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Abstract— Due to historical reasons or system development
aspects, many high-level control tasks in vehicles are performed
by underlying low-level controllers. This separation of concerns
provides reliable systems, but potentially degrades the perfor-
mance compared to centralized control. Performance losses are
acceptable for most control tasks, but for collision avoidance
systems one should not compromise on safety. We investigate
the performance loss for collision avoidance systems when an
underlying yaw stabilization controller is used, which can be
found in many modern vehicles under various product names,
such as electronic stability control (ESC). Since electronic
stability control differs from vehicle to vehicle, we use an
idealized controller that performs better than or equally well
as an actual realization. It is shown that central control
concepts bypassing the yaw stabilization perform better than
a hypothetical controller embedded with the idealized yaw
stabilization. We also provide a measure for the performance
loss, which should support the decision for or against the use
of yaw stabilization in collision avoidance systems.

I. INTRODUCTION

Comparing the performance of a vehicle with electronic
stability control to a vehicle with a centralized control is
a challenging task. The problem is that due to protection
of intellectual property, makers of such systems do not
reveal their control algorithms. Besides this issue, one would
not only have to test different suppliers, but also differ-
ent vehicles since electronic stability control is tuned for
each vehicle differently, even regional customer preferences
might be considered. In order to overcome those difficulties,
we give electronic stability control the best chance: We
compute the optimal open-loop control performance when
the system does not suffer from sensor noise and when
no tracking errors occur. This procedure has the advantage
that we do not have to know details of any specific ESC
algorithm. The performance degradation only origins from
the constraint that a certain yaw rate has to be maintained,
which causes a higher utilization of tire forces than in the
unconstrained case. The nominal performance of tracking
with ESC is compared to trajectory tracking with two cen-
tralized controllers. The first centralized controller employs a
conventional constant brake balance, whereas the second one
uses individual wheel braking and choses an optimal brake
force distribution for trajectory tracking. The differences
between yaw rate constrained performance of an ESC based
control approach and the unconstrained performance of the
centralized tracking controllers are put into perspectiveby
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considering the (finite horizon) optimal trajectory tracking
solution. For the comparison we use a benchmark scenario
proposed in an earlier work of the authors [6].

To the best knowledge of the authors, there are no con-
tributions in the literature that are concerned with the co-
existence of trajectory tracking in automated vehicle op-
eration and electronic stability controllers. Previous results
either solely focus on electronic stability control for human-
driver assistance or on controllers for automated operation.
Yaw stabilization concepts using individual braking torques
are presented in [3], [17]. Optimization of electronic stability
control by not only using negative brake torques, but also
positive torque from torque vectoring can be found in [8],
[12]. Concepts for yaw control allocation strategies including
active steering are described in [2], [16], [19]. There are also
many research activities for simultaneous yaw stabilization
and suspension performance optimization [5], [14], [15].

For automated vehicle operation, we focus the literature
research on contributions that use exact input-output lin-
earization since this is the concept applied in this work.
In [18] the steering angle and the overall braking force are
used as system inputs. Similarly, in [7], [11] the steering
angle and individual front- and rear-axle braking forces are
used as system inputs. Controlling the individual brake discs
is proposed in [10], yet with the downside that required
inputs include steering angles for all wheels as well as active
suspension. Trajectory tracking with the inputs steering angle
and individual wheel braking has been considered in [4]
in a model predictive control framework, although with the
downside that exact tracking can not be guaranteed even in
the nominal, disturbance free case.

In Sec. II the mathematical model of the vehicle is pre-
sented. The cost function for comparing the control concepts
and optimal open-loop solutions are shown in Sec. III. Two
proposed closed-loop controllers based on an exact input-
output linearization for comparison with the idealized open-
loop control are described in Sec. IV: The first variant uses
the angular velocity of the steering and a statically balanced
brake-torque as system input. The second variant uses the
angular velocity of the steering and individual brake torques.
The results of the comparisons are summarized in Sec. V.

II. VEHICLE MODEL

A planar four-wheel vehicle model with a simplified
suspension system and a nonlinear Paceijka-like tire model
[10] is used. The state of the vehicle main body with the
total massm and the rotational inertiaIz is described by the
velocity in longitudinal and lateral vehicle-relative direction
vCG

x ,vCG
y of the center of gravity (CG) and the rotational yaw



velocity ϕ̇z. The wheels numbered one to four in the order
front-left, front-right, rear-left and rear-right are positioned
at ρi measured relative to the vehicle center of gravity. For
instanceρ1 = (l f ,b,−h)T for the front-left wheeli = 1. We
use the notationa{x,y} to denote a vector containing thex
andy components ofa. A wheel i produces forces acting in
vehicle x, y and z direction, Fi,{x,y,z}. The resulting vehicle
equation of motion is affine in the inputs:
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For each wheeli = 1...4 with radiusr and rotational inertia
Iw we have one differential equation foṙωi in (1), leading
to an eighth order system. The steering angle of the front
wheels is set toδ1 = δ2 = δ and of the rear wheelsδ3 =
δ4 = 0. In following equations we use the rotation matrix
R(·) =

(
cos(·) −sin(·)
sin(·) cos(·)

)

. The tire forces in longitudinal and
lateral direction are nonlinear functions of the wheel slip
vector si = (si,x,si,y), the steering angleδi , and the wheel
normal forceFi,z:

Fi,{x,y} = µ0 ·Fi,z ·R(δi)µ(si,{x,y}) (2)

µ(s) =−
s
‖s‖

·sin
(
Carctan(B/µ0 · ‖s‖)

)
(3)

si,{x,y} =

(

R(−δi)vi −
(

rωi 0
)T
)

/‖vi‖ (4)

vi = vCG
{x,y}+ρi ×

(

0 0 ϕ̇z

)T
(5)

The simplified suspension is modeled under the assump-
tion that roll and pitch angles are zero,ϕx ≡ ϕy ≡ 0, leading
to the equilibrium condition:

0=
4

∑
i=1

[ρi ×Fi ]{x,y} , mg=
4

∑
i=1

Fi,z (6)

The resulting normal forcesFi,z equal the steady state normal
forces of a dynamic suspension system for small pitch and
roll angles. The normal forces vary with different longitudi-
nal and lateral vehicle accelerations, leading to higher load
on the outer wheels in a curve and higher load on the front
wheels for braking. The equilibrium is over-constrained for
four wheels, which is resolved here by assuming that the
front and the rear wheel of one side contribute equally to
the roll equation. Equation (6) can be put in explicit form
for Fi,z, if (2) depends linearly or quadratically onFi,z.

III. OPTIMAL TRAJECTORY TRACKING

We first introduce in Sec. III-A the general optimization
problem for unconstrained trajectory tracking. In Sec. III-B

we add further constraints to consider the effects of an
embedded electric stability control.

A. Optimal Tracking without ESC

We assume that a desired trajectory is given for the vehicle
CG. The goal of this section is to produce a vehicle move-
ment which is exactly constrained to the desired trajectory
and which is optimal in the remaining degrees of freedom.
At all points of time the length and the orientation of the
CG’s velocity vector has to equal the lengthV(t) and the
orientationθ(t) of the desired trajectory’s velocity vector.
A derivative with respect to time yields two constraints for
exact tracking:

(

v̇CG
x −vCG

y ϕ̇z

v̇CG
y +vCG

x ϕ̇z

)

= R(θ −ϕz)

(

V̇
Vθ̇

)

(7)

The objective function is defined similarly to [9] as the
integral over the sum of the squared tire force transmission
ratio:

J =
∫ t f

t0

1
4

4

∑
i=1

(

‖F{x,y},i(t)‖

µ0Fz,i(t)

)2

dt (8)

The local costddt J(t) is bounded by the interval[0,1], where
the value 1 indicates that the maximum transmissible tire
force is used.

After defining the side slip angleβ = θ −ϕz we can for-
mulate the state vector of the dynamic optimization problem:

xI (t) =
(

β (t), β̇ (t), β̈ (t),ω1(t), ...ω4(t),δ (t)
)T

(9)

with the initial conditionsβ (t0) = 0 andβ̇ (t0) = 0. It is not
necessary to solve for the system inputs as they are absent
from the objective function and the constraints. We employ a
local collocation approach [1] to transform the dynamic opti-
mization problem to a static nonlinear optimization problem.
The solution trajectoryxI (t) is represented byk orthogonal
polynomials of degreep, that isk(p+1) supports. The static
optimization is solved by the MatlabR© function fmincon.

B. Optimal Tracking with ESC

According to [13] the vehicle yaw dynamics can be
stabilized in a way satisfying user expectancies by choosing
the steady state rotational velocityϕ̇0(δ ) of the linear bicycle
model:

ϕ̇0(δ ) = δH(v) = δ
v

l f + lr +mv2 l f cf −lr cr

2(l f +lr )cf cr

(10)

As the linear bicycle model does not describe the saturation
of the tire forces, the desired value is additionally limited
by a maximum lateral acceleration and its corresponding
maximum rotational veloctiy:

ϕ̇∗
z = max

(

−
µg
v
,min

(

δ ·H(v),+
µg
v

))

(11)

There are unknowns regarding ESC parametrization that
require several assumptions: The activation threshold of a



specific ESC system is not known. We therefore assume
that the ESC is operational in the complete time interval of
the investigated maneuver. The parameters of the feedback
loop are also unknown. We assume that in realityϕ̇z never
diverges far from the desired valuėϕ∗

z , so that the transient
ESC behavior (settle-time etc.) and regulatory system inputs
in comparison to nominal inputs are negligible. For the
idealized yaw-control the constrainṫϕz ≡ ϕ̇∗

z is enforced.
Another unknown is the method of allocating the required
yaw moment to the brake inputs of the four wheels. We
assume here that real ESC implementation uses a very good
allocation method. The optimization problem is therefore
simultaneously solved for the wheel-speeds as in the above,
unconstrained case to yield an optimal allocation.

In total, we model trajectory tracking with active ESC
as an optimization problem similar to III-A, but with the
following constraints in addition to the free optimization
problem:

−
µg

V(t)
≤ θ̇ − β̇ ≤

µg
V(t)

(12)

θ̈ − β̈ = δ̇ (t)H
(
V(t)

)
+δ (t)

∂H
∂V

V(t) (13)

These three constraints directly result from the ESC desired
yaw rate ϕ̇∗

z given in (11), with the constraint (13) as the
derivative of (10) being equivalent to (10) when the initial
state satisfies (10).

IV. REACTIVE TRAJECTORY TRACKING

One of the advantages of input-output linearization over
other control methods is that it facilitates exact open-loop
tracking under nominal conditions, (no measurement noise,
process disturbances or model errors). This property is
required for the comparison in Sec. V, as tracking-errors
(cutting the corner) would lead to lower tire-force utilization
and therefore distort the comparison. This section describes
two trajectory tracking controllers based on input-output
linearization. The first controller uses a conventional constant
brake balance and the second actuates individual wheel
brakes.

We start by defining a feedback that linearizes the velocity
vector of a look-ahead positionP. Position tracking can then
be achieved by finding a suitable derivative of the tracking
error.

The velocity vector of a vehicle-fixed pointP with the
vehicle-relative positionρ , ρx ≥ 0 is the quantity to be
controlled:

hP := vCG
{x,y}+[ρ × ϕ̇]{x,y} (14)

Using the braking torquesu1 =T1, ...,u4 =T4 and the steering
angle velocityδ̇ as inputs, one can show thathP has relative
degree two for a reasonable set of vehicle states:

∂hP

∂x
G= 0, rank

(
∂hP

∂x
∂ f
∂x

G

)

= 2 (15)

Accordingly, we can directly manipulate the second deriva-
tive of the velocity ofP and a linearizing input vectoru

therefore has to comply to:

h(2)P =
∂hP

∂x
∂ f
∂x

f (x)+
∂hP

∂x
∂ f
∂x

Gu (16)

=: a(x)+B(x)u (17)

The vector∂hP/∂x is constant and∂ f/∂x is easily com-
putable by taking the numerical derivative off at the current
statex(t).

Trajectory tracking can be formulated as proposed in [18]
by defining the path-tangential tracking errorεT and the
path-normal errorεN with ε = (εT ,εN)

T as the difference
between the actual look-ahead position(XP,YP) and the
desired position(X∗,Y∗):

ε = R(−θ)

(

XP−X∗

YP−Y∗

)

(18)

The desired trajectory can be specified in multiple ways.
Here, we use the tangential (absolute) velocityV(t) and
the current headingθ(t), which is the angle between an
earth-fixed coordinate system and the current tangent of the
trajectory. With the directly controllable output derivative
h(2)P appearing in the third derivativeε(3) of the tracking
error, the necessary velocity changes are:

h(2)P =R(θ −ϕz)



ε(3)+
...
θ ε̄ +2θ̈ ε̄(1)+ θ̇ ε̄(2)+

(

V̈
0

)



−
(

ϕ(2)
z − θ̈

)

h̄P−2
(

ϕ(1)
z − θ̇

)

h̄(1)P

+
(

ϕ(1)
z − θ̇

)2
hP, (19)

using the convenient notation ¯a{x,y} =
(
−ay,ax

)T
to denote

a vector rotated by 90 degrees. The errorε(3) may be used
to define a feedback compensation.

A. Tracking Controller with Static Brake Balance (SBB)

To model trajectory tracking with conventional, non-
differential braking, the five system inputsindividual braking
torquesandsteering angle velocity, u1...5, are mapped to the
two virtual inputsv1 andv2 with the help of the static brake
balancebb ∈ [0,1]:

u :=

(

bb bb 1−bb 1−bb 0
0 0 0 0 1

)T

v (20)

After inserting (20) in (16), the equation can be solved for
v and thenu. The resulting controller always distributes
braking torques according to a static brake balance and thus
models vehicle systems where individual wheel brakes are
not accessible.

B. Tracking Controller with Individual Wheel Braking (IWB)

In case the trajectory tracking controller has access to
individual brakes, it may actuate five inputs to satisfy the
two equality constraints of (16). The three remaining degrees



of freedom can be employed to minimize the following cost
function:

ju := uTKu+cu (21)

One possibility is to choseK so as to weigh the inputs by
their maximum value,

Ki,i :=
1

ui,max(x)
, Ki, j = 0, for i 6= j, (22)

with

ui,max(x) := r ·
√

µ2
0F2

z,i −F2
y,i , 1≤ i ≤ 4, (23)

assuming a nearly isotropic tire model, and

u5,max := δ̇max, (24)

because the steering angle velocity is limited by the physical
properties of the steering motor. A cost functionjx depending
on the vehicle state can be locally minimized in a gradient
descent fashion by minimizing the time-derivativeddt jx =
∂ jx
∂x

(
f (x)+Gu

)
. If we select jx = 1

2δ 2 with d
dt j(x) = δ δ̇ ,

we can set

c(x) := (0,0,0,0,δ ). (25)

To minimize the cost functionju, while at the same time
satisfying the path tracking constraints (16), the following
Lagrange function is used:

Λ = uTK(x)u+c(x)u+λ T
(

a(x)+B(x)u−h(2)P (t)
)

(26)

∇Λ = 0⇒ (27)
(

u
λ

)

=

(

2K(x) BT(x)
B(x) 0

)−1(
−cT(x)

−a(x)+h(2)P (t)

)

V. RESULTS

TABLE I

VEHICLE PARAMETERS

m [kg] Jz [kg m2] l f [m] lr [m] h [m] b [m]
1750 2500 1.43 1.27 0.5 0.74

r [m] Jw [kg m2] Bf Cf Br Cr
0.32 1.2 10.4 1.3 21.4 1.1

bb µ0
0.6 1

SCENARIO PARAMETERS

V(0) [ m
s ] X∗(0) X∗(4s)[m] Y∗(0) Ẏ∗(0) Ÿ∗(0)

22 0 70 0 0 0
...
Y∗(0) Y∗(2s)[m] Y∗(4s) [m] Ẏ∗(4s) Ÿ∗(4s)

...
Y∗(4s)

0 3 −1 0 0 0

For comparison of the optimal tracking controllers in
Sec. III and the reactive tracking controller in Sec. IV,
we use a double lane-change maneuver. The maneuver is
also described as a benchmark problem in a previous work
of the authors [6]. We specify the trajectory in earth-fixed
coordinatesX andY by a polynomial of minimal degree, i.e.,
the number of parameters matches the number of constraints.
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Fig. 1. Desired maneuver (trajectory) and open-loop simulation results
(CG-positions, vehicle) forω1..4(t) andδ (t) values supplied by optimization
without ESC.
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Fig. 3. Vehicle slip-angle and steering angle

The constraints are listed in Tab. I and the resulting trajectory
is plotted in Fig. 1. The velocity profile along the path is
given by constant deceleration from the initial velocityV(0)
so that the vehicle reaches the end of the given path after 4
seconds. The parameters of the vehicle model described in
(1) can be found in Tab. I.

The four control concepts for comparison are: 1) optimal
tracking, 2) optimal tracking with embedded yaw stabiliza-
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Fig. 4. Differential wheel-speeds

tion, 3) reactive tracking using individual brake torques,and
4) reactive tracking using the static brake balance. Since the
comparison is set up for the case of exact tracking, which
makes it possible to solely characterize yaw stabilization
by the controlled yaw rate, only states comprising the zero
dynamics differ:

• the slip angle relative to the trajectoryβ (see Fig. 3)
and its derivativeṡβ and β̈ ,

• steering angle, Fig. 3
• wheel speed, Fig. 4

These variations cause different utilization of tire forces,
which influences not only the ability to track the trajectoryat
low road friction values but also the friction reserves required
to compensate tracking errors.

The resulting cost function of each maneuver is plotted
in Fig. 2. It can be seen that the best performance is
obtained by optimal tracking, followed by reactive tracking
using individual brake torques, which performs even better
than optimal tracking with embedded yaw stabilization. This
shows that only using information of the current state can
perform better compared to a global optimization enforcing
embedded yaw stabilization. As expected, reactive tracking
using the static brake balance performs worst. The plot
clearly identifies an ordering for this benchmark problem
since the cost functions retain their ordering for the complete
time horizon. The cost function also provide a measure
for the lost tire friction potential when yaw stabilizationis
activated.

VI. CONCLUSION

We address the problem of comparing controllers for
trajectory tracking in collision avoidance applications with
and without embedded yaw stabilization. One of the main
challenges for this comparison is that controllers for yaw
stabilization differ from vehicle to vehicle. For that reason,
an idealized yaw control is suggested that tracks a planned
emergency maneuver without any tracking error. Even under
this best case condition, optimal tracking control and reac-
tive control using individual wheel torques perform better

and thus possibly avoid collisions that are unavoidable by
embedded yaw stabilization. Although existent in reality,
the idealized yaw control does not consider an activation
threshold. Upon deactivation of the yaw stabilization, the
vehicle would most probably be forced to use a static
brake balance, which performs even worse compared to
yaw stabilization as presented in Sec. V. The results were
derived under nominal conditions without either sensor noise,
process disturbance or model mismatch. Therefore future
work still has to investigate the robustness of the proposed
methods and the performance under noisy conditions.
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[15] B. Schofield and T. Ḧagglund. Optimal control allocation in vehicle
dynamics control for rollover mitigation. InAmerican Control Con-
ference, pages 3231–3236, 2008.

[16] J. Tjønn̊as and T. A. Johansen. Stabilization of automotive vehicles
using active steering and adaptive brake control allocation. IEEE
Transactions on Control Systems Technology, 18(3):545–558, 2010.

[17] P. Tøndel and T. A. Johansen. Control allocation for yawstabilization
in automotive vehicles using multiparametric nonlinear programming.
In Proc. of the American Control Conference, pages 453–458, 2005.

[18] M. Werling. Ein neues Konzept für die Trajektoriengenerierung
und -stabilisierung in zeitkritischen Verkehrsszenarien. PhD thesis,
Karlsruher Institut f̈ur Technologie, 2010.

[19] S. Yim, J. Choi, and K. Yi. Coordinated control of hybrid 4wd vehicles
for enhanced maneuverability and lateral stability.IEEE Transactions
on Vehicular Technology, 61(4):1946–1950, 2012.


