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Abstract. Long Short-Term Memory (LSTM) recurrent neural net-
works (RNNs) are local in space and time and closely related to a biolog-
ical model of memory in the prefrontal cortex. Not only are they more
biologically plausible than previous artificial RNNs, they also outper-
formed them on many artificially generated sequential processing tasks.
This encouraged us to apply LSTM to more realistic problems, such as
the recognition of spoken digits. Without any modification of the un-
derlying algorithm, we achieved results comparable to state-of-the-art
Hidden Markov Model (HMM) based recognisers on both the TIDIGITS
and TI46 speech corpora. We conclude that LSTM should be further
investigated as a biologically plausible basis for a bottom-up, neural net-
based approach to speech recognition.

1 Introduction

Identifying and understanding speech is an inherently temporal task. Not only
the waveforms of individual phones, but also their duration, their ordering, and
the delays between them all convey vital information to the human ear. While
neural networks have dealt very successfully with certain temporal problems,
they have so far been unable to fully accommodate the range and precision of
time scales required for continuous speech recognition. This failing has left them
a peripheral role in current speech technology.

The aim of this paper is to re-examine the neural network approach to speech
recognition (SR). In particular, we are interested in providing a more robust, and
biologically plausible alternative to statistical learning methods such as HMMs.
In Section 2, a summary is given of the problems that the approach has suffered
from in the past. In Section 3, the network architecture we will use (Long Short
Term Memory, or LSTM) is introduced, and its suitability for SR is discussed.
In Section 4, experimental results for LSTM on a digit recognition task are
provided. Concluding remarks and future directions are presented in Section 5,
and pseudocode for the LSTM training algorithm is given in Section 6.1.

2 Neural Nets in Speech Recognition

For neural nets, dealing with time dependent inputs (such as those present in
speech) means one of two things: either collecting the inputs into time windows,
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and treating the task as spatial; or using recurrent connections and an internal
state to model time directly.

There are two drawbacks to the application of time-windowed networks to
speech recognition. Firstly, the window size is fixed by the topology of the net-
work (and usually limited by speed and memory considerations). This means
that either the net has a huge number of inputs (and therefore a huge num-
ber of parameters and a very long training time), or else that important long
time dependencies, such as the position of a word in a sentence, are simply ig-
nored. Secondly, such nets are inflexible with regard to temporal displacements
or changes in the rate of input (non-linear time warping), leaving them easily
confused by variations in speech rate.

With recurrent neural nets (RNNs), on the other hand, temporal patterns
are not transformed into spatial ones. Instead, a time series is presented one
frame at a time, with the flow of activations around the connections creating a
memory of previous inputs. Recurrent training algorithms such as Backpropaga-
tion Through Time (BPTT)[1, 2] and Real Time Recurrent Learning (RTRL)[3]
can perform weight updates based on the entire history of the network’s states.
Therefore it seems feasible that they could process any length of time series.
But in practice, these algorithms share a common weakness: their backprop-
agated errors either explode or decay in time, preventing them from learning
dependencies of more than a few timesteps in length: [4].

The difficulties indicated above help to explain why Hidden Markov Models
(HMMs), rather than neural nets, have become the core technology in speech
recognition [5]. At first sight this is surprising, since their central premise is that
the future behaviour of the system depends only on its current state (for example,
that the probability of a phoneme depends only on which phoneme was before it).
Moreover, they assume that observations (e.g. frames of speech) are statistically
independent, which makes it difficult to model such effects as coarticulation (the
blurring together of adjacent speech sounds). In fact, handling coarticulation and
other contextual effects has been the most effective use of RNNs in the HMM
framework. Work by Bourlard [6] and Robinson [7] showed that using RNNs to
estimate output probabilities for HMMs (the hybrid approach) gave substantially
improved performance.

However, the hybrid approach represents an ad hoc combination of top-down
linguistic modelling and bottom-up acoustic modelling. We feel that a consistent,
bottom-up approach could be made to speech recognition by an RNN that could
overcome such problems as long time dependencies and temporal distortions. In
the following, we aim to test this claim with the Long Short Term Memory
(LSTM) architecture first described in [8] and later extended in [9].

3 The LSTM Architecture

LSTM is an RNN that uses self-connected unbounded internal memory cells
protected by nonlinear multiplicative gates. Error is back-propagated through
the network in such a way that exponential decay is avoided. The unbounded (i.e.
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Fig. 1. LSTM memory block with one cell. The internal state of the cell is maintained
with a recurrent connection of weight 1.0. The three gates collect activations from both
inside and outside the block, and control the cell via multiplicative units (small circles).
The input and output gates effectively scale the input and output of the cell while the
forget gate scales the internal state—for example by resetting it to 0 (making it forget).
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unsquashed) cells are used by the network to store information over long time
durations. The gates are used to aid in controlling the flow of information through
the internal states. The cells are organized into memory blocks, each having
an input gate that allows a block to selectively ignore incoming activations,
an output gate that allows a block to selectively take itself offline, shielding it
from error, and a forget gate that allows cells to selectively empty their memory
contents. Note that each memory block can contain several memory cells. See
Figure 1. Each gate has its own activation in the range [0, 1]. By using gradient
descent to optimise weighted connections into gates as well as cells, an LSTM
network can learn to control information flow. LSTM’s learning algorithm is
local in space and time with computational complexity per timestep and weight
of O(1) for standard topologies (see Section 6.1 for details). This locality, in
contrast with training algorithms such as Real Time Recurrent Learning and
Back Propagation Through Time, makes LSTM more biologically plausible than
most RNN architectures. Indeed, a recent report by O’Reilly [10] describes a
closely related model of working memory in the basal ganglia and prefrontal
cortex.

3.1 Why use LSTM for speech recognition?

As mentioned in Section 2, it is essential for an RNN used in speech recognition
to be able to bridge long time lags, and adapt to time warped data. These are
two areas in which LSTM has outperformed other RNN’s. That LSTM can deal
with long time lags has been demonstrated in experiments such as [8, 11], while
its utility with time-warping is clear from its success in learning context free
languages [11], and in generating music [12]. In both cases, its advantage comes
from the fact that because its central timing mechanism is not (as for most
RNNs) a decaying flow of recurrent activation. Instead, its memory cells act as
a set of independent counters. These cells (along with the gates used to open,
close and reset them) allow LSTM to extract and store information at a very
wide range of timescales.

However, HMMs, rather than RNNs, are the standard tool for speech recog-
nition, and the question we must ask is why use LSTM instead of HMMs?
The answer is that statistical models like HMMs tend to be less general and
less robust than RNNs, as also less neurologically plausible. For example, the
parameters and language models used in HMMs are tuned towards particular
datasets, and the choice of acoustic model they use is dependent on the size of
the corpus. Also HMMs are very sensitive to channel errors, and coding algo-
rithms are needed to clean up the data before they see it. LSTM on the other
hand, is a general purpose algorithm for extracting statistical regularities from
noisy time series. Unlike HMMs, it doesn’t rely on the manual introduction of
linguistic and acoustic models, but can learn its own internal models directly
from the data. And although (like all neural nets) it does have free parameters,
such as learning rate and layer size, we demonstrate below that these do not
need to be adjusted for particular corpora.
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4 Experiments

Two datasets were used in the following experiments. The first was a subset
(containing only the single digit utterances) of the TIDIGITS corpus, collected
by Texas Instruments from more than 300 adults and children. The second was
a set of 500 randomly selected spoken digits from the TI46 corpus. The task on
the TI46 data was to correctly identify ten digits “zero”, “one”, “two”,...,“nine”,
while on the TIDIGITS data there was the additional digit “oh”. Unlike some
experiments found in the literature, we did not separate the adult speakers from
the children in TIDIGITS. In both cases the audio files were preprocessed with
mel-frequency cepstrum coefficient (MFCC) analysis, using the HTK toolkit [13],
with the following parameters: 12 cepstral coefficients, 1 energy coefficient, and
13 first derivatives, giving 26 coefficients in total. The frame size was 15 ms and
the input window was 25 ms.

4.1 Experimental Setup

We used a neural net with a mix of LSTM and sigmoidal units (with a range
of [0, 1]). The net had 26 inputs (one for each MFCC coefficient) and 11 (10)
sigmoidal output units for TIDIGITS (TI46) - one for each digit. The classifica-
tion was based on the most active output layer at the end of an input sequence
(i.e. after each spoken digit). A cross-entropy objective function was used, and
the output layer had a gain of 3. The network also had two hidden layers. The
first of these was an extended LSTM layer with forget gates and peephole con-
nections (see section 3 for details). The layer contained 20 memory blocks, each
with two cells, containing 100 cells in total. The squashing function was logis-
tic with range [−2, 2], and the activation functions of the gates were logistic
in range [0, 1]. The bias weights to the LSTM forget (input and output) gates
were initialised blockwise with positive (negative) values of +0.5 (−0.5) for the
first block, +1.5 (−1.5) for the second block and so on. The second hidden layer
consisted of 10 sigmoidal units. In total there were 121 units (excluding inputs)
and 7791 weights.

Most of these parameters are standard and have been used in all our LSTM
experiments. The biasing of the LSTM gates (as used in [9]) ensures that the
input and output gates are initially open and the forget gate is initially closed.
The staggering in this bias causes the blocks to become active sequence proces-
sors one after another, which seems to aid in the subdivision of tasks between
separate blocks. A smaller LSTM net, with only 10 memory blocks, was found
to perform less well on this task; experiments with even larger nets failed to give
any further improvement. The use of a squashing function with range [−2, 2] for
the cells is also standard, and is helpful in that it allows the stored cell values to
step down as well as up. The inclusion of the extra sigmoidal layer and the gain
at the output layer facilitate classification tasks, as they tend to sharpen the
network outputs towards one or zero. Cross entropy was used as the objective
function because of its known affinity for identifying mutually exclusive classes
[14].
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The connection scheme was as follows: all units were biased, except for the
input units. The input layer was fully connected to the LSTM layer. The LSTM
layer was fully connected to itself, the hidden sigmoidal layer, and the output
layer (note that the LSTM layer had only outputs from its cells, and not from
its gates). The second hidden layer was fully connected to the output layer.

The learning rate was 10−6 and online learning was used, with weight updates
at every timestep. The momentum algorithm from [15] was used with a value of
0.9, and the network activations were reset to zero after each pattern presenta-
tion. These parameters were experimentally determined, although we have not
deviated from them significantly in any of our LSTM speech experiments. Errors
were fed back on every timestep, encouraging the net to make correct decisions
as early as possible (a useful property for real time applications). Gaussian noise
was injected into the training data to prevent overfitting.

4.2 Results

With the above setup, we achieved an error rate of 1.1% on the TIDIGITS data.
The same network, with unaltered weights, achieved an initial error rate of 42%
on the TI46 data, dropping to 0.5% after only six minutes of additional training.
Restarting with randomised weights, we achieved an error rate of 2% on the
TI46 data. Note that our results were actually better with the net previously
trained on a different corpus, suggesting that an LSTM based recogniser could
be well suited to incremental learning.

A recent paper [16] gives an error rate of 2.1% on the TIDIGITS corpus with
a state-of-the-art HMM based recogniser, when the data was coded to make it
robust to channel errors. With two other, less robust, coding schemes, errors of
0.7% and 0.4% were recorded. On the TI46 database, an error rate of 0.5% was
recorded with a similar system. Although the best of these results are better
than those achieved with LSTM, it should be pointed out that the HMM sys-
tems were heavily tuned towards individual databases, that they have to suffer
a drop in accuracy to become more robust to noise (to which neural nets are
always robust), and that 20 years of research and development, incorporating
knowledge from linguists and statisticians, have gone into achieving these fig-
ures. For LSTM on the other hand, no specific adjustments have been made to
improve its performance on speech. Furthermore, the kind of incremental learn-
ing demonstrated above would be impossible with an HMM-based system, which
would require complete retraining to switch from one corpus to another.

5 Conclusions and Future Work

The failure of traditional artificial RNNs in speech recognition is at least partly
due to their problems with long time lags between relevant input signals. How-
ever, these problems that have been overcome by the LSTM, which is also more
biologically plausible than traditional RNNs such as BPTT and RTRL, as its
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learning algorithm is entirely local in space and time, and even related to a
model of the prefrontal cortex.

Previous work on LSTM has focused on artificially generated sequence pro-
cessing tasks. Here, for the first time, we applied it to the task of spoken digit
recognition, using data from the TIDIGITS and TI46 speech corpora. With no
tailoring of the basic LSTM setup towards speech recognition, we obtained im-
pressive results, already comparable to those recorded with specially constructed
HMM-based systems that have some 20 years of research and development be-
hind them.

We are confident that LSTM has the potential to perform well on more com-
plex continuous speech recognition tasks. We intend to extend our research by
applying LSTM to automatic syllable and phone segmentation - one of the most
challenging problems in text to speech applications - and by using articulatory
features for word and phone level identification.

6 Appendix: The LSTM Algorithm

In the following we give detailed pseudocode for a single training step in the
learning algorithm of extended LSTM (LSTM with forget gates and peephole
connections). See [9] for more information on extended LSTM.

As with other Backpropagation algorithms, each training step contains two
phases: the forward pass and the backward pass. In the case of LSTM the back-
ward pass (where an error signal at the output layer is propagated backwards
through the net) is only carried out if error is injected (i.e. if a target is pre-
sented). However, the calculation of the partial derivatives required for the weight
updates must be carried out on every timestep, regardless of pattern presenta-
tion (hence this step is included in the forward pass). Note also that weight
updates can be executed at any time - e.g. after every time step (online learn-
ing) or after after every complete pass through the training set (batch learning).
All the experiments in this paper used online learning.

6.1 Pseudocode

Notation j indexes memory blocks and v indexes memory cells in block j. c
identifies a particular cell and Sc identifies the internal state of that cell; so cv

j is
cell v in block j and Scv

j
is its internal state. The memory cell squashing function

is denoted g: in our experiments g was a logistic sigmoid with range [−2, 2]. The
synaptic weight from unit a to unit b is denoted Wba and previous activations
(from one timestep ago) are marked .̂ dS is the set of all partial derivatives
used for weight updates. neta denotes network (unsquashed) inputs to unit a.
inj, outj, and ϕj are respectively the input gate, output gate and forget gate in
block j; likewise finj , foutj and fϕj are the squashing functions of these gates, all
of which (for all blocks) are logistic sigmoids with range [0, 1] for the purposes of
this paper. The activation of a generic unit a is denoted ya. During the weight
updates, ∆wba is the change applied to the weight from unit a to unit b. α is
the network learning rate.
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Initialise network:
states: scv

j
= ŝcv

j
=0; partial derivatives: dS =0; activations: y= ŷ=0;

Forward pass:
input units: y = current external input;

begin new timestep: activations: ŷ=y; cell states: ŝcv
j
=scv

j
;

loop over memory blocks, indexed j {
input gates

zinj
=

∑
m winjm ŷm +

∑Sj

v=1 winjcv
j

ŝcv
j
; yinj

= finj
(zinj

);

forget gates
zϕj

=
∑

m wϕjm ŷm +
∑Sj

v=1 wϕjcv
j

ŝcv
j
; yϕj

= fϕj
(zϕj

);

cell states
loop over the Sj cells in block j, indexed v {

zcv
j

=
∑

m wcv
j
m ŷm; scv

j
= yϕj

ŝcv
j

+ yinj
g(zcv

j
); }

output gate activation
zoutj =

∑
m woutjm ŷm +

∑Sj

v=1 woutjcv
j

scv
j
; youtj = foutj (zoutj );

cell outputs
loop over the Sj cells in block j, indexed v { ycv

j
= youtj scv

j
; }

} end loop over memory blocks
output units : zk =

∑
m wkm ym; yk = fk(zk);

partial derivatives:
loop over memory blocks, indexed j {

loop over the Sj cells in block j, indexed v {

cells , (dSjv
cm :=

∂scv
j

∂wcv
j

m
):

dSjv
cm = dSjv

cm yϕj
+ g′(zcv

j
) yinj

ŷm;

input gates , (dSjv
in,m :=

∂scv
j

∂winjm
, dSjv

in,cv′
j

:=
∂scv

j

∂w
injcv′

j

):

dSjv
in,m = dSjv

in,m yϕj
+ g(zcv

j
) f ′inj

(zinj
) ŷm;

loop over peephole connections from all cells, indexed v′ {
dSjv

in,cv′
j

= dSjv

in,cv′
j

yϕj + g(zcv
j
) f ′inj

(zinj ) ŝv′

c ; }

forget gates , (dSjv
ϕm :=

∂scv
j

∂wϕjm
, dSjv

ϕcv′
j

:=
∂scv

j

∂w
ϕjcv′

j

):

dSjv
ϕm = dSjv

ϕm yϕj
+ ŝcv

j
f ′ϕj

(zϕj
) ŷm;

loop over peephole connections from all cells, indexed v′ {
dSjv

ϕcv′
j

= dSjv

ϕcv′
j

yϕj + ŝcv
j

f ′ϕj
(zϕj ) ŝv′

c ; }

} } end loops over cells and memory blocks

Backward pass (if error injected):
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error injected into ouput units (indexed k): ek = tk − yk

δs of output units : δk = f ′k(zk) ek

δs of non LSTM units connected to outputs : δi = f ′i(zi) (
∑

k wki δk)
loop over memory blocks, indexed j {

δs of output gates :

δoutj
= f ′outj

(zoutj
)

(∑Sj

v=1 scv
j

∑
k wkcv

j
δk

)
;

internal state error :
loop over the Sj cells in block j, indexed v {

escv
j

= youtj

(∑
k wkcv

j
δk

)
; }

} end loop over memory blocks

weight updates:

output units : ∆wkm = α δk ym;

loop over memory blocks, indexed j {
output gates :
∆wout,m = α δout ŷm; ∆wout,cv

j
= α δout scv

j
;

input gates :
∆win,m = α

∑Sj

v=1 escv
j

dSjv
in,m;

loop over peephole connections from all cells, indexed v′ {
∆win,cv′

j
= α

∑Sj

v=1 escv
j

dSjv

in,cv′
j

; }

forget gates :
∆wϕm = α

∑Sj

v=1 escv
j

dSjv
ϕm;

loop over peephole connections from all cells, indexed v′ {
∆wϕcv′

j
= α

∑Sj

v=1 escv
j

dSjv

ϕcv′
j

; }

cells :
loop over the Sj cells in block j, indexed v {

∆wcv
j
m = α escv

j
dSjv

cm; };

} end loop over memory blocks
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