time t and the state transition probabilities. For each

state at each time t we only need to keep track of the most likely path that leads

to that state (survivor path). But before going into detail, let us start by defining

the probability quantities

δ̃(Xt) = max
X1,...,Xt−1

p(X1, ..., Xt, Z1, ..., Zt|λ) (2.21)

δ(Xt) = max
X1,...,Xt−1

ln p(X1, ..., Xt, Z1, ..., Zt|λ). (2.22)

δ̃(Xt) (2.21) stores the probability of the most likely path of states which ends

in the defined state Xt and accounts for the first t observations. Whereas δ̃ uses

floating-point arithmetic, δ defined by (2.22) uses log probabilities throughout

the computations in order to cope with the problem of underflow in the results.

In the same manner as done with the forward variables, we will define δ̃ and δ

recursively starting with t = 1 which leads to

δ̃(X1) = p(X1, Z1|λ) (2.23)

= πi · bi(k) (2.24)

δ(X1) = ln πi + ln bi(k). (2.25)

By induction similar to the derivation of (2.15) we obtain

δ̃(Xt) = p(Zt|Xt) · max
Xt−1

[
δ̃(Xt−1) · p(Xt|Xt−1)

]
(2.26)

= bi(k) · max
Xt−1

[
δ̃(Xt−1) ·Aji

]
(2.27)

δ(Xt) = ln bi(k) + max
Xt−1

[δ(Xt−1) + lnAji] (2.28)

where 2 ≤ t ≤ T and again Xt = Si, Xt−1 = Sj for defined i, j with 1 ≤ i, j ≤ N

and Zt = Ok for a defined k with 1 ≤ k ≤ M . Note that, in contrast to the

forward variables, we maximize over previous states Xt−1 instead of summing.

Figure 2.4 illustrates the Viterbi algorithm, especially the results of (2.27), using

some random numbers for the model parameters and the resulting probability of

the most likely path for each state in time.

To conclude, we can calculate the desired probability p(X,Z|λ) of the final most

likely path up to time T (called the Viterbi path) as follows:

15

2 Hidden Markov Models

. . .

. . .

. . .

0.154 . . .

δ t-2(X)

. . .

. . .

. . .

. . .

. . .
. . .

. . .

0.1280.031 0.083 0.007

0.131 0.143 0.0120.2030.197

0.256 0.218 0.048 0.099 0.042

~
δ t(X)
~

δ t-1(X)
~

δ t+1(X)
~

δ t+2(X)
~

0.82

0.63
0.21

0.925 0.753 0.6110.8720.593

0.91

0.85

0.69

Figure 2.4: HMM lattice (or trellis) diagram illustrating the Viterbi algo-
rithm - To efficiently determine the probability of the most likely path at
time t for a defined state Xt = Si, the Viterbi algorithm looks for any state
Xt−1 = Sj at time t−1 and chooses the one that has the highest probability
of its most likely path δ̃(Xt−1) weighted by the transition probability Aji.
To obtain the resulting probability δ̃(Xt) we also have to account for the
observation at time t whose probability is given by the rounded rectangle
at the bottom.

p(X,Z|λ) = max
XT

δ̃(XT) (2.29)

= exp

(
max
XT

δ(XT)

)
(2.30)

In order to retrieve the corresponding state sequence to the Viterbi path we

just need to keep track of the actual states that are chosen by the max-terms.

Therefore, Rabiner [23] and Bishop [6] introduce a function ψ(Xt) which stores

for each defined state Xt the last state of its most likely state sequence and

is computed along with (2.27), resp. (2.28). Once we reached the end t = T

and hence found the Viterbi path we can use backtracking utilizing ψ(Xt) to

easily obtain the resulting state sequence starting at the final state given by

arg maxXT
δ̃(XT), resp. arg maxXT

δ(XT).

2.3.3 Learning and the EM algorithm

In the third and final section of solving fundamental problems for HMMs we

want to discuss the learning or training of our model. Our goal will be to opti-

16

2.3 Solving fundamental problems for hidden Markov models

mally adapt the model parameters λ in order to maximize the likelihood function

p(Z|λ), the probability of our model to generate the given observation (training)

sequence stored in Z. This procedure is the key step to create an HMM for our

observations, which will often be extracted out of real phenomena. For example

in the context of speech recognition, given acoustic signal observations, learning

will provide us the ability to optimally estimate model parameters for each word

model.

Unfortunately, direct maximization of the likelihood function p(Z|λ) is not ap-

plicable and there is no known way to optimally adjust the model parame-

ters. With respect to Rabiner [23] and especially Bishop [6, p. 439-441,615-

618], we will apply an expectation-maximization (EM) algorithm to locally max-

imize our likelihood function using an efficient iterative procedure. Note that

A. P. Dempster, N. M. Laird, D. B. Rubin [27] (1977) were one of the first pre-

senting this general approach for incomplete data models, such as HMMs. In

general, our EM algorithm will work as follows: Starting with an initial selection

for the model parameters λold, we will reestimate them giving λnew by iteratively

applying an expectation (E) step followed by a maximization (M) step. At each

new iteration we start with our model parameters gained in the previous iteration

(λold ← λnew). We will now explain this procedure in detail.

Starting with the expectation (E) step, we have to evaluate the posterior distri-

bution of the hidden variables p(X|Z,λold). To achieve this, let us define the joint

and the marginal posterior distribution, denoted as ξ(Xt, Xt+1) and γ(Xt):

ξ(Xt, Xt+1) = p(Xt, Xt+1|Z,λ) (2.31)

γ(Xt) = p(Xt|Z,λ) (2.32)

=
∑
Xt+1

ξ(Xt, Xt+1). (2.33)

Given the observation sequence Z and the model parameters λ, ξ(Xt, Xt+1) (2.31)

is defined as the joint event probability of being in states specified by the two

successive latent variables Xt and Xt+1, whereas γ(Xt) (2.32) represents the prob-

ability of just being in state specified by the latent variable Xt. Furthermore, γ

can be expressed in terms of ξ by marginalizing over Xt+1 as denoted in (2.33).

With the results of the forward-backward algorithm we can now evaluate γ(Xt)

and ξ(Xt, Xt+1). Let us start with γ(Xt):

17

2 Hidden Markov Models

γ(Xt) =
p(Z|Xt) · p(Xt)

p(Z)
=

p(Z|Xt) · p(Xt)∑
Xt

[p(Z|Xt) · p(Xt)]
(2.34)

=
p(Z1, ..., Zt, Xt) · p(Zt+1, ..., ZT |Xt)

p(Z)
(2.35)

=
α(Xt) · β(Xt)

p(Z)
=

α(Xt) · β(Xt)∑
Xt

[α(Xt) · β(Xt)]
. (2.36)

After using Bayes’ theorem in (2.34) and the conditional independence property

in (2.35), we can finally substitute the existing terms utilizing our forward and

backward variables α(Xt) and β(Xt) which leads us to (2.36). The same procedure

can be applied for ξ(Xt, Xt+1) giving

ξ(Xt, Xt+1) =
p(Z|Xt, Xt+1) · p(Xt, Xt+1)

p(Z)
(2.37)

=
p(Z1, ..., Zt|Xt)p(Zt+1|Xt+1)p(Zt+2, ..., ZT |Xt+1)p(Xt+1|Xt)p(Xt)

p(Z)
(2.38)

=
α(Xt) · p(Zt+1|Xt+1) · p(Xt+1|Xt) · β(Xt+1)

p(Z)
(2.39)

=
α(Xt) · bj(k) ·Aij · β(Xt+1)

p(Z)
(2.40)

where again Xt = Si, Xt+1 = Sj and Zt+1 = Ok for defined i, j, k with 1 ≤ i, j ≤
N and 1 ≤ k ≤M .

After evaluating the joint and the marginal posterior distribution and thereby

the general posterior distribution of the hidden variables p(X|Z,λold), we will

now apply this result to calculate the expected value of the complete-data log

likelihood p(X,Z|λ). This function, denoted as Q(λ,λold), is evaluated for the

general parameter value λ, given the current estimate of the model parameters

λold, and defined as follows:

Q(λ,λold) =
∑
X

p(X|Z,λold) · ln p(X,Z|λ) (2.41)

=
N∑
i=1

[γ(X1 = Si) · ln πi] +
T−1∑
t=1

N∑
i=1

N∑
j=1

[ξ(Xt = Si, Xt+1 = Sj) · lnAij]

+
T∑
t=1

N∑
i=1

[γ(Xt = Si) · ln bi(k)] . (2.42)

18

2.3 Solving fundamental problems for hidden Markov models

Following Bishop [6, p. 616-617], to obtain equation (2.42), we make use of our

results for the joint and the marginal posterior distribution and (2.5). Again,

note that in the last term in (2.42), we assume Zt = Ok for a defined k with

1 ≤ k ≤M .

Let us now turn to the maximization (M) step, where we maximize Q(λ,λold)

with respect to λ and evaluate λnew given by

λnew = arg max
λ

Q(λ,λold). (2.43)

Using appropriate Lagrange multipliers for the maximization part in (2.43), as

suggested in Bishop [6, p. 617] and Rabiner [23], this leads us to the following

final set of reestimation formulas:

πnew
i =

γ(X1 = Si)∑
X1

γ(X1)
= γ(X1 = Si) (2.44)

Anew
ij =

T−1∑
t=1

ξ(Xt = Si, Xt+1 = Sj)

N∑
k=1

T−1∑
t=1

ξ(Xt = Si, Xt+1 = Sk)

=

T−1∑
t=1

ξ(Xt = Si, Xt+1 = Sj)

T−1∑
t=1

γ(Xt = Si)

(2.45)

bnewi (k) =

T∑
t=1

{
γ(Xt = Si), Zt = Ok

0, Zt 6= Ok

T∑
t=1

γ(Xt = Si)

. (2.46)

According to Rabiner [23], let us take a brief moment to understand why these

results are reasonable. For example, in case of the transition probability Anew
ij

(2.45), the numerator can be interpreted as the expected number of transitions

from state Si to Sj, whereas the denominator represents the expected number of

times that Si is even visited. Furthermore, the emission probability bnewi (k) (2.46)

is updated according to the ratio between the expected number of times being in

state Si and observing Ok, and being in state Si at all.

To conclude, we will shortly recall the procedure to train a hidden Markov model

using the EM algorithm. Starting with an initial (valid) selection of the model

parameters λold, we first apply the forward-backward algorithm to evaluate the

α and β terms. We then use the results to approach the E step, i.e. evaluate

both γ(Xt) and ξ(Xt, Xt+1) and hence Q(λ,λold). Finally, the M step gives us

19

2 Hidden Markov Models

revised model parameters λnew. We then continue applying the E and M step

using our new model parameters (λold ← λnew) until some convergence criterion

is satisfied, for instance
∣∣p(Z|λnew)− p(Z|λold)

∣∣ < t, i.e. the difference between

old and new evaluation of our likelihood function is below some threshold t.

Luckily for us, as stated in Bishop [6, p. 440] and Rabiner [23], the general EM

algorithm has the property that each iteration will never decrease p(Z|λ), i.e.

p(Z|λnew) ≥ p(Z|λold), unless we reached a local maximum, but there we finish

our training procedure.

2.4 Extension to continuous multidimensional HMMs

To this point, we just considered 1-dimensional discrete observations for our hid-

den Markov model. In practice, however, we are often dealing with continuous

and/or multidimensional data, as we will later when applying the theory of this

chapter to our bar scenario having a vector of multiple continuous joint positions.

So let us now briefly discuss the case of O being a D-dimensional vector of con-

tinuous values and Zt ∈ O, 1 ≤ t ≤ T , with Zt in bold characters as it now

represents a vector.

In order to define our new continuous emission distribution bj(Zt), we will apply

a mixture of K multivariate Gaussians, as they represent a widely used model

for the distribution of continuous variables. Thus, the emission distribution takes

the form

bj(Zt) =
K∑
k=1

cjk ·N (Zt|µjk,Σjk), 1 ≤ j ≤ N, 1 ≤ t ≤ T (2.47)

where cjk denotes the mixing coefficient, µjk the D-dimensional mean vector, and

Σjk the D ×D covariance matrix for the kth mixture component in state j. To

obtain a valid emission distribution, the stochastic constraints
∑K

k=1 cjk = 1 and

cjk ≥ 0 for 1 ≤ j ≤ N, 1 ≤ k ≤ K should be satisfied.

Now, the set of model parameters which completely governs our HMM is de-

scribed as λ = {π,A, c,µ,Σ}. Hence we need new reestimation formulas for the

parameters of the Gaussian mixture model. Reviewing the EM algorithm dis-

cussed before, the E step remains the same, except for the emission distribution

in (2.42), where we make use of definition (2.47). Moreover, maximizing (2.42) in

the M step with respect to our Gaussian mixture model parameters just needs

to consider the final term, so that we can independently apply EM for Gaussian

mixtures, as discussed by Bishop [6, p. 435-443], which results in

20

2.4 Extension to continuous multidimensional HMMs

cnewjk =

T∑
t=1

γ(Xt = Sj, k)

T∑
t=1

K∑
k=1

γ(Xt = Sj, k)

(2.48)

µnew
jk =

T∑
t=1

γ(Xt = Sj, k) ·Zt

T∑
t=1

γ(Xt = Sj, k)

(2.49)

Σnew
jk =

T∑
t=1

γ(Xt = Sj, k) · (Zt − µnew
jk)(Zt − µnew

jk)T

T∑
t=1

γ(Xt = Sj, k)

. (2.50)

The linking between EM for Gaussian mixtures and EM as discussed before is

reflected in the new marginal posterior distribution γ(Xt = Sj, k), where we

consider, given the observation Zt, the probability of being in state j and the

probability of mixture component k being responsible for the observation. Thus,

we need to multiply both so called responsibilities resulting in

γ(Xt = Sj, k) = γ(Xt) ·

cjk ·N (Zt|µjk,Σjk)
K∑
k=1

cjk ·N (Zt|µjk,Σjk)

(2.51)

where γ(Xt) is evaluated as previously using equation (2.36). Note that, similar

to the reestimation formulas (2.44)-(2.46), our new ones (2.48)-(2.50) can also be

verified easily by thinking in terms of expectation values, as suggested by Rabiner

[23]. For example, cnewjk represents the ratio between the expected number of times

our model is in state j and using the kth mixture component, and the expected

number of times the system is in state j at all. The same thoughts can be applied

to verify (2.49) and (2.50).

21

3 Scenario

In this chapter, we will discuss our human-robot interaction scenario and derive

a model which can then be implemented in the later stages. Let us first introduce

the JAMES project (Joint Action for Multimodal Embodied Social Systems).

3.1 JAMES environment

The JAMES project (Joint Action for Multi-

Figure 3.1: JAMES robot - robot
acts as a bartender in
a bar scenario serving
humans.

modal Embodied Social Systems) [28, 8] re-

searches the area of robots having a socially

appropriate behavior and interact in that way

with humans. The main demonstration sce-

nario of the JAMES project is based upon

a bar scenario in which the robot, shown in

figure 3.1, serves human guests. Thus, de-

tection of social aspects and signals are cru-

cial in order for a robot to fulfill the role of

a human bartender. For example, the robot

should serve the guests in the right order.

Furthermore, in order to interact with hu-

mans in a more indirect but similarly impor-

tant way, he should also be able to recognize

the activities of human actors so that he can

interact with them at any time depending on

the situation. For example, if two persons are

clinking glasses, the robot could respond with

”Cheers!”, for instance.

3.2 Bar scenario description

In the context of this bar scenario, let us now think of appropriate activities.

Throughout the thought process, we will entitle them in brackets.

A person can enter (Enter) and leave (Leave) the area in front of the bar. To

23

3 Scenario

ENTER

BAR RIGHT TURNED

ATTENTION REQUEST

BAR STRAIGHTBAR LEFT TURNED

LEAVE

DRINK CHEERS

Figure 3.2: Resulting state transition diagram of our bar scenario - We have
eight states and 26 transitions, including the start transition to Enter and
the final transition out of Leave.

recognize where his or her main attention is directed to, we consider tracking

the orientation of the body and hence if he is turned to the left (Bar Left

Turned), to the right (Bar Right Turned) or straight to the bar (Bar

Straight). Note that here we are not so much interested in the position of the

body as it can easily be computed analytically, for instance by calculating the

center of mass of all the joints. Near the bar, one can request the attention of the

bartender (Attention Request). Evaluation of Kerstin Huth’s video material

of guest-bartender interactions as presented in [13] has shown that guests often

physically request the attention by leaning forward towards the bartender, more

often than using gestures, thus allowing us to track this state with our skeleton

data. As a matter of course, a person will drink near the bar (Drink), either

with the left or with the right hand. Furthermore, as some kind of social activity,

one can clink glasses, drink a toast or just say cheers (Cheers) towards other

guests or the bartender, with either the left or the right hand.

In the next step, we will define adequate transitions between these eight activities.

From now on, we will denote them as our states.

At the beginning of any scenario, the person has to be calibrated by the Kinect

and thus standing outside of the bar area. That said, we will always start with

Enter, the so called start state or start node. We then assume that sooner

or later our person will enter Bar Left Turned, Bar Straight or Bar

Right Turned. In each of these three body orientations, Drink and Cheers

are possible new states. Within these five states, we can transition among one

24

3.2 Bar scenario description

another, except for the following two cases: Firstly, turning from left (Bar Left

Turned) to right (Bar Right Turned) and vice versa obviously requires Bar

Straight in between. Secondly, we forbid direct transitions between Drink and

Cheers. Although we could label our data in a different way allowing direct

transitions, practice has shown that our model becomes more stable disallowing

them, as there is always skeleton data between these two states belonging to either

Bar Left Turned, Bar Straight or Bar Right Turned, concerning the

latter case. However, to continue, Attention Request, as we defined it by

leaning forward towards the bartender, should only be considered when being

in the state Bar Straight. Also, each end of Attention Request leads us

again into Bar Straight. So far, we just have to discuss transitions involving

the state Leave. In order to leave the bar area, we assume that our person first

has to turn to either the left or the right side, because in practice no one leaves

the bar moving backwards. Furthermore, we suppose that leaving the bar area

does not occur immediately after Drink or Cheers, as there should always be at

least one frame of skeleton data belonging to either Bar Left Turned or Bar

Right Turned before leaving. That said, we only allow transitions from Bar

Left Turned and Bar Right Turned to the state Leave. At last, being in

Leave, we can re-enter (Enter) the bar area or complete our scenario, hence

Leave will be our end state or end node. Finally, Figure 3.2 shows the resulting

state transition diagram we will implement later using a hidden Markov model.

25

4 Implementation

After describing our bar scenario, we can now turn to the implementation part.

In this chapter, we mainly discuss the Kinect hardware and the software tool

HTK and its integration in a software program called ”Kinactivity”. Thereby,

we will focus on understanding the individual working processes when utilizing

Kinactivity. With these tools, we can build, train and test our hidden Markov

model. The results gathered in the process can then be evaluated in the next

chapter.

4.1 Hardware: Kinect-Sensor description and technical aspects

Our motion sensing input device to

Figure 4.1: Picture of the Microsoft
Kinect - Sensing input device
equipped with the IR projector,
Color- and Depth Camera (left to
right)

provide us with joint data will be the

Kinect by Microsoft. As described

more detailed in [9, 22, 31], let us

now gain a quick overview of the

Kinect.

Launched in November 2010, Mi-

crosoft originally released the Kinect

for the Xbox 360 video game console

providing a new way of interacting

with the Xbox, where your body is

the only input device.

The Kinect consists of a RGB-Camera (VGA, 640 × 480 pixels, 30 Hz), an IR

Depth-Camera (QVGA, 320 × 240 pixels, 30 Hz), an IR projector and a multi-

array microphone allowing acoustic source localization and ambient noise sup-

pression. The depth sensing is based on the ”Light Coding”-technique by the

israeli company PrimeSense and works as follows [22]: While the infrared laser

(IR projector) projects a structured dot pattern (infrared laser grid) similar to

a starry sky, the Depth-Camera, equipped with a monochrome CMOS-sensor,

receives the infrared light reflected by the scene. The depth map is generated

by comparing this resulting picture with the stored reference pattern. The depth

27

4 Implementation

sensor can maintain tracking through approximately 0.7 to 6 m, but the practical

ranging limit is of 1.2m to 3.5m distance.

Build upon this structured-light approach to receive a 3D image, the Kinect

is equipped with software allowing revolutionary full body tracking of multiple

persons at low financial costs. Whereas range cameras (3D cameras) were very

expensive (thousands of euros), thanks to large-scale production, the Kinect’s

price has reached around 100 ¤. According to UBM Techinsights, the total costs

of the Kinect components are about 56 US-Dollar, as stated in [22]. Furthermore,

the Kinect holds the Guinness World Record of being the ”fastest selling consumer

electronics device” [14].

As stated in [21], the Microsoft Research laboratory applied machine learning

techniques and a very large database of pre-classified images, covering varied poses

and body types, to develop a motion-capture solution in real time without the

need of any required instrumentation (e.g. markers) placed on the moving human

subject. This work was awarded by the 2011 MacRobert Award for engineering

innovation.

In December 2010, PrimeSense released their own open source drivers allow-

ing the Kinect to be effectively used in computer environments. PrimeSense has

partnered with Willow Garage and Side-Kick to create OpenNI, a not-for-profit

organization set up to ”certify and promote the compatibility and interoperabil-

ity of Natural Interaction (NI) devices, applications and middleware” [12]. The

OpenNI-framework provides a uniform programming interface for driver- and

middleware-modules allowing tasks such as (skeletal) tracking and visual analy-

sis of the sensor data. The NITE-middleware by PrimeSense allows the real-time

motion tracking of persons providing skeletons with 15 joints each.

A short time after the release of the Kinect, applications were programmed, which

go far beyond the system’s intended purpose of playing games: Human-Computer

Interaction (HCI) using gestures and spoken commands (natural user interface),

interaction between robots and humans, medical visualization, virtual-reality ap-

plications, input device for 3D printers, interactive media, and many more.

On June 2011, Microsoft has released an official non-commercial Kinect software

development kit (SDK) for Windows, which paves the way for many new so-

phisticated high-level applications of this broad range of relatively new research

areas.

In our bar scenario, however, we will use the position of nine joints obtained by

the Kinect: the head, neck, torso and (each left and right) the shoulder, elbow

and the hand. This results in 27 continuous position values, as we consider the x,

y and z position of each joint, so that our HMM observation vector will have 27

28

4.2 Software: HTK

Figure 4.2: Instances of skeleton poses belonging to the possible states in
our bar scenario - From left to right: Enter, Bar Right Turned,
Bar Straight, Attention Request, Cheers (to the bartender with
the left hand), Drink, Cheers (to the left with the right hand), Bar
Left Turned, Leave.

dimensions.

Figure 4.2 shows resulting skeletons and examples of skeleton poses belonging to

the possible states in our bar scenario.

4.2 Software: HTK

We use the Hidden Markov Model Toolkit (HTK)1 for building, learning and

testing HMMs. Main source for utilizing HTK is the HTKBook [33]. HTK is

primarily designed for creating HMM-based speech recognition tools and therefore

much of the infrastructure support is dedicated to this task, as stated in the

HTKBook [33]. However, with various adjustments and some overhead, we can

use HTK as a powerful toolkit for our purposes with no need to implement the

algorithms discussed in Chapter 2 on our own. Nevertheless, we have to be aware

of how the underlying algorithms work in order to effectively deploy HTK tools in

practice. Sotzek [26] laid a solid foundation for the use of HTK with non-speech

related data.

Before actually discussing the HTK tools we will use for training, testing and

analysis purposes, we first have to go through some data preparation steps in

order for us to implement our bar scenario problem in HTK.

1http://htk.eng.cam.ac.uk/

29

http://htk.eng.cam.ac.uk/

4 Implementation

4.2.1 Data preparation

In section 3.2, we introduced our bar scenario with eight states (activities) and 26

transitions. However, in HTK, we model and later train each activity as an own

isolated HMM and combine them according to a so called defined HMM network.

In the end, we obtain one final composed HMM.

For each of the activity models, we first have to create an initial prototype model

using the HMM definition language described in Chapter 7 of the HTKBook [33].

Let us first think of an appropriate topology for these individual models. In section

2.2.1, we introduced left-to-right models to account for processes whose properties

change over time. In case of activity recognition, and similar the workflow for

assembly tasks as presented in Sotzek [26], left-to-right models can represent

the actual development of the activity process over time, so these are appropriate

models for our task. We implement them by setting the respective elements of the

transition matrix A to zero initially, that way they will remain zero throughout

the process of the learning algorithm. For each state, we allow a maximum of one

state which can be jumped over when transitioning.

Furthermore, we have to think of the number of inner states of each activity model

and of the mixture count, i.e. how many multivariate Gaussians are involved in

generating the output in a specific state. These will be two crucial parameters and

as there is no analytical way to determine the best numbers, we will later in the

evaluation part come back to this problem. However, we make two assumptions

in order for us to lower the free parameter: For each activity, the number of inner

states, and for every inner state of each model, the mixture count is equal. Thus,

we will have to determine two global parameters later on: The number of (inner)

states and the number of Gaussians. From now on, mentioning the number of

states will refer to the inner states, whereas the number of activities is always

fixed to be eight.

Note that in HTK, the entry activity model is determined by the HMM network

and the entry state of each activity itself is always the first inner state, as we use

left-to-right models. Moreover, for each model, the first and the last state (which

is the exit state) are non-emitting, because of the composition of all the models.

Thus, having a state count of five, for instance, results in just three ”real” states

which actually are able to generate output.

In order to combine these single activity models to a composed HMM, in HTK,

we make use of the HMM network defined by the HTK Standard Lattice Format

(SLF), described in the HTKBook [33], Chapter 20. In our bar scenario, we can

directly use our previously modeled diagram 3.2 with 26 transitions to create a

file called model net.slf manually.

30

4.2 Software: HTK

HInit HRest HVite HResults

Trained

HMMs

Recognized

Transcriptions

Reference

Transcriptions

HMM

Network

Joint

Data

Training Testing Analysis

Figure 4.3: Processing stages with our four HTK tools - In the training process,
we pass the joint data and the reference transcriptions to each HInit and
after it HRest to generate the trained set of HMMs. With them, our joint
data and the HMM network, i.e. the structure of composed activity-HMMs,
we can invoke HVite to build the final recognized transcription files. This
process is called the testing phase. In the end, we can compare the reference
with the recognized transcriptions invoking HResults in order to analyze
the performance of our trained HMM. This figure is inspired by HTKBook
[33, p. 17].

Finally, note that label files (transcription files) are stored using the HTK Master

Label File (MLF) format, as described in the HTKBook [33], Chapter 6.

4.2.2 HTK Tools

Out of the over 30 command line HTK tools, we just need the following four

to solve our HMM based activity recognition task: HInit, HRest, HVite and

HResults. They will later be applied in just the same order we have listed

them. You can gather more information about HTK tools in chaper 17 of the

HTKBook [33], particularly for these tools in section 17.9, 17.18, 17.23 and 17.19,

respectively. Now let us briefly discuss what these tools actually do.

4.2.2.1 HInit

A quick recap: In order to apply the learning algorithm for HMMs, i.e. the EM

algorithm discussed in Chapter 2, we need an initial selection for the model pa-

rameters λold. HInit does exactly this estimation process. That said, at the be-

ginning of the training stage, we first invoke HInit for every activity model as

the following instance shows:

31

4 Implementation

HInit -A -D -i 75 -S model_train_data.txt -M hmm/ -H proto/hmm_drink

-I model_train_labels_true.mlf -l drink drink.

The basic principle of HInit is realized similar to the iterative learning algorithm,

but instead of assigning each observation vector to every state according to the

probability of being in that state (i.e. considering γ(Xt = Si)), we assign each

observation vector to one individual state, starting with dividing them equally

among all states (uniform segmentation). HInit then makes use of a specific

segmental k-means procedure computing means and variances of each mixture

by averaging the observation vector of each state, applying the Viterbi algorithm

to find the most likely state sequence to finally reassign the observation vectors

(Viterbi alignment). We then start over again until the estimated values do not

change (convergence) or some maximum number of estimation cycles has been

reached, in our example above we set this number to 75. Note that with each

iteration, the transition probabilities are estimated by considering the number of

times the Viterbi alignment makes each transition. HInit is explained in detail

in the HTKBook [33], sections 1.4, 8.2 and 17.9.

4.2.2.2 HRest

In practice, however, we have to discard the assumption that each observation

vector can be assigned to one specific state. Thus, HRest further re-estimates the

initial model parameter values computed by HInit by replacing the segmental

k-means procedure with the EM learning algorithm we discussed in Chapter 2.

Again for every activity model, we invoke HRest with the following command:

HRest -A -D -i 75 -S model_train_data.txt -M hmm/ -H hmm/macros -H

hmm/hmm_drink -I model_train_labels_true.mlf -l drink drink.

HRest is explained in detail in the HTKBook [33], sections 1.4, 8.4 and 17.18.

4.2.2.3 HVite

Now that we obtained our final trained HMM for each activity, with our HMM

network, we can decode the most likely series of activities for a given sequence

of joint data based on the Viterbi algorithm discussed in Chapter 2. This task is

performed by the recogniser or decoding tool HVite, which outputs the result-

ing recognized transcriptions of the input joint data. We invoke HVite once as

follows:

HVite -A -D -T 4 -S model_train_data.txt -H hmm/macros -H

hmm/hmmdefs -i model_train_labels_recognized.mlf -w model_net.slf

32

4.2 Software: HTK

model_dict.txt model_list.txt.

This allows us to actually test the performance of our final model concerning the

testing and training data. Again, HVite is explained in detail in the HTKBook

[33], sections 2.3.3, 17.23 and especially in Chapter 13.

4.2.2.4 HResults

In order to analyze the performance of our recogniser (trained HMMs), we need

to compare the recognized with the corresponding reference transcriptions. In

HTK, we make use of HResults, a performance analysis tool which provides

various meaningful statistics. HResults can be invoked as follows:

HResults -f -p -I model_train_labels_true.mlf model_list.txt

model_train_labels_recognized.mlf.

Among various statistics, based on the standard US NIST FOM metric, HRe-

sults counts substitution, deletion and insertion errors and hence can compute

the activity accuracy. We will come back to the possibilities of this tool and dis-

cuss the statistics in Chapter 5 when we evaluate our bar scenario results. More

information about this tool can be found in the HTKBook [33], sections 2.3.4,

3.4, 13.4 and 17.19.

4.2.3 Final notes

Figure 4.3 illustrates the processing stages of the four HTK tools we have just

discussed.

Finally, let us briefly mention two more HTK tools, which will not be necessary in

order to create, train and test our model, but are still embedded in our software

program Kinactivity.

At first, HSGen is a useful tool which generates random examples of our defined

HMM network in order to somewhat verify the correctness of the network or to

obtain sample sequences of activities which can be used as a basic structure for

training scenarios. Sections 12.6 and 17.20 in the HTKBook [33] provide more

information about HSGen.

Instead of creating the HMM network manually as we mentioned above, HTK

also provides a way to build the network automatically given a grammar based on

extended Backus-Naur Form (EBNF) notation. The tool is called HParse and

further information about it and about EBNF can be found in the HTKBook

33

4 Implementation

[33], sections 12.3 and 17.16. However, in our scenario, we use a manually created

HMM network.

Note that, in our software program Kinactivity, every time we execute a HTK

tool, we will store the output of that tool in a corresponding log file. Thus, if any

errors occur, we can easily trace them.

4.3 Software: Kinactivity

In order to record data, create, train and test HMMs, it is much more comfortable

to have a single software program that automatically handles most of the pro-

cesses and tasks needed. In the end, the user should only be confronted with the

essential actions and decisions. That is why we developed Kinactivity, a software

programmed in C++, which makes use of the following libraries and frameworks:

� OpenNI2, a framework for writing applications utilizing natural interaction.

In Kinactivity, this API covers communication with the Kinect, as well

as the high-level user tracking with NITE. We make use of the OpenNI

Binaries (i.e. ”OpenNI Unstable Build for Windows x86 (32-bit) v1.3.2.3

Development Edition”), the OpenNI Compliant Middleware Binaries (i.e.

”PrimeSense NITE Unstable Build for Windows x86 (32-bit) v1.4.1.2 De-

velopment Edition”) and extern3 OpenNI Compliant Hardware Binaries (i.e.

”SensorKinect-Win-OpenSource32-5.0.3.4.msi”).

� Qt4 4.7.4, a framework for developing application software with a graphical

user interface (GUI). Here, Qt provides a helpful and interactive GUI for

Kinactivity.

� OpenCV5 2.3.1, a library of programming functions for real time computer

vision. It is used primarily for manipulating (e.g. resizing) the depth and

image data and then transferring them from the OpenNI framework to Qt.

� Boost6 1.47.0, free peer-reviewed portable C++ source libraries. Kinactivity

utilizes them in many cases, especially concerning filesystem, multi-thread

synchronizing and string algorithm issues.

Every library and framework can be used platform-independent. However, due to

the software development process, we have just tested Kinactivity on Windows

2http://www.openni.org/
3https://github.com/avin2/SensorKinect
4https://qt.nokia.com/
5http://opencv.willowgarage.com/wiki/
6http://www.boost.org/

34

http://www.openni.org/
https://github.com/avin2/SensorKinect
https://qt.nokia.com/
http://opencv.willowgarage.com/wiki/
http://www.boost.org/

4.3 Software: Kinactivity

Figure 4.4: Screenshot of Kinactivity’s Control Center - The user can see the
RGB (left lower one) and the depth image (left upper one), record data from
our Kinect and label them. Thereby, basic start, stop and pause buttons are
implemented and when viewing labeled files (special data format *.kina),
one can compare the recognized (here denoted as ”Rec:”) and the reference
(”True:”) transcriptions over time.

so far. Nevertheless, porting it to Linux does not imply a great effort and will be

eventually done in the future.

Kinactivity is divided into two tabs: the ”Control Center” and the ”Learning

Center”. Let us now take a deeper look at both of them.

4.3.1 The Control Center

In the ”Control Center” (Figure 4.4), on the upper left side you can see the depth

image and below the RGB image. If users are tracked, the depth image also

displays the skeleton for each user in another colour. On the upper right side

you can find the control buttons. ”Start” and ”Pause” should be self-explanatory.

Below, you can switch to another source. There are three possible sources: ”Live”,

”Record” and ”Kina”.

To make the live mode work, you need a functioning Kinect connected with your

PC and OpenNI drivers installed. During the live mode, RGB and depth data are

recorded using the OpenNI recording file format (*.oni). Every recording starts

with selecting ”Live”, is stored in Kinactivity’s workpath in the directory ”data/”

35

4 Implementation

using the file name specified by the input field next to the button, and ends with

selecting another source or by shutting down the program.

In the record mode, you can replay any *.oni file. Only in this mode it is pos-

sible to collect training data or test data used for our hidden Markov model by

clicking on ”Start Record Model Data”. The number in brackets indicates which

data set you are actually recording and increases each time you start and stop

recording model data. Keep in mind that model data is only recorded when at

least one user is calibrated and being tracked. The recorded model data consists

of several files which again are initially stored in Kinactivity’s workpath directory

”data/”. Recording will stop when switching to another source, selecting ”Stop

Record Model Data” after starting, when the record ends or by shutting down

the program. After recording, you can choose whether you want to train or test

the HMM with that data, and, depending on the choice, move the files to either

”data/train” or ”data/test”.

The ”Kina”-mode is by far the most interesting mode for visualizing model data

and finally the output of our hidden Markov model. For each recording, a metafile

(*.kina) is generated. With the ”Kina”-button, we can select any kina-file in either

”data/train” or ”data/test” and replay the record showing the current reference

and (if transcription files were generated in the Learning Center) the current

recognized activity.

Figure 4.4 shows a screenshot of the Control Center playing a kina-file. The red

caption illustrates the current reference and the current recognized activity.

4.3.2 The Learning Center

The Learning Center allows us to create, train and test HTK related HMMs of

any scenario. Figure 4.5 shows the layout of this tab.

At first, we have to develop an initial model. Depending on whether we are

creating the HMM network manually or use the EBNF notation to generate

it automatically, we just need to insert the names of the activities (in capital

letters, separated by a space) or the complete grammar containing the activity

names into the text field on the upper left side. Furthermore, before pressing the

”Create Model”-button, we need to determine the inner state and the mixture

count concerning each HMM of the eight activities. Then, when pressing the

button, the following files will be created:

� model_gram.txt stores the string in the text input box and is used by

several HTK tools

36

4.3 Software: Kinactivity

Figure 4.5: Screenshot of Kinactivity’s Learning Center - Here the user can ac-
tually create a HTK related HMM based upon the states in the text field
(or the grammar if parse is checked) and the number of inner states and
mixtures. One can also create as many random observations as one wishes
in order to test the HMM network structure, for instance. Furthermore, we
can train the HMM and subsequently label all training records based on
the trained HMM, and write the transcriptions concerning the test records.

� model_list.txt contains the list of HTK-related phonemes, which are the

names of activities to lowercase letters

� model_dict.txt contains the dictionary, i.e. a list of activities and their

orresponding phoneme

� model_gram.txt contains the HMM network [only if parse grammar is

checked]

� HMM prototype files for each activity in the subfolder ”model/proto/”

Invoking ”Create Random Observations” creates the file

model_random_cases.txt which contains as many random examples of

possible activity sequences as is specified in the input box on the left.

After initializing our model, we can train it by pressing the ”Train Model”-button.

The underlying course of action is as follows:

1. Create model_train_data.txt to list all joint data files (.bin) in ”data/-

train”

2. Create model_train_labels_true.mlf containing all transcription files

(.lab) in ”data/train”

3. Invoke HInit for each activity HMM to estimate initial model parameters

4. Create the global options file macros in ”model/hmm/” containing several

37

4 Implementation

meta data information

5. Invoke HRest for each activity HMM to apply the EM learning algorithm

6. Create the Master Macro File (MMF) hmmdefs storing all the HMM defini-

tions in one file

7. Invoke HVite to generate model_train_labels_recognized.mlf, the

Master Label File (MLF) containing all the recognized transcriptions of

the training data

8. Invoke HResults to gather statistics about the performance of our final

model on the training data, in which the output is stored in the file HRe-

sults_train.log in ”model/log”

Furthermore, the ”Label Test Data”-button invokes the following:

1. Create model_test_data.txt to list all joint data files (.bin) in ”data/test”

2. Create model_test_labels_true.mlf containing all transcription files

(.lab) in ”data/test”

3. Invoke HVite to generate model_test_labels_recognized.mlf, the Mas-

ter Label File (MLF) containing all the recognized transcriptions of the test

data

4. Invoke HResults to gather statistics about the performance of our final

model on the test data, in which the output is stored in the file HRe-

sults_test.log in ”model/log”

38

5 Evaluation

After discussing how to implement our HMM based approach to recognize activ-

ities, we can now turn to the evaluation of our results.

For our bar scenario, we have recorded 34 real scenarios and about 11 MB of

raw joint data resulting in about 106,000 data frames and hence about nearly

60 minutes of recording. Altogether, we manually labeled 2307 activities for our

reference transcription files. In order to evaluate the results, we divide them into

70% train and 30% testing data, so that 20 scenarios (1612 activities) are used for

training and 14 (695 activities) for testing purposes. To measure the performance

of our final HMM, we are most interested in maximizing the recognition of the

test data, as they can tell us, if our model generalizes successfully and can actually

recognize activities it has not been trained with.

For the evaluation of our results, we make use of the HTK performance analy-

sis tool called HResults, further described in the HTKBook [33], Chapter 17,

HResults (17.19). HResults compares the recognized transcription files created

by HVite with the referenced ones we labeled manually. Thereby, it uses the

standard US NIST FOM metric to generate recognition statistics. We will now

discuss this process in detail.

Let us first take a look at an example of a recognition statistic obtained by

HResults for a 6-4-HMM (6 inner states, 4 mixtures):

---------------- Overall Results -----------------

SENT: %Correct=0.00 [H=0, S=14, N=14]

WORD: %Corr=88.78, Acc=68.63 [H=617, D=42, S=36, I=140, N=695]

===

The first line denotes the percentage number of recognized label files (scenarios)

which are completely identical to the referenced ones. Obviously, as our scenarios

are quite long and difficult to recognize completely, there are no identical ones.

Instead of comparing complete scenarios, we should better discuss comparing the

actual activities (in HTK here called words). The second line gives us detailed

information about this. First of all, let us take a look at the data in the brackets:

Based on 695 labeled activities in total (denotes as N), 617 labels were correctly

recognized (H), whereas 42 labels were deleted (D), 36 substituted (S) and 140

39

5 Evaluation

new inserted (I) in the recognized label files overall. With these numbers, we can

then calculate the percentage number of labels correctly recognized (%Corr) and

the accuracy (%Acc), as done by HResults using the following formulas:

%Corr =
H

N
× 100% (5.1)

%Acc =
H − I
N

× 100% = 100%−
(
D + S + I

N
× 100%

)
. (5.2)

Note that every activity (label) in the reference transcription files can either be

recognized correctly, substituted by another activity or just be deleted (skipped)

in the recognized transcription files, so that N = H +D+S. In order to account

for activities which were inserted in our recognition files in between substitu-

tions, deletions or correct labels, we just defined (5.2) for a measurement of our

accuracy. Thus, the accuracy is a more representative measure for the recogniser

performance than the correctness value. The counterpart to the accuracy is the

ratio of errors related to the total number of activities, as shown by the right

term of the second equation in (5.2).

After briefly discussing the terminology involved in our evaluation, we can now

turn to the question, how many inner states and how many Gaussians (mixture

count) our model should have in order to gain the best results. As there is no

formula to determine the best numbers, we have to apply the trial and error

approach.

5.1 Variable mixture count

Let us begin with the mixture count. We will evaluate our testing and training

datasets with a constant inner state count of six and a variable mixture count

from 1 up to 10. In a short pre-evaluation process we made beforehand, an inner

state count of six has shown good results, so in this section we will stick with it.

Figure 5.1 shows the resulting overall performance in a clustered column chart

when evaluating (5.1) and (5.2) for both the testing (blue columns) and training

(green columns) datasets.

First of all, we should reflect that we are most interested in maximizing the per-

formance on our test data. Despite the fact that the performance on the training

data increases with the mixture count, the accuracy of the testing data signif-

icantly decreases. Note that even with two Gaussians, the correctness and the

40

5.2 Variable state count

1 2 3 4 5 6 7 8 9 10
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%
Overall performance depending on the mixture count

Test Correct Test Accuracy Train Correct Train Accuracy

Figure 5.1: Clustered column chart showing the overall performance with six
states and a variable mixture count from 1 up to 10 - For each mix-
ture count and both the testing and training datasets, we have illustrated
the percentage number of labels correctly recognized (denoted as Test/Train
Correct) and the accuracy (denoted as Test/Train Accuracy).

accuracy of the training data shows very good results. Let us now take a look at

chart 5.2 to further analyze the impact of different mixture counts.

Figure 5.2 illustrates the composition of the recognized testing and training labels,

i.e. how many of them were correct, how many reference labels were ignored

(deletions) or substituted (substitutions) by another label and how many labels

were added (insertions) without being in the reference label file. Here we can

see that increasing the mixture count means decreasing the amount of deletions

and substitutions, but increasing the insertions. In our bar scenario, for example,

inserting Bar Right Turned, Bar Straight or Bar Left Turned when

being in one of the two other states is sometimes absolutely reasonable, as there is

no clear line between them. Thus, we value the accuracy of our models with more

Gaussians as being slightly better than for example the one with two Gaussians.

However, to somewhat balance between a low mixture count to prevent over-

fitting, satisfactory performance on the testing data and also slightly considering

the training data, we decide to pick a mixture count of 6.

5.2 Variable state count

Let us now briefly discuss the same procedure as in the last section, but now

with a variable state count from 3 up to 10. As a result of the previous evaluation

41

5 Evaluation

1 2 3 4 5 6 7 8 9 10
400

500

600

700

800

900

1000

800

1000

1200

1400

1600

1800

2000

2200
Performance analysis depending on the mixture count

Figure 5.2: Clustered-stacked column chart showing a more detailed perfor-
mance analysis having a variable mixture count and six states
- For each mixture count and both the testing (left columns) and train-
ing (right columns) datasets, we have illustrated the exact number of cor-
rect labels (blue), deletions (orange), substitutions (yellow) and insertions
(green). Note that the left y-axis shows the values concerning the testing
results, whereas the right y-axis shows the values concerning the training
results.

process, we will fix the mixture count to 6 and again invoke HResults with the

testing and training data.

As in the previous section, the clustered column chart 5.3 shows the overall perfor-

mance, whereas the clustered-stacked column chart 5.4 illustrates the composition

of the recognized testing and training labels.

First of all, we can conclude that the accuracy when dealing with less than five

inner states is significantly bad. Models like these correctly recognize many ac-

itivities, but achieve this most likely by guessing, as the number of insertions

indicates, compared to the other models. Generally, increasing the state count

leads to less insertions, but slightly more deletions.

For us, a state count of 6 seems to be a good balance between a low state count

to prevent over-fitting and a good performance on the testing data. Note that,

with more testing data in the future, we have to recap the decision process for

picking appropriate mixture and state counts.

42

5.2 Variable state count

3 4 5 6 7 8 9 10
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%
Overall performance depending on the state count

Test Correct Test Accuracy Train Correct Train Accuracy

Figure 5.3: Clustered column chart showing the overall performance with six
Gaussians and a variable state count from 3 up to 10 - For each state
count and both the testing and training datasets, we have illustrated the
percentage number of labels correctly recognized (denoted as Test/Train
Correct) and the accuracy (denoted as Test/Train Accuracy).

3 4 5 6 7 8 9 10
400

500

600

700

800

900

1000

800

1000

1200

1400

1600

1800

2000

2200
Performance analysis depending on the state count

Figure 5.4: Clustered-stacked column chart showing a more detailed perfor-
mance analysis having a variable state count and six Gaussians
- For each state count and both the testing (left columns) and training
(right columns) datasets, we have illustrated the exact number of correct la-
bels (blue), deletions (orange), substitutions (yellow) and insertions (green).
Note that the left y-axis shows the values concerning the testing results,
whereas the right y-axis shows the values concerning the training results.

43

5 Evaluation

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Scenario 29: Comparison between reference and recognized labels over time

Reference Recognized

Leave

Cheers

Drink

Attention Request

Bar Right Turned

Bar Straight

Bar Left Turned

Enter

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

Scenario 33: Comparison between reference and recognized labels over time

Reference Recognized

Leave

Cheers

Drink

Attention Request

Bar Right Turned

Bar Straight

Bar Left Turned

Enter

Figure 5.5: Performance of our 6-6-HMM based on scenario #29 (upper di-
agram) and scenario #33 (lower diagram) - We plot the true/refer-
ence labels (blue triangles) and the recognized labels (red triangles) over
the course of time, more precisely over the data frames of each scenario.

5.3 Performance of the bar scenario model

In the previous sections we have argued that, within the pool of possible HMM

structures, a HMM with 6 inner states and 6 Gaussians should give us the best

results for our bar scenario. Let us now take a deeper look at the performance

of our HMM by analyzing two scenario instances and classification statistics for

each of our activities based on a so called confusion matrix.

Figure 5.5 shows a graphical evaluation of two of our scenarios intended for testing

purposes by comparing the manually labeled (reference) activities with the recog-

nized one over time. Thereby, scenario #29 has a correctness value of 96.55% with

an accuracy of 79.31%, scenario #33 features 93.24% and 72.97%, respectively.

For the first time, we can reveal the exact timings between the reference and the

recognized labels. It seems like they are most often quite consistent, especially

when the person drinks or requests attention. They seem to differ more when the

person turns, but this is acceptable, as there is a smooth transition between these

44

5.3 Performance of the bar scenario model

%Corr=90.50, Acc=70.22 [H=629, D=30, S=36, I=141, N=695]

atten bar l bar r bar s cheer drink enter leave D %c %e

atten 47 0 0 0 0 0 0 0 0 100.0 0.0

bar l 0 87 2 2 0 0 0 0 6 95.6 0.6

bar r 2 4 52 4 1 1 0 0 7 81.3 1.7

bar s 0 0 1 234 1 0 0 0 6 99.2 0.3

cheer 1 1 2 1 73 6 0 0 7 86.9 1.6

drink 0 1 2 1 3 96 0 0 4 93.2 1.0

enter 0 0 0 0 0 0 20 0 0 100.0 0.0

leave 0 0 0 0 0 0 0 20 0 100.0 0.0

I 3 21 13 51 26 25 1 1

Figure 5.6: Confusion matrix comparing the classification of our testing data
between our reference labels (rows) and the recognized ones
(columns) gained by our 6-6-HMM (headline) - Whereas %c shows
the percentage number of that activity being correctly recognized, %e in-
dicates the percentage number of incorrect labels divided by all labels
N = 695 and thus gives us a measurement of that activity being often
recognized incorrectly. Furthermore, D and I illustrate the deletions of ref-
erence labels and the insertions of recognized labels, respectively, for each
activity.

states. Furthermore, we can note that a reliable detection of the activity Cheers

seems to be the most difficult task for our HMM. However, recognizing the states

Enter, Leave and Attention Request is absolutely accurate.

Before analyzing and discussing the performance of our HMM too much, let us

take a look at the confusion matrix1 for our testing data presented in figure 5.6.

The confusion matrix is generated by invoking HResults with special flags,

and further described in the HTKBook [33], Chapter 17, HResults (17.19). It

visualizes the classifications done by our HMM by comparing them with the

actual reference activities and hence easily shows how well we classify (or maybe

confuse) activities and where our problems are.

At first, let us further discuss the structure and the data within the confusion

matrix. The rows illustrate the reference activities we manually labeled. Thereby,

the third-last column indicates for each row the number of activities which were

not recognized by our HMM (deletions, denoted as ”D”). Summing up all the rows,

including the deletions, gives us the total number of reference labels, i.e. N = 695.

In contrast, the columns show the number and classifications for the recognized

activities. Thereby, denoted as ”I”, the last row includes the number of activities

1http://en.wikipedia.org/wiki/Confusion_matrix

45

http://en.wikipedia.org/wiki/Confusion_matrix

5 Evaluation

that do not appear in the reference labels (insertions). An example to read the

confusion matrix: Whereas three times our HMM recognizes Cheers, but the

person was in Drink, six times the person clinks glasses but was recognized as a

drinking person. Think in terms of substitutions when reading the table. Finally,

the second-last column expresses (in percentage) how many times an activity was

correctly labeled when dividing the number of correct labels in that row by the

total number of instances in that row (not considering the deletions). Moreover,

the last column indicates (again in percentage) the number of incorrect activities

in that row divided by the number of all reference labels N = 695.

Now, let us see what information we can extract from this confusion matrix:

� Enter, Leave and Attention Request are recognized flawlessly, except

for three insertions and very few substitutions concerning Attention Re-

quest and each one insertion for Enter and Leave. However, considering

the occurrence of insertion errors, they can be explained by the fact that

transitions are smooth and thus might cause jumps when being in between

of two activities.

� Whereas Bar Straight and Bar Left Turned are recognized quite

good, surprisingly, Bar Right Turned has the worst results of all activi-

ties. Most likely, this activity was most influenced by skeleton errors, wrong

labeling or insufficient training data, as the execution and the recognition

should be equivalent to Bar Left Turned. Moreover, the number of times

we turned left in contrast to the one we turned right is not quite balanced

in the test data (97 vs. 71).

� Besides Bar Right Turned, Cheers is the second worse recognized ac-

tivity, as it is also the most complicated activity. Whereas 7 times it was

not recognized at all, 6 times the person was assumed to drink. This can

be explained with the fact that raise and stretching the arm near the head

might be similar to some movements when drinking. Moreover, among the

104 times Cheers was recognized, the chance is 25% that it was inserted

wrongly, which is the highest insertion error rate of all the activities.

� In contrast to Cheers, Drink is recognized much better. However, again,

the insertion errors seem to be the part which should worry us the most.

� All in all, the number of insertion errors per activity seem to be more or

less proportional to the number of times that this activity occurs in the test

data.

46

5.4 Conclusion and future work

5.4 Conclusion and future work

This bachelor’s thesis presents a hidden Markov model (HMM) based approach to

recognize activities of human actors interacting with a robot. Within the JAMES

project, we consider a bar scenario in which the robot acts as a bartender and

serves humans. With the joint data of these persons obtained by the Kinect,

we can use the Hidden Markov Model Toolkit (HTK) and a software program

Kinactivity to model, train and test a HMM to fulfill this task.

After the training process using 70% of our data, we can evaluate the results based

on the remaining 30% of test data. Overall, with six inner states and six Gaussians

contributing to the observation vector of each state, we recognize about 90% of

the activities, whereas the accuracy, which also consideres activities inserted by

mistake (insertion errors), is over 70%. This performance is in the same order of

magnitude as the training results (84% and 72%). Thus, we successfully trained a

fairly reliable and robust HMM which is capable of generalization and recognizes

activities it has not been trained with.

However, there are two main problems affecting our results apart from any HMM

structure or design problem. First of all, of course, the Kinect does not provide

perfect joint data. Whenever there are obstacles between the Kinect and the per-

son being tracked, e.g. bottles or glasses on top of the bar, or when we rotate

90 degrees and thus standing sideways, or even when the clothes of the tracked

person are inappropriate, the skeleton becomes instable, even in many other sit-

uations. This leads us to the second problem. When we label the joint data and

face situations where the Kinect provides an instable skeleton, we often can not

label these frames correctly. Moreover, only having the 2D interface, we have no

idea what the Z position of the joints are. However, even when the skeleton is

stable, labeling the data manually can not be perfect. Often, if there are smooth

transitions between our activities, as it is in our bar scenario concerning for ex-

ample Bar Straight, Bar Left Turned and Bar Right Turned, we can

not ensure to label them in a consistent way over time.

Another problem is that we need a sufficient amount of data. In this thesis, we

mainly arranged the bar scenarios with one and the same person. However, even

with a fixed skeleton proportion (i.e. one human actor), for example Cheers has

many ways to be executed: We can clink glasses at any position in front of the

bar, with any body alignment, stretch the arm to any direction, with either the

left or the right hand. We guess that a HMM will need more data than we have

gathered in order to also account for the differences between the behavior and

the skeleton of different persons. Note that we also need a balance in our training

data, i.e. we should have roughly the same amount of Bar Left Turned and

47

5 Evaluation

Bar Right Turned activities.

Despite these problems, the evaluation of our bar scenario results has shown

that many even difficult activities and transitions can be recognized in principle,

for example, if the person turns around while drinking and has another body

alignment in the end. Furthermore, drinking and cheering with either the left or

the right hand was quite often successfully recognized.

For future work, we also suggest to further adapt the structure of our activity

models. At the beginning, we made the assumption that for every activity model,

we use the same amount of inner states and the same amount of Gaussians. In

practice, however, every activity is different and should be considered indepen-

dently. Of course, this leads to many new parameters, but we might consider

dividing activities in different classes. Furthermore, HTK provides many more

adjustments which should be explored. In the end, we should also implement

a live mode in order to recognize activities immediately. However, HTK does

not provide an easy way for us to implement this, so we have to turn to other

frameworks, most likely on top of HTK.

To conclude, this thesis provides initial research in activity recognition within the

JAMES project, based on a bar scenario. We hope to lay a foundation for further

investigation and improvement in this area of research and hence to help robots to

interact with humans in a more social way. For example, when the robot detects

that a person is drinking, clinking glasses or is saying cheers in front of the robot,

he could respond by saying ”Cheers!”, so to stimulate the interaction and helping

to strengthen the bond between the robot and the human. Furthermore, estab-

lishing new ways of human-robot interactions might provide new research areas

concerning the acceptance of robots in an environment dominated by humans so

far.

48

Bibliography

[1] Htk. http://htk.eng.cam.ac.uk/, September 2011.

[2] Jahir - joint-action for humans and industrial robots. http://www6.in.tum.

de/Main/ResearchJahir, October 2011.

[3] Leonard E. Baum. An equality and associated maximization technique in

statistical estimation for probabilistic functions of markov processes. In-

equalities, 3:1–8, 1972.

[4] H. Berndt and K. Dietmayer. Driver intention inference with vehicle onboard

sensors. Vehicular Electronics and Safety (ICVES), 2009 IEEE International

Conference:102–107, 2009.

[5] H. Berndt, J. Emmert, and K. Dietmayer. Continuous driver intention

recognition with hidden markov models. Intelligent Transportation Systems,

2008., ITSC 2008. 11th International IEEE Conference:1189–1194, 2008.

[6] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer

Science + Business Media, LLC, 8 edition, 2006. http://research.

microsoft.com/~cmbishop/PRML.

[7] G. D. Forney. The viterbi algorithm. Proceedings of the IEEE, 61:268–278,

March 1973.

[8] fortiss GmbH. James - joint action for multimodal embodied social sys-

tems. http://www.fortiss.org/en/research/projects/james.html, Oc-

tober 2011.

[9] Hartmut Gieselmann. Tanz der Skelette: Bewegungserkennung mit Kinect.

c´t, March 28, 2011. www.ct.de/1108100.

[10] Md. Kamrul Hasan’, Husne Ara Rubaiyeat2, Yong-Koo Lee’, and Sungyoung

Lee. A reconfigurable hmm for activity recognition. Advanced Communica-

tion Technology, 2008. ICACT 2008., 1:843–846, 2008.

[11] Homepage. HTK. http://htk.eng.cam.ac.uk/.

[12] Homepage. OpenNI organization. September 16, 2011. http://www.openni.

org/.

49

http://htk.eng.cam.ac.uk/
http://www6.in.tum.de/Main/ResearchJahir
http://www6.in.tum.de/Main/ResearchJahir
http://research.microsoft.com/~cmbishop/PRML
http://research.microsoft.com/~cmbishop/PRML
http://www.fortiss.org/en/research/projects/james.html
www.ct.de/1108100
http://htk.eng.cam.ac.uk/
http://www.openni.org/
http://www.openni.org/

Bibliography

[13] Kerstin Huth. Wie man ein Bier bestellt. Master’s thesis, Universität Biele-

feld, September 2011.

[14] Tim Ingham. Kinect cruises past 10m sales barrier. CVG,

March 9, 2011. http://www.computerandvideogames.com/292825/

kinect-cruises-past-10m-sales-barrier/.

[15] Xiaofei Ji and Honghai Liu. View-invariant human action recognition using

exemplar-based hidden markov models. Lecture Notes in Computer Science,

5928/2009:78–89, 2009.

[16] Claus Lenz, Suraj Nair, Markus Rickert, Alois Knoll, Wolgang Rösel, Jürgen

Gast, Alexander Bannat, and Frank Wallhoff. Joint-Action for Humans

and Industrial Robots for Assembly Tasks. Proceedings of the 17th IEEE

International Symposium on Robot and Human Interactive Communication,

1-3:130–135, 2008.

[17] Claus Lenz, Alice Sotzek, Thorsten Röder, Helmuth Radrich, Alois Knoll,

Markus Huber, and Stefan Glasauer. 3D Occupancy Grids and HMMs for

Human-Robot Workflow Analysis. IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2011), March 2011.

[18] George Soules Leonard E. Baum, Ted Petrie and Norman Weiss. A maximiza-

tion technique occurring in the statistical analysis of probabilistic functions

of markov chains. The Annals of Mathematical Statistics, 41(1):164–171,

February 1970.

[19] J. A. Eagon Leonard E. Baum. An inequality with application to statistical

estimation for probabilistic functions of markov processes and to a model for

ecology. Bulletin of the American Mathematical Society, 73:360–363, 1967.

[20] Ted Petrie Leonard E. Baum. Statistical inference for probabilistic functions

of finite state markov chains. The Annals of Mathematical Statistics, 37(6):

1554–1563, 1966.

[21] PE. Kinect team scoop the £50,000 MacRobert

Award. June 7, 2011. http://profeng.com/news/

kinect-team-scoop-the-50000-macrobert-award.

[22] Patrick Pogscheba and Christian Geiger. Erwachsene ebenso: Alternative

Nutzung von Microsofts Kinect-Sensor. iX, March, 2011. www.ix.de/

ix1103114.

[23] Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition. Proceedings of the IEEE, Vol. 77, No.

2, February, 1989.

50

http://www.computerandvideogames.com/292825/kinect-cruises-past-10m-sales-barrier/
http://www.computerandvideogames.com/292825/kinect-cruises-past-10m-sales-barrier/
http://profeng.com/news/kinect-team-scoop-the-50000-macrobert-award
http://profeng.com/news/kinect-team-scoop-the-50000-macrobert-award
www.ix.de/ix1103114
www.ix.de/ix1103114

Bibliography

[24] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Pearson Education, 3 edition, 2010.

[25] Dairazalia Sanchez, Monica Tentori, and Jesus Favela. Hidden markov mod-

els for activity recognition in ambient intelligence environments. Eighth Mex-

ican International Conference on Current Trends in Computer Science (ENC

2007), enc:pp.33–40, 2007.

[26] Alice Sotzek. Arbeitsflusserkennung für komplexe montagearbeiten mittels

hidden markov models: Interpretation von multimodalen biologischen sig-

nalen. Master’s thesis, TU München, April 2011.

[27] A. P. Dempster, N. M. Laird, D. B. Rubin. Maximum likelihood from in-

complete data via the EM algorithm. Journal of the Royal Statistical Society

B, 39(1):1–38, 1977.

[28] JAMES project. Joint action for multimodal embodied social systems. http:

//www.james-project.eu, October 2011.

[29] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm. IEEE Transactions on Information Theory,

13:260–269, April 1967.

[30] Zheng Wang, A. Peer, and M Buss. An hmm approach to realistic haptic

human-robot interaction. EuroHaptics conference, 2009 and Symposium on

Haptic Interfaces for Virtual Environment and Teleoperator Systems, World

Haptics 2009. Third Joint:374–379, 2009.

[31] Wikipedia. Kinect. September 15, 2011. http://en.wikipedia.org/wiki/

Kinect.

[32] J. Yamato, J. Ohya, and K Ishii. Recognizing human action in time-

sequential images using hidden markov model. Computer Vision and Pattern

Recognition, 1992. Proceedings CVPR ’92., 1992 IEEE Computer Society

Conference:379–385, 1992.

[33] Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain, Dan Ker-

shaw, Xunying Liu, Gareth Moore, Julian Odell, Dave Ollason, Dan Povey,

Valtcho Valtchev, and Phil Woodland. The HTK Book (for HTK Version

3.4). Cambridge University Engineering Department, September 17, 2011.

http://htk.eng.cam.ac.uk/.

51

http://www.james-project.eu
http://www.james-project.eu
http://en.wikipedia.org/wiki/Kinect
http://en.wikipedia.org/wiki/Kinect
http://htk.eng.cam.ac.uk/

	Introduction
	Motivation
	Related Work
	Outline

	Hidden Markov Models
	Introduction to Markov models
	Extension to hidden Markov models
	Different types of hidden Markov models

	Solving fundamental problems for hidden Markov models
	Evaluation and the forward-backward algorithm
	Decoding and the Viterbi algorithm
	Learning and the EM algorithm

	Extension to continuous multidimensional HMMs

	Scenario
	JAMES environment
	Bar scenario description

	Implementation
	Hardware: Kinect-Sensor description and technical aspects
	Software: HTK
	Data preparation
	HTK Tools
	Final notes

	Software: Kinactivity
	The Control Center
	The Learning Center

	Evaluation
	Variable mixture count
	Variable state count
	Performance of the bar scenario model
	Conclusion and future work

	Bibliography

