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Abstract— The soft robotics approach is widely considered
to enable robots in the near future to leave their cages and
move freely in our modern homes and manufacturing sites.
Musculoskeletal robots are such soft robots which feature
passively compliant actuation, while leveraging the advantages
of tendon-driven systems. Even though these robots have been
intensively researched within the last decade, high-performance
feedback control laws have only very recently been developed.
In [1], a controller was developed utilizing Dynamic Surface
Control (DSC), an extension to backstepping, with an adaptive
neural network compensator for joint as well as muscle friction.
We compare these novel control strategies to Computed Force
Control (CFC), an existing technique from the field of tendon-
driven control, yielding highly improved trajectory tracking.
The musculoskeletal robot Anthrob [2] serves as a benchmark.

Keywords—Compliant actuation, musculoskeletal robots,
non-linear control, adaptive control, backstepping

I. INTRODUCTION

Innovations of the last years make it ever more clear that

robots are at the verge of leaving their cages, not only in

manufacturing sites [3], but also to move into our modern

homes as service robots. Today, even the most impressive

soft and safe robots are still outperformed by humans in

almost every aspect. The goal of mimicking the extremely

smooth and effortless movements of humans could possibly

be achieved by incorporating more of our inner mecha-

nisms. Musculoskeletal robots feature compliant actuation

and leverage the advantages of tendon-driven systems, where

actuators can be placed with more freedom, to e. g. improve

the weight distribution. This interesting field of research has

in the last decade produced robots like Kenshiro [4] or the

ECCES [5].

The robot arm Anthrob [2] has been developed to in-

vestigate provably stable control strategies for the class of

musculoskeletal robots. It presents a replica of the human

upper limb (see Fig. 1) and is actuated by eleven muscles

which utilize DC motors to wind a tendon onto a spindle

to realize muscle contraction. Each muscle is equipped with

a Series Elastic Element. While eight muscles actuate the

spherical shoulder and two the revolute elbow, there is an

additional bi-articular muscle spanning both joints. Each

muscle is equipped with the necessary sensors which include

force sensors and actuator position sensors. This setup was

developed to focus the challenges of musculoskeletal robot

control onto a single well defined system. These include

spherical joints, compliant and multi-articular muscles, as

well as bio-inspired muscle routing which leads to collisions
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Fig. 1: Photograph of the robot Anthrob. [2]

between muscles and the skeleton and is therefore difficult

to model.

Due to their complexity, musculoskeletal robots have so

far failed to produce insights into possible control strategies.

In this work, we compare the feedback control technique of

Computed Force Control (CFC), which has been developed

for tendon-driven robots without additional compliance and

well defined muscle routing [6], [7], to a novel control

approach based on Dynamic Surface Control (DSC), an

extension to backstepping, which takes inspiration from [8]

and was presented in [1]. The Anthrob serves as an ideal

testbed for those control strategies, due to its sensorization

and relatively simple skeletal kinematics.

II. MODELING

A generic model for the class of musculoskeletal robots

was presented in [1], proposing a subdivision into skeletal

dynamics, muscle dynamics and muscle kinematics. The

resulting submodels are presented in the following.

A. Skeletal Dynamics

A model for the skeletal dynamics can be given by

expressing the joint torque τ :

τ = H(α)q̈ + C(α, q̇)q̇ + τG(α) + τF (q̇, α, f) (1)

where H(α) is the mass matrix, C(α, q̇) accounts for Cori-

olis and centrifugal effects, τG(α) is the vector of gravity

terms, and τF (q̇, α, f) is the vector of joint frictions. This

friction component depends to a large degree on the joint

velocities q̇. Due to normal forces on the sliding surfaces

inside the joint, it is additionally affected by the muscle

forces f and the pose of the robot, given by α.

In (1) the joint angles are expressed by α which consists

of the unit quaternion representation for parametrizing the
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rotation of spherical joints and the angular representation

for the other, e. g. revolute, joints. This parametrization of

rotation was chosen, due to its lack of singularities [9]. The

relationship between the derivative of α and the rotational

velocities q̇ can be defined such that:

α̇ = A(α) · q̇ (2)

where A(α) is defined as a diagonal matrix in which each

joint is represented by the mapping between the rotational

velocity and the derivative of the angular representation. This

mapping is equal to 1 for revolute joints or the following

relation for a quaternion Q [10]:

Q̇ =
1

2
·









−ǫ1 −ǫ2 −ǫ3
η −ǫ3 ǫ2
ǫ3 η −ǫ1
−ǫ2 ǫ1 η









· q̇ (3)

where η denotes the real part and ~ǫ = [ǫ1 ǫ2 ǫ3]
T the three

dimensional imaginary part of the quaternion. Note that this

definition assumes that joint velocities are expressed in the

coordinate frame of the moving part of the joint, i. e. the

distal rigid body.

B. Muscle Kinematics

The muscle kinematics describe the force transmission of

the muscles and is hence a geometric representation of how

muscles interact with the skeleton. This can be given by

the muscle Jacobian L(q) which is defined as the partial

derivative of the muscle lengths l with respect to the joint

angles and can be transformed into the force-torque domain

by the principle of virtual work1 [11]:

L(q) =
∂l

∂q
←→ τ = −LT (q) · f (4)

In the presence of spherical joints this definition can be

extended by introducing (2), such that [1]:

L(α) =
∂l

∂α
·
∂α

∂q
=

∂l

∂α
·A(α) (5)

Hence, it is possible to obtain the muscle Jacobian by first

acquiring the function of the muscle lengths with respect

to the joint angles and subsequent differentiation. However,

analytic solutions are not always feasible, especially when

relationships become highly complex, due to collisions be-

tween muscles and skeleton in certain poses. Approximation

of the muscle Jacobian through Artificial Neural Networks

(ANNs) has been extensively studied by Schmaler [12].

In this work, samples of joint angles and corresponding

muscle lengths are generated and presented offline to an

ANN, posing a supervised learning problem. The resulting

ANN approximation is differentiated with respect to the joint

angles, using the difference quotient to obtain the muscle

Jacobian.

This method was evaluated on the spherical shoulder joint

of the Anthrob and the eight muscles spanning it. Samples

of corresponding joint angles, actuator positions, and forces

1The minus sign arises from the definition of a positive force being
associated with muscle shortening.

were generated by utilizing a muscle force controller to

maintain a force of 2N. The difficulty here was to cover the

full working range of the joint. Subsequently, samples were

removed, where measured forces were outside of a threshold

of ±1N from the reference. Due to this boundary, spring

expansions could be neglected in calculating the muscle

lengths from the actuator positions. This led to a total of

42 208 samples which were split into a training set and

a validation set and used to train a Multilayer Perceptron

(MLP) with 30 hidden neurons in a single hidden layer.

Validation errors as low as 3.46× 10−4 m (for the shoulder)

show that the muscle length function was approximated with

sufficient accuracy. The same method was utilized to obtain

the muscle length functions for the elbow joint and the bi-

articular Biceps, with similar results.

In addition to friction in the joints, musculoskeletal robots

can exhibit noteworthy friction effects within the transmis-

sion system of the tendons. The effects on the control

performance depend largely on the position of the muscle

force sensor. The force is either measured at the driving or at

the load end. In the latter case, the force measured is equal to

the force acting on the skeleton and is therefore the preferred

scheme from a control point of view. From an integration

point of view, however, it might be preferable to implement

an actuator unit which is fully sensorized, including the force

sensor. In the Anthrob, force sensors are always located on

the driving end [2]. In this case, (1) may be rewritten to

include the muscle friction fF (f, q̇, α), by introducing (4):

H(α)q̈ + C(α, q̇)q̇ + τG(α) + τF (q̇, α, f) =

= −LT (α)[f − fF (f, q̇, α)] (6)

The muscle friction component depends on the transmitted

force, the angle under which the tendon is routed and the

velocity at which the tendon is running over the routing point.

C. Muscle Dynamics

The muscle dynamics of a musculoskeletal robot with

electromagnetic actuators are governed by the actuator dy-

namics, which can be derived by instantiating a model of

the DC motor and gearbox, and a model for the muscle

compliance. The latter is represented by a possibly non-linear

spring stiffness K(f) as follows, by introducing (4):

ḟ = K(f)(l̇ + rsθ̇)

= K(f)
[

L(α)q̇ + rsθ̇
]

= f1(α, q̇, f) + g1(f)θ̇ (7)

where the change in the spring expansion is expressed as the

change in the muscle length l̇ plus the change in the tendon

length, given by the actuator velocity θ̇ times the radius of

the spindle winding up the tendon rs. The actuator dynamics

are of the following form:

θ̈ = f2(f, θ̇) + g2vA (8)

where the system state is given by the actuator velocity, the

system input is the actuator voltage vA and f2, and g2 are

defined as possibly non-linear functions [1]. More elaborate
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models include the motor current as a system state which is

neglected in this work.

III. COMPUTED FORCE CONTROL

Most tendon-driven controllers use feedback lineariza-

tion by linearizing (6) and introducing some linear control

law [7], [13]. Hence, a tendon force fd is computed for a

given movement and subsequently controlled by a low-level

force controller. A trajectory tracking form can be given [14]:

−LT fd = H [q̈d +D(q̇d − q̇) + P ·∆q]

+ Cq̇ + τG (9)

where ∆q is the angular error used for control, as explained

later. In tendon-driven robots, there are typically more actu-

ators than joints. We call the number of skeletal Degrees of

Freedom (DoF) n and the number of muscles m. Hence there

is a redundancy (m > n+ 1) and a null-space exists in the

muscle forces that does not affect joint motion. This can be

resolved in several different ways, where the most common

one is to solve a quadratic program of the following form to

obtain the muscle forces [14]:

min
fd
||fd||

2
s.t.

{

−LT (α) · fd = τd

fd ≥ fmin

(10)

where the objective function minimizes the internal forces.

Other objective functions, e. g. minimum energy, may be

used instead. This method is an extension of computed torque

control [9] towards tendon-driven robots and hence neglects

the dynamics of low-level force controllers, including the

elasticity. When applied to musculoskeletal robots, the dy-

namics of the low-level control are governed by passive

compliance and are therefore not negligible.

IV. DYNAMIC SURFACE CONTROL

In robotics, several methods of non-linear control have

been utilized to obtain provably stable control laws. For

flexible-joint robots, especially the method of passivity based

control has been used [15]. However it does not provide

a systematic approach to synthesizing control laws. The

method of backstepping gives a very specific synthetization

procedure, if the system model can be reformulated to form

a strict-feedback system. For an exact definition of strict-

feedback and the backstepping method, the reader is referred

to [16]. In this method, the state of the second subsystem x1

is assumed as a virtual control input to the first subsystem,

finding an associated control law φ1. Subsequently, the next

system needs to be controlled such that x1 converges to φ1,

assuming the state of the third subsystem x2 as a virtual

control signal, iteratively yielding a set of control laws

{φ1, . . . , φN} that take the full system dynamics of depth

N into account. However, due to the fact that each sub-

system comprises an integration, the backstepping procedure

requires the time derivative of the previous control law. This

accounts for the interaction dynamics between control laws

on each depth, but creates an explosion of complexity, due

to continuous differentiation. For this purpose Swaroop et.

al. [17] developed Dynamic Surface Control (DSC) which

introduces a first order low-pass filter in between each level

control to realize stable numeric differentiation. Each of these

filters is applied to the control signal φi such that:

µiṡi + si = φi i = {1, . . . , N − 1} (11)

where µi is the filter constant and si the filter output. For the

system considered here, there are three subsystems. Hence,

the skeletal dynamics (6) are controlled first, while we step

back through the muscle force dynamics (7) and ultimately

through the actuator dynamics (8).

Oh and Lee [18] designed a non-linear controller for

trajectory tracking of flexible-joint robots which can be

extended for musculoskeletal robots. For a detailed derivation

as well as a proof of stability the reader is referred to [1].

In the following, this controller is introduced shortly:

φ1 = −LT+ {H(q̈d + Λ1(q̇d − q̇)) + C(q̇d + Λ1∆q)

+τG −Kdr + τ̂F }+ f̂F (12)

while τ̂F and f̂F denote estimations of the unknown joint and

muscle friction terms, respectively, Λ1 is a positive definite

control gain, and LT+ denotes the pseudo inverse of the

muscle Jacobian, which is associated to the result of an

algorithm that resolves muscle redundancy (see Section III).

The error for control is denoted by ∆q. It is defined as the

n× 1 vector of errors in each of the joints, which is simply

the difference for revolute joints, and defined as follows for

a single spherical joint:

∆q = η~ǫd − ηd~ǫ− S(~ǫd)~ǫ (13)

where S(·) denotes the skew symmetric operator. This defi-

nition arises from the stability analysis of quaternion control.

In conjunction with a tracking error r such that:

r = q̇ − q̇d − Λ1∆q

exponential convergence of α to αd can be proven, while

‖r‖ < ǫr for a small positive scalar ǫr implies bounded

tracking [19].

It has been shown that friction terms can be well approx-

imated by Radial Basis Function Networks (RBFNs) which

are defined as a vector of RBFs Φ and a vector of weights

Θ such that φ = ΘTΦ [20]. Due to the fact that τF ∈ R
n

and fF ∈ R
m, the two compensators are defined as vectors

of RBFNs, where φJFj and φMFj denote the jth entry of

each of these vectors, respectively. A general definition for

each RBF can be given as follows:

Φijk = exp−
(xij − cik)

T · (xij − cik)

σ2
ik

(14)

where i ∈ {JF,MF} and j ∈ {1, . . . , o} with o as the

number of RBFNs per friction compensator which is n for

the joint friction and m for the muscle friction. Finally

k ∈ {1, . . . , l}, where l denotes the number of neurons. Each

RBF is parametrized by a center cik, a standard deviation σik,

and has xij as an input. The l × 1 vector of neurons Φij is

pre-multiplied with the 1× l vector of weights Θ̂T
ij :

τ̂Fj = Θ̂T
JFjΦJFj (15)

f̂Fj = Θ̂T
MFjΦMFj (16)
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Fig. 2: Block Diagram of DSC. The controller consists of three levels: the (i) controller for the skeletal dynamics, comprising

the trajectory controller and the muscle Jacobian, the (ii) muscle force and the (iii) actuator velocity controllers.

while the RBF parameters of each neuron are static, the

weights are used to adapt the output of the RBFN. A learning

rule of the following form is given [21]:

˙̂
Θij = −Γij · Φij · rij − Σi · Θ̂ij (17)

where Γij is the respective learning factor and Σi can be

seen as a robustifying damping term on the weights. This

is necessary, as omitting it may cause network weights to

grow indefinitely, due to small pertubations [21]. The driving

value for the adaptation rule is the error ri which is defined

as follows:

rJF = r (18)

rMF = −L · r (19)

It has been shown that an ANN of the given form can

approximate any continuous function, depending on the

number of neurons and the parameters of the RBFs, up to

an arbitrarily small bounded error [22].

The methods of backstepping and DSC yield low-level

muscle controllers which utilize system models (7) and (8)

such that [1]:

φ2 = g−1
1 [ṡ1 + Lr − Λ2(f − s1)− f1] (20)

φ3 = g−1
2

[

ṡ2 − g1(f − s1)− Λ3(θ̇ − s2)− f2

]

(21)

This two-staged control law takes the filtered reference of the

high-level controller s1 as an input and computes an actuator

voltage vA = φ3 (see also Fig. 2). In conjunction with

the trajectory tracking controller, given in (12), uniformly

ultimately bounded stability can be proven for this control

scheme, as long as control parameters adhere to certain

bounds [1].

V. RESULTS

The control law developed in Section IV, with and without

adaptive friction compensators, was compared to the method

of CFC from Section III. All approaches utilized skeletal

dynamics, which were derived from the CAD model, the

learned muscle Jacobian, and the nominal actuator charac-

teristics. Both, CFC as well as DSC were implemented as

separate high-level trajectory tracking control laws and low-

level muscle controllers. However, CFC utilized (9) and a

state space tendon force controller, while the novel DSC

control law implemented the controllers (12), (20) and (21).

(a) (b) (c)

Fig. 3: A reference trajectory was generated by interpolation

between three poses which were (a) the shoulder adduction,

(b) the shoulder abduction and (c) the shoulder anteversion.

In a second experiment, the elbow joint additionally per-

formed a flexion from (b) to (c).

Separation into a high and a low-level controller yields

the possibility of distributed muscle control. In this case

only the result of φ1 and a feedforward part was needed

for computing φ2, eliminating the need for cross depen-

dency between muscle controllers. This greatly improves

scalability, as muscle controllers can be executed with only a

minimum of communication between a central controller and

the distributed nodes. Distributed control was facilitated by

Anthrob through a control architecture which implemented

distributed control units for low-level muscle control and

communication via CAN bus to a central PC [2]. To remain

comparable throughout the experiments, high-level control

was executed at a frequency of 200Hz and low-level control

at 1 kHz.

Joint angles were measured by an analog potentiometer

in the elbow joint and a stereo camera system with infrared

markers on the fixed scapula and the humerus to obtain the

state of the spherical shoulder joint [23]. Even though this

motion capture system featured comparably low latencies

of 4.3ms in average, the frame rate was limited to 60 fps

which complicated the numerical differentiation of the joint

angle to obtain joint velocities. For this purpose a high-gain

observer [16] was utilized to improve the quality of both

the angular position measurements, as well as the angular

velocities. This observer utilizes the non-linear system model

from (6) to estimate the states, based on system inputs and

measurements of the system output. The system states α and

q̇ are redefined to x1 and x2, respectively, where the first is

equal to the measurement from the camera system. Hence,
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Fig. 5: Joint angle errors ||∆q|| are depicted, both for mean

and maximum values. Results are shown for (a) only the

shoulder joint and (b) the full Anthrob. Controllers include

CFC, DSC and the adaptive (Ad.) controllers with only joint

(JF), only muscle (MF) and finally both friction compensa-

tion terms, while the adaptive controllers are executed twice

(cycle (1.) and (2.)) to show convergence.

the high-gain observer was defined as follows to serve as an

estimator for α and q̇ [16]:

ˆ̇x1 = A(x̂1) [x̂2 + h1 ·∆q]

ˆ̇x2 = γ0(x1, x2, f) + h2 ·∆q (22)

where x̂1/2 denote estimates of the respective system states

and γ0 the nominal system model. The angle error ∆q

according to (13) was utilized with the positive definite

gains h1 and h2 to estimate the system states. Since the

controller utilizes the same model of the system dynamics

to compensate for any non-linearities, the result of γ0 is

essentially equal to the reference acceleration q̈d.

First, the spherical shoulder joint of the Anthrob with

the eight muscles of the rotator cuff was considered, sub-

sequently moving on to the full arm, including the elbow

joint and the bi-articular Biceps.

A. Spherical joint control

A reference trajectory was obtained by choosing three

poses and subsequently interpolating. The resulting trajectory

was therefore described by reference accelerations, velocities

and angles. The three different poses (see Fig. 3) were (a) the

resting position, which presents the shoulder adduction, (b)

an abduction (extended to the side) of 0.9 rad (∼ 51.6◦),

and (c) an anteversion (drawn to the front) of 0.67 rad

(∼ 38.4◦). This trajectory was chosen, as it presents sub-

stantial coverage of the arm’s movement capabilities. It was

executed in several experiments by the control laws obtained

by the techniques of CFC and DSC and finally different

combinations of adaptive controllers.

The CFC controller resulted in large trajectory deviations,

as well as steady state errors (see Fig. 4a), and even os-

cillations during the transition from the abduction to the

anteversion (∼ 5 to 7 s) and from the anteversion to the

adduction (∼ 10 to 12 s). This is a consequence of neglecting

the low-level controller dynamics which are comparably slow

due to the muscle compliance. The simple muscle force

controller is not able to track the reference force, resulting in

the undesired oscillations. Both steady state as well as overall

tracking errors were reduced by DSC and oscillations were

fully eliminated (see Fig. 4b). This was due to acquiring a set

of control laws for the complete system dynamics, including

the muscle compliance.

Performance of both developed adaptive terms was eval-

uated by conducting three experiments, starting with (i) the

joint friction compensation as stated in (15) to (ii) the muscle

friction compensation as stated in (16) and finally going to

(iii) the combination of both. The overall tracking error was

reduced for any of the three experiments, while the com-

bination of both friction compensators performed best (see

Fig. 4c). Here, the steady state offset for the abduction was

reduced to 0.07 rad (∼ 4.1◦). The highest steady state error

remained for the anteversion which amounted to 0.12 rad

(∼ 6.8◦). A comparison, displaying the tracking errors for

the different control laws, is shown in Fig. 5a. It can be seen

that both maximum as well as mean tracking errors were

significantly reduced by utilizing DSC and even further by

the adaptive friction terms. For any of the adaptive control

experiments, the mean absolute trajectory tracking error was

reduced for the second iteration.

Fig. 4c shows clearly that steady state errors are mostly

in the Z-Axis (rotation of the arm around itself). From the

placement of the muscles we know that this rotation is the

most difficult to achieve. We assume that the anteversion,

which shows the largest steady state offset, requires more

effort to achieve, as humans facilitates this pose by an

additional rotation of the scapula which is not present in

the Anthrob.

B. Anthrob control

Both DSC control laws, with and without adaptive friction

compensation were evaluated for controlling the full An-

throb, including the elbow joint and the bi-articular Biceps.

A comparison was not possible, as we were not even able
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to stabilize CFC when the elbow was attached. Here, the

same trajectory as for the shoulder was utilized, while an

elbow flexion was executed during the transition between the

abduction and the anteversion (see Fig. 3). The resting pose

of the elbow was set to 0.2 rad (∼ 11.45◦) and the flexed

pose to 0.5π (90◦). The elbow extension was performed

during the shoulder adduction (see Fig. 6). It can be seen that

accurate tracking was achieved for both joints, with similar

performance as for the pure shoulder control and negligible

steady state errors for the elbow joint.

In the complimentary video, some minor oscillations can

still be observed during trajectory tracking. These can be

reduced by increasing the frequency of the angle measure-

ments in the shoulder joint (> 60Hz) and are not inherent

to the control scheme.

VI. CONCLUSIONS

A novel control strategy for the class of musculoskeletal

robots, based on backstepping and DSC, was evaluated on

the robot arm Anthrob. This robot focusses the challenges

of musculoskeletal robot control in a single well defined

system. While the bio-inspired muscle routing was addressed

by learning the muscle kinematics through ANNs, it could be

shown that muscle compliance, as well as bi-articular mus-

cles and spherical joints, could be controlled with improved

performance, compared to CFC. Control performance was

further improved by introducing adaptive friction compensa-

tion terms, both for joint, as well as muscle friction.

Interesting challenges for future work include the inves-

tigation of online learning, both for the muscle kinematics,

as well as the skeletal dynamics. The tracking error contains

information about the system, which can be stimulated by

motor commands to learn the system dynamics. However,

robust techniques have to be found to not damage the robot

during learning. Another interesting direction is the exten-

sion of the existing control framework towards operational

space control, to possibly resolve muscle and joint space

redundancy in a single optimization step.
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