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Abstract

Over centuries the successful cooperation of foreman and assistant has been an important factor of efficiency, as the mu-
tual understanding of each others actions and intentions facilitates a smooth work flow. Hence, a promising option in the 
field of automation is to develop models of intuitive and adaptive assistance. An artificial system equipped with such 
models could improve not only efficiency, but also acceptance and safety in human-robot interaction (HRI). As a first 
step towards this goal, we investigated the timing of the most common physical interaction occurring in HRI - the hand-
ing over of items. In an assembly experiment we measured the duration of the different steps. We found that a linear de-
pendency sufficiently describes the relation between the complexity of each working step and its duration. The param-
eters of the linear model however largely differ between the individual subjects. This linear dependency was used to de-
velop Kalman filters to predict durations and complexities of different assembly steps. We showed that after a short ad-
apting phase we received an accuracy of 18.03%, comparing the predicted assembling duration to the measured duration. 
The model was integrated into an assistive robot system to demonstrate its robustness and low requirements of the sen-
sory systems.

1 Introduction
For centuries, artisan work has been accomplished by a 
well-rehearsed and smoothly cooperating team of foreman 
and assistant. Such teams always have been very success-
ful in producing complex and individual small batches. 
Even though artificial systems continuously replace more 
and more human workers, is not yet possible to replace 
such an efficient cooperative team by robot systems, espe-
cially concerning highly complex and skilful tasks. A rea-
sonable first step for automation in this field is to develop 
artificial systems replacing the assistant [1][2][3]. 
To this end, a mutual understanding of each other’s actions 
and intentions is needed. More precisely, this means en-
dowing technical systems with natural, anticipatory, and 
adaptive behaviour. This would lead to higher acceptance, 
passive safety and efficiency in human-robot teams [4]. To 
enable technical systems with the ability of adaption and 
anticipation, a human model is required in order to predict 
the duration of actions and to identify cues of future pro-
gress. In cognitive science, and recently in robotic re-
search, there is a big focus on understanding the mecha-
nisms of goal inference, action understanding and imita-
tion learning, and their description in a way that they can 
be transferred to technical systems [5][6][7]. The integra-
tion of cognitive concepts in robotics promises essential 
abilities, such as anticipating, what a human partner needs, 
and learn from human behaviour. However the obvious 
importance of exact timing for an effective assistance is 

rarely investigated in the field of human robot interaction. 
Apparently, an assistant, who is too early, thus constantly 
holding a tool in front of a foreman will disturb him. In 
contrast, passing it to late will decrease the efficiency.  
In mass production industries, however the issue of opti-
mal timing is even more present and, there also are work-
flows, which cannot be fully automated and where human 
fine motor skills are needed. In contrast to the idea of a 
team of foreman and assistant in industrial settings, hu-
mans mostly work alone and are for security reasons, 
strictly separated from industrial robots. Certainly, in high-
wage countries, an efficient planning of manual object as-
sembly is essential to compete. Therefore in this field, sev-
eral strategies have been developed to efficiently describe 
and plan human assembly tasks. A widespread concept in 
industry is the so-called “Method of Time Measurement” 
(MTM)[8]. It is an integrant to compute execution times, 
based on predetermined times of basic motion sequences, 
body movements and a variety of physical task parameters. 
Furthermore the concepts “Assembly Evaluation Method” 
(AEM)[9], or a similar method, the “Design for Assembly” 
(DFA)[10] are used to evaluate the complexity of an as-
sembly. They also critically examine the necessity of the 
subtasks and the enhancement of the product’s construc-
tion. Even if the above mentioned methods work well for 
planning workflows, there is still undergoing research to 
improve them.  Recent works [11] developed a model, 
based on Goals, Operators, Methods, and Selection Rules 
(GOMS) language, which predict error-free assembly 
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times. However, the model is specified for a circuit assem-
bly and therefore does not provide generic predictions. 
Other groups [12] investigated physical attributes of ob-
jects, which influence the difficulty of their assembly. This 
is used to predict assembly complexity, thus improving 
DFE.  Also the MTM method is continuously improved, 
e.g. [13], where methods for multidimensional measure-
ments of degree of detail and complexity of manual as-
sembly tasks are developed. 
All these methods used to determine the complexity and 
assembly time are based on predetermined motor time sys-
tems and are optimized for large static productions. Fur-
thermore they do not consider individual preferences of a 
human worker.
Going back to artificial assistive systems, it is however  
necessary that the system dynamically adapts to its fore-
man and his level of experience and strategy. If the human 
foreman after some assemblies decides to change the as-
sembly strategy, the robot system should dynamically re-
spond to the new timings.  
In this context, the present study focus on the investigation 
of temporal behaviour during an assembly scenario. In 
order to enable robot systems to assist “just in time”, a dy-
namic model of human assembly behaviour is developed 
and finally integrated into a robot system [3]. 

2 Experiment
To investigate the assembly behaviour, especially concern-
ing the timing of assistive actions, we designed an experi-
ment where subjects had to perform a typically assembly 
task. The task was to build towers with cubes and bolts 
(Figure 1).
The assistive action, we are interested in, is the delivery of 
a component (in our case a cube) at the right time stamp. 
We assume that the right time to deliver a cube is the time, 
when the subject would be reaching for the cube in the 
slide.
In the experiment however, the subjects had to perform the 
task by themselves, without an assistant. The cubes were 
delivered by a slide at a position equivalent to a natural 
handover position of an oppositely sitting assistant [14]. 
Because of the slide, the current cube was available for the 
subject, at any time. 

2.1 Experimental setup and method 
25 subjects were asked to sit in front of a table and to build 
towers with the cubes and bolts (A picture of the setup is 
shown in Figure 2). While the bolts were accessible at the 
left side of the workspace, the cubes were available in the 
slide. The cubes had a different number of holes on two 
opponent sides. To stick the cubes to a tower, one had to 
insert the bolts into the holes and stick the cube on the top. 
The duration for each assembly step varied depending on 
the number of bolts needed to connect the cubes. The sub-
jects had to build 6 towers with a height of 6 cubes. There-
fore, there were 6 grasps, but only 5 assembly steps for 

each tower; leading to a total number of 30 assembly steps 
per subject. 
We recorded the gaze in space of the subjects using an 
eye-tracking device1, combined with infrared LEDs at-
tached at the table. The motions of the pointing fingers, 
thumbs, hands, head and torso were recorded using a mag-
netic field based Polhemus Liberty tracking device with a 
sampling frequency of 240 Hz.  The subjects were re-
corded by two video cameras. The multiplicity of the re-
corded modalities will allow further investigations and 
models beyond this report. 

Figure 1 picture of the objects (cubes with bolts) to as-
semble.

Figure 2 picture of the experimental setup.

2.2 Experimental Results 
We varied the complexity of each working step, and there-
fore the duration, by varying the number of bolts needed to 
plug one cube to another. Akin to MTM, the durations for 
assembling a cube to the tower are measured. The time slot 
begins when grasping a cube from the slide till grasping 
the next one. To determine the time stamps, we used the 
recorded hand trajectories. The grasping time stamps are 
defined as minima-distance from the hand to the slide.

                                                          
1 http://eyeseecam.com/ 
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Two subjects were removed from the data, because of 
huge outliers in the duration, e.g. because a bolt was fall-
ing on the floor and the subjects reached for it. 
The measured durations and the corresponding bolt num-
bers are demonstrated in Figure 3, where different colours 
indicate the subjects. The mean of the duration for each 
number of bolts is indicated as black cross. 
Data analysis shows, that a larger number of bolt lead to a 
longer assembly time. As a fist approximation one can as-
sume a linear dependency between the assembly time and 
the bolt numbers (R2=0.548), which is displayed as dashed 
red line in Figure 3. However, the distinct parameters 
largely differ from subject to subject, so one linear de-
pendency over all subjects does not describe the collective 
of subjects. Using a separate linear dependency for each 
individual subject leads to a better description of the data 
(R2=0.669). The individual linear dependencies are plotted 
as coloured dashed lines. 

Figure 3 Duration of each working step plotted over 
complexity (bolts) for all participants (different colours) 

Learning effects during the task were observed only at the 
beginning of the task and only for single subjects. Figure 4 
shows the normalized duration, which is calculated by di-
viding the duration of the trial by the number of bolts. 
Sudden changes of assembly strategies during the task 
could not be observed. 

Figure 4 Plot of the normalized duration over the assem-
bly steps. 

3 Human assembling model 
To develop a robust and precise technique for predicting 
the duration of each assembly step and thus the upcoming 
handover assistance of a new item, two separate modules 
need to be combined: One module that learns the duration 
of each assembly step depending on its complexity, and an 
additional module that uses online multimodal sensor input 
for the prediction of handover probability. The first mod-
ule will give reliable evidence, on condition that there are 
no sudden changes and no errors in the production. The 
second module is intended for unpredictable situations. 
To realize this, the present work will suggest a method for 
the first module, the prediction of durations of consecutive 
working steps. 

Using the results from the human experiments it is known, 
that a model for efficiently describing the human behav-
iour for assembly durations must adapt to the individual 
parameters of a human. The results are implemented 
within a probabilistic Bayesian framework, realized as 
Kalman filter [15]. 
Our experiment showed, that the time needed to request 
the next object is well described by an average duration 
and a linear dependence on the number of bolts, which 
now defines the complexity. 
Thus, the duration zk for the kth object can be described by 
zk = x1k + x2k uk + v = 1 uk[ ] xk + v
with xk being the state vector of the system, uk is the com-
plexity (number of bolts), and v is the measurement noise. 
This equation can be used as measurement model with the 
measurement matrix 
Hk = 1 uk[ ]
The system is very simple, and only assumes that both the 
offset and the slope (the state x) are constant for each sub-
ject:
xk = xk 1 + w

The Kalman filter is thus a two-dimensional system with a 
unity system matrix. 
The prediction step is 
x̂ k|k 1 = x̂ k 1|k 1
Pk|k 1 = Pk 1|k 1 +Q
with the system covariance Q. The update step is 
yk = zk Hk x̂ k|k 1

sk = HkPk|k 1Hk
T + r

Kk = Pk|k 1Hk
T sk

1

x̂ k|k = x̂ k|k 1 +Kk yk
Pk|k = (I KkHk )Pk|k 1
with r being the measurement variance. 
To predict the duration until the next transfer, we have to 
use the prediction step and combine it with the measure-
ment matrix 
ẑk+1 = Hk+1 x̂ k+1|k
The corresponding variance is 
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var(ẑk+1) = Hk+1Pk+1|kHk+1
T

The algorithm provides a normal probability distribution of 
the next duration with the expectation ẑk+1

and the standard deviation 

k+1 = var(ẑk+1)

The system and measurement variance, as well as the in-
itial internal state can be calculated from existing data as 
follows:
The internal state vector x is equal to the coefficient esti-
mates from the first order linear regressions analyse of the 
whole data set.
The variance of the internal state Q is the median over the 
variance of the individual slopes x1 and offsets x2 for each 
subject. In our case each subject s had to repeat the task six 
times (t=1…6). The variance of the regression estimates xi
for one subject thus is: 
varqi,s = var(xt,i,s),
where t is the repetition (trial) and i indicates the offset or 
slope.
Qii = median(varqs,i) = median(var(xi,t,s))
Qij = 0, i j

The variance of the measurement r is calculated as the me-
dian over the variance of the residuals for each subject. 
The variance of the residuals for a subject is: 
varrs = var(yk,s)

where y is the residual, k is the object or assembly step and 
s the subject. 
Therefore, the variance of the measurement r can be writ-
ten as: 
r = median(varrs) = median(var(yk,s))

4 Evaluation of the model 
The described Kalman filter is able to predict the duration 
of consecutive working steps. It delivers a normal proba-
bility distribution of the duration, with expectation value 
ẑk+1 and standard deviation k+1. The filter continuously 
estimates individual parameters describing the behaviour 
of the human user by taking into account the previously 
found linear dependency between the duration and com-
plexity of the assembly step.
To evaluate the quality of the model, tests are performed, 
using the data received by our experiment. Figure 5 shows 
the root mean squares of the difference (residual) between 
the measured and the predicted durations over all the 30 
assembly steps (dark grey bars). It can be observed that in 
the first two trials the prediction is not very accurate. In 
these two trials the parameters of the linear model are ad-
apted to fit the individual subjects. As the subjects them-
selves do not vary much during the assembly, the follow-
ing trials are predicted more precisely. 
The over all accuracy in our experiment over the 30 as-
sembly steps is 2.48 s (RMS). Disregarding the initial ad-
aption phase (the first two trials), the model steadily pre-
dicts the durations of the following assembly steps with an 

accuracy of 2.06 s (RMS). In relation to the average dur-
ation of an assembly step in our task (11.445 s), the RMS 
error corresponds to an accuracy of 18.03%. The coeffici-
ent of determination is R2=0.691.
If the averaged linear dependency over all subjects is used 
to predict the durations (see Figure 3, dashed red line), we 
get an accuracy of 2.50 s (RMS) after two trials. The RMS 
error using the averaged linear dependency is plotted as 
light grey bars in Figure 5.
Obviously in the initial phase, the averaged linear model 
predicts the same duration than the Kalman filter, because 
in the first trial there is no information about the residual. 
However in the following trials the Kalman filter predicts a 
more precise duration of the subsequent assembly steps, 
than the simple linear model.

Figure 5 RMS plot of the difference between measured 
and predicted assembly duration over the trials.

Figure 6 Empirical (black) and predicted duration (red) 
over all working steps for a single subject. 

In Figure 6 the predicted durations (red) are plotted with 
the measured durations (black) over the trials. The predic-
tions using the averaged linear model, is also plotted 
(blue). The red error bar indicates the standard deviation of 
the predicted duration. The numbers above the durations 
indicate the number of bolts the subject had to use in this 
assembly step. Here also the initial phase of two trials can 
be observed, where the model has to adjust the initial pa-
rameter to the preferences of the subject. After this adap-
tion phase the model reliably predicts the durations. Fur-
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thermore, the measured duration nearly always lies within 
the standard deviation of the predicted duration (indicated 
as red error bar). 
However, if there is an unexpected event, like an error or a 
bolt falling down the table, and the subject looks for it, the 
model obviously is not able include these kinds of events 
in its prediction.  Figure 7 shows a case, where a subject 
had a problem assembling four bolts in trial (step) 21. It 
took the subject much longer to assemble a cube with 4 
bolts (number over the data point) than in the previous as-
sembly step with 5 bolts. The algorithm interprets the big 
difference from the predicted duration as general change of 
the subject’s behaviour, thus adjusting the parameter of the 
linear model. A just one-time disturbance, as shown in this 
case, leads to defective predictions in the subsequent as-
sembly steps. In order to provide again reliable predic-
tions, the algorithm needs two more trials, as when adapt-
ing to a new subject. Therefore after trial 24 the parameters 
fits the subjects’ behaviour again. Such occurring disturb-
ances in the workflow or even worse errors have to be de-
tected by modules using online sensor observations.

Figure 7 Empirical (black) and predicted duration (red). 
This subject had an assembly problem at trial 21. 

The robust prediction of qualitatively good assembly dura-
tions, in workflows without bigger disturbances is remark-
able. This is achieved due to its simple underlying mecha-
nism, which is a widely know basic Kalman filter, using a 
linear model.

5 Implementation in robot systems 
For a proof of principle, the developed algorithm has been 
implemented in an industrial robot JAHIR [3].
Doing so, our concept calculates the duration of a subse-
quent assembly step. The robot system uses the predicted 
duration to pass the next object and it reaches the handing 
over position after the calculated expectation value ẑk+1.
The sequence of the cubes and the corresponding bolt 
numbers were deposited as list in the computer system. 
Contrary to the first experiment, the cubes are not always 
present. The cubes are only available after the predicted 
duration, when delivered by the robot. In contrast to the 
previous experiment, the assembly duration is not the time 

from grasping the first object, until picking the second one 
from the robot’s gripper, but the time from picking an ob-
ject from the gripper till the user finishes the assembly. In 
case the calculated duration is longer than the actual as-
sembly and the subject has to wait for the delivery, he has 
to move his hand to the handing over position, signalling 
he has finished the assembly and is waiting for the next 
cube. This signal is used as breakpoint for the measured 
assembly duration. The hand was detected by an infrared 
tracking system 2.
Furthermore, the tracking of the hand allowed considering 
the case, where the algorithm calculates too long durations, 
by adding a simple logic to the system: If the subjects’ 
hand is on the handing over position, the robot starts to 
hand over the cube immediately, ignoring predicted value. 
This avoids waiting times longer than 1.5 seconds, which 
is the time the robot takes for delivering a cube. 

Figure 8 Picture of the JAHIR robot system while it is 
assisting a user by an assembling task.

For simulating a smooth and safe handover feeling, a han-
dover-position, corresponding to [14] was programmed. 
As trajectory we used a modified version of the minimum 
jerk trajectory [16]. 
A first test has shown that the implementation in robot sys-
tems has demonstrated a promising interaction between the 
robot system and human user. Figure 8 shows a picture of 
the JAHIR robot system, which is assisting a subject to as-
semble the towers. 
The present model can be easily integrated in most robot 
systems. The demand on the sensory systems is marginal. 
For labelling the objects a deposited list in the software, 
RFID tags or optical tags on the objects are sufficient. For 
detecting the hand at the handing over position, a simple 
light barrier would be sufficient. 

6 Discussion
Our results provide a first step towards endowing robotic 
systems with the ability for timely assistance in a coopera-
tive human-robot task. While the present algorithm, which 
                                                          
2 http://www.ar- tracking.com 
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implements a primitive intention prediction, only uses in-
formation about task complexity and previous durations, a 
combination with online sensor fusion will provide more 
robust, time-optimized assistance. Furthermore, compari-
son of the predictions of both modules would allow detect-
ing irregularities in the workflow and provide the possi-
bility to react adequately. Accurate timing of robotic action 
in assistance scenarios will thus be an important step to-
ward adapting technical systems to human users in a safe 
and convenient way. 

In human experiment we could show that a linear depend-
ency sufficiently describes the relation between the defined 
complexity of each working step and its duration. How-
ever, the distinct parameters largely differ from subject to 
subject. These results were implemented within a proba-
bilistic Bayesian framework realized as Kalman filter that 
is able to predict the duration of consecutive working steps 
(for an example of its performance, see Figure 6). The fil-
ter continuously estimates individual parameters describ-
ing the behaviour of the human user by taking into account 
the previously found linear dependency between the dur-
ation and complexity of the assembly step. The simple 
underlying model enables the method to adapt to subjects 
within the first two assembly steps. After the short adap-
tion phase, our model predicted the durations of subse-
quent assembly steps with an accuracy of 2.06 sec (RMS). 
Referred to an average duration of an assembly step in our 
task, this is an accuracy of 18.03%. Even though the model 
is making good predictions in a constant workflow, it is 
unable to predict unforeseeable event, such as human dis-
turbances and errors. 

The developed algorithm has been implemented in an in-
dustrial robot [3] to further investigate its performance. 
The implementation in robot systems is noncritical; the 
needs to the senor systems are marginal. The present algor-
ithm works with a simple detection of the current object, 
e.g. a list, RFID tags or colour codes, and a light barrier to 
detect the finished assembly step.  
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