International Journal on Artificial Intelligence Tools
Vol. 0, No. 0 (2000) 000—000
(© World Scientific Publishing Company

Publisher

A MULTI-AGENT SYSTEM ARCHITECTURE FOR
DISTRIBUTED COMPUTER VISION

THORSTEN GRAF and ALOIS KNOLL

University of Bielefeld, Faculty of Technology
P.O.Bozx 10 01 31, D-33501 Btelefeld, Germany
E-mail: {graf, knoll} @techfak.uni-bielefeld.de

Received (received date)
Revised (revised date)

We present a multi-agent system architecture dedicated to model computer vision sys-
tems, which provides the vision system with a great degree of flexibility. The basic idea
of this architecture is to model a vision system as a society of autonomous agents, where
each agent is responsible for specific vision tasks, the control strategy of a vision sys-
tem is decentralized, and agents communicate using a flexible but easy understandable
communication language. This directly leads to self-organizing vision systems, which ac-
complish vision tasks by goal-driven communication processes. We describe in detail the
basic concepts of the proposed multi-agent system approach including the agent archi-
tectures, the communication language and network, as well as the interaction strategies.
As a testbed for the proposed architecture we have modeled an object recognition system
as an assembly of agents which organize themselves according to a given recognition task
by employing communication.

Keywords: multi-agent architecture, computer vision, object recognition

1. Introduction

The capability of observing the world based on visual information is an essential
requirement in robotic applications with increasing importance since tasks handled
within robotic scenarios are getting more complex and fewer restrictions are imposed
to the environmental conditions.

Therefore, modern complex robotic applications impose several requirements
to a vision system and its architecture: Firstly, it must be simple to use the vi-
sion system in complex setups; secondly, the vision system must be able to adapt
dynamically to different (possibly changing) tasks and environmental conditions;
thirdly, the architecture must provide the ability to handle different competitive
information; and lastly, the addition of new processing modules must be possible
without rebuilding the complete system. Conventional vision systems generally fol-

2 A Multi-Agent System Architecture for Distributed Computer Vision

low system architectures which make it difficult to comply with these requirements.

front view top view
stereo camera camera

side view
camera
robot 2
+
robot 1 hand
+ camera
hand
camera

Fig. 1. Complex robotic setup

An example for such a robotic setup is shown in Fig. 1, which is part of the
research project SFB 360 “Situated Artificial Communicators” supported by the
German Research Foundation (DFG). The goal is to develop an intelligent assembly
cell which is controlled and assisted by a human instructor using natural spoken
language. The particular assembly task of the system is to build up complex toy
objects, such as airplanes, using a construction kit (see Knoll et al® for additional
information about the aim of the project). To accomplish a construction task,
the assembly cell is equipped with several cameras to solve the various sub-tasks
that may arise during the assembly process, like the recognition and localization of
objects, 3D scene reconstruction, and visual servoing.

Recent research has indicated that modeling vision systems as societies of au-
tonomous agents is a promising and powerful approach to tackle such objectives:
Boissier and Demazeau have proposed the MAVI? system, a multi-agent system for
visual integration, which is based on the ASIC® multi-agent control architecture.
This architecture is subdivided into different processing layers which is too complex
for most vision applications and make it difficult to handle the system. Follow-
ing the purposive vision paradigms Bianchi and Rillo* have inspired a multi-agent
vision system employing a behavior based decomposition in specific tasks, while
Yanai and Deguchi® have developed an object recognition system for integrating
different vision strategies. Contrary to the MAVI system, these approaches share a
more rigid architecture which reduces the applicability to different environmental

A Multi-Agent System Architecture for Distributed Computer Vision 3

conditions and requirements.

We therefore propose a multi-agent system architecture which provides the vision
system with a great degree of flexibility. This architecture simplifies the generation
of complex self-organizing vision systems. In Sect. 2 we explain in detail the ba-
sic concepts of the architecture including the structure of agents (Sect. 2.1), the
communication language (Sect. 2.2) and network (Sect. 2.3), and the interaction
strategy (Sect. 2.4). In Sect. 3 we demonstrate an implementation of the architec-
ture in a distributed object recognition system, which organizes itself according to
given recognition tasks. Finally, in Sect. 4 our conclusions and directions of possible
future research are presented.

2. Multi-Agent System Architecture

In the proposed multi-agent system architecture a computer vision system is mod-
eled as a society of agents, each one responsible for specific vision tasks. Since
many of the computer vision algorithms are very time-consuming the architecture
provides two different classes of agents: master agents and slave agents. The former
accomplish all of the planning and interpretation as well as many of the required
image processing tasks. The later are responsible to assist master agents in per-
forming time-consuming tasks only, where the slave agents generally work in teams
controlled by corresponding master agents to provide the distributed calculation of
sub-results.

In the society the agents are connected to each other using a contract net, whose
topology is that of a completely connected network. The agents generally have to
communicate in order to achieve their goals. Since the capability to communicate
is an essential property of agents, the structure of the communication language has
a great impact on the flexibility and applicability of the whole system. Therefore,
we incorporate a communication language, which on the one hand can be simply
employed, i.e. human readable and writable, and which on the other hand is flexible
enough to describe also complex facts and tasks.

In the following we explain in detail the multi-agent system architecture includ-
ing the structures of master and slave agents, the communication language and
network, and the interaction strategy.

2.1. Agent Architectures

Since master and slave agents are responsible for different purposes within a com-
puter vision system they differ in their architectures as well.

2.1.1. Master Agent

Master agents are modeled as autonomous agents, which generally must perform
complex planning and interpretation tasks. To enable master agents to accomplish
these tasks adequately, they share the agent architecture sketched in Fig. 2. As
shown, the architecture is composed of five different modules:

4 A Multi-Agent System Architecture for Distributed Computer Vision

Master Agent

/ ™~
General

Working Knowledge
Memory Individual
Knowledge

‘ Communication Module
N

Fig. 2. Architecture of a master agent

1. Communication module:
The communication module is responsible for connecting to other agents. It
contains methods for sending and receiving messages as well as functions for
wrapping various data types, which are required to solve the particular tasks
to which the agent belongs.

2. General knowledge:
This data base is used for storing general knowledge, like basic planning strate-
gies and the grammar of the communication language. Most of the knowledge
is stored in rules and facts that are applicable in different situations and de-
termines the general behavior of master agents.

3. Individual knowledge:
The individual knowledge base contains all knowledge concerning the par-
ticular agent, like specific planning strategies, processing functions and the
provided vocabulary. Note, that it is not required that all agents share the
same vocabulary. Similar to the general knowledge base the individual knowl-
edge is stored in rules and in facts and determines the individual behavior of
each agent.

4. Inference engine:
Based on general and individual knowledge the inference engine accomplishes
all planning and all interpretation tasks of the agent. The most extensive
work that must be performed by the inference engine is to generate program
scripts appropriate to solve requested tasks of other agents.

5. Working memory:
The working memory is used by the inference engine for storing various infor-
mation, like sub-results and knowledge about the dynamic environment.

A Multi-Agent System Architecture for Distributed Computer Vision 5

In order to perform a particular vision task, the responsible agent proceeds as
follows: Firstly, the agent analyzes the given task including the instruction, the
destination specifications and additional constraints. However, it is generally not
required that the agent understand all of the source specifications. According to
the description of the task the agent automatically generates a complex Clips®-
style program script, that is composed of all required processing functions as well
as further requests to other agents. An example for such a script is shown in the
experimental results in Tab. 3. Lastly, the program script is executed under control
of the agent, to enable the agent to perform an exception handling and to react to
unexpected situations.

2.1.2. Slave Agent

Although a computer vision system can be modeled by employing just master
agents, the multi-agent system architecture provides an additional slave agent class.
Since many of the image processing algorithms are very time-consuming, the slave
agent class is provided as a an additional tool that facilitates the implementation
of parallel processing methods to speed up computation.

The particular purpose of slave agents is simply to assist master agents in per-
forming time-consuming tasks, where the slave agents often can communicate with
their corresponding masters only. Slave agents are completely controlled by master
agents, i.e. the master decides how many slave agents he wants to use as well as
which particular processing function must be performed. The communication be-
tween a master and its slaves is reduced to the absolute minimum. Generally, a
master agent determines only the processing functions and additional parameters.

Therefore, slave agents need only a simple architecture containing a communi-
cation module, processing functions and rudimentary mechanisms for interpreting
messages.

2.2. Communication Language

As already mentioned, the communication language has a great impact on the flexi-
bility and applicability of the whole system. However, the syntax of communication
languages used in the computer vision domain generally tends to be cryptic and
too simple to express complex facts and tasks; this is true especially for that part
of the communication language which is relevant for the application itself.

Therefore, we have developed a more flexible communication language consid-
ering the following basic requirements:

e the communication language must permit the construction of flexible and self-
organizing vision systems,

e it must be able to express complex facts and tasks,
e it must be simple to understand, i.e. human readable and writable, and

e efficient mechanisms for interpreting messages must be provided.

6 A Multi-Agent System Architecture for Distributed Computer Vision

In contrast to other communication languages, which just permits messages
composed of function names and parameters, the developed one can be utilized to
specify a task by an abstract description which is independent of the underlying im-
plementation. Therefore, agents can be simply added and replaced without having
any knowledge of the internal structures of the existing agents.

The developed communication language employs message types making the in-
tention of an message explicit:

<message> ::= <message-type> <message-content>

The allowed message types are similar to the ones used in other communica-
tion languages®* in that they implement speech acts but differ in some important
respects:

1. request:
The message type request is used to request the assistance of other agents.
Generally, this message type indicates that the agent can not perform a par-
ticular task on its own.

2. answer:
An answer message is a reply to a request or script message, which can be
both a result or an error message.

3. inform:
The message type inform is used for passing additional information to other
agents which is not necessarily needed for performing particular tasks. This
type is also used for indicating the presence or absence of agents.

4. script:
The message type script can be used for getting direct access to the capa-
bilities of an agent avoiding the interpretation mechanisms. Since the master
agents generate program scripts in order to perform requested tasks dynami-
cally, programs can be passed directly.

Furthermore the message content is subdivided into a message text and addi-
tional message data:

<message-content> ::= <message-text> <message-data>

where the <message-text>-slot contains the message text as a string and the
<message-data>-slot is a list capable for storing different data types like images and
edges. The text string itself can be both a message text or a ClipsS-style program
script.

An excerpt of the formal grammar used for specifying a message text is shown
in Tab. 1. For reasons of efficiency this grammar allows only one goal for each
message, where a goal is not a specific entity but rather some kind of global plan,
which can be restricted by additional conditions. These conditions can be complex
logical expressions containing variables as well.

A Multi-Agent System Architecture for Distributed Computer Vision 7

Table 1. Formal grammar of messages

<message-text> ::= (<goal> <variable>*) <goal-condition>*

<goal> ::= convert | extract | introduce |

<goal-condition> ::= <attr-condition> | <not-condition> |
<and-condition> | <or-condition>

<attr-condition> ::= <is-a-attr> | <has-type-attr> |

<not-condition> ::= (not <goal-condition>)

<and-condition> ::= (and <goal-condition>+)

<or-condition> ::= (or <goal-condition>+)

<is-a-attr> ::= (is-a <variable> <object-class>)

<object-class> ::= feature | image |

A simple example for an object recognition task, which possibly must be solved
during an assembly process in the robotic application shown in Fig. 1, is to extract
all ledges as well as all known red objects shown in an image taken from a camera,
whose server is called 'penelope’. This task can easily specified using the following
message text:

(extract ?dest 7src)

(is-a ?dest object)
(or (has—name 7dest ledge) (has-color ?7dest red))

(is-a ?src image)
(has-source 7src camera) (has-server 7src penelope)

There are two important points to note here: Firstly, the interpretation of such
messages can be realized in a very efficient manner using the pattern-matching
facilities of expert system tools; and secondly, entities can be identified not only
by their unambiguous names but also by their features and attributes. Although
such querying requests are very useful and important to vision applications, they
are generally not supported by other agent-based vision systems.

2.3. Communication Network

The agents of the society are connected with each other through a decentralized
contract net, which topology is that of a completely connected network. However,
since slave agents are implemented to assist master agents in performing time-
consuming tasks, they often communicate and interact with their corresponding
master agents only.

8 A Multi-Agent System Architecture for Distributed Computer Vision

An example for a communication network is schematically sketched in Fig. 3.
The example demonstrates three different types of connections among master agents
and their corresponding slave agents, which often occur during a communication
process. The first type consists of a single master agent, which is able to perform
all required processing functions on its own, while the second type is composed of
a master agent which divides time-consuming sub-tasks in order to be solved by
its corresponding slaves. The third type consists of two (or more) master agents,
which are responsible for the same tasks. Again, they divide sub-tasks in order to be
accomplished by their slaves, where the slaves can be dynamically shared between
the master agents.

(Master)
Task A
Typel
Types ¥ N
Master Master
Task C Task C
[Save) [Save (Slave) (Save)
| [rake) | [Taske] |] [Takc Task C.

Fig. 3. Example for a communication network

It is important to note here, that the hierarchical structure between master and
slave agents is not pre-defined in a statical way, but is rather a result of communi-
cation processes. This structure may dynamically change, if additional agents are
instantiated or if existing agents are deleted at run-time. Moreover, it is also pos-
sible that two different types of master agents share the same slave agents because
some sub-tasks are the same or very similar.

A Multi-Agent System Architecture for Distributed Computer Vision 9

Moreover, to provide a high degree of flexibility, pre-defined hierarchical struc-
tures should be avoided wherever it is possible, since any imposed hierarchical struc-
ture will generally make it difficult to add, remove or exchange agents. For example
in the agent architecture proposed by Biachni and Rillo* the modification of an
agent or of a behavior may affect other agents, which entails the modification of
these agents too.

2.4. Interaction Strategies

Another important aspect concerning the flexibility of the agent society is the in-
teraction strategy among master agents. In our multi-agent system architecture
the control mechanisms of computer vision systems are decentralized, i.e. each mas-
ter agent accomplishes requested tasks according to its own knowledge and goals,
where generally no further control mechanisms, like hierarchical structuring, should
be imposed.

Therefore, the agents have to interact with each other in order to solve a given
vision task. The interaction is performed by a communication process that leads to
a self-organization of the agent society. This self-organization process is goal-driven
and proceeds as follows:

o If a master agent requests a vision task, all master agents of the society decide
if they can accomplish the given task. As mentioned before, this is done by
analyzing the instruction, the destination specifications, and the additional
constraints. Generally, the source specifications of the task are neglected.

e All master agents that are responsible for the particular task make a bid.
According to these bids the master agent, which has requested the task, selects
the agents that should award the contract.

e Then, the selected agents generate appropriate program scripts according to
the task specifications. If the source of the task is unknown the selected agents
generates further requests to gain a required sub-result determined from the
unknown source.

There are some important points to note here: A drawback of this interaction
strategy is that it can be established just at run-time if the vision system can
accomplish a particular vision task. Furthermore, the interaction strategy produces
some overhead because all master agents try to react to a request. Nevertheless,
this overhead can be neglected since most of the vision algorithms are generally
very time-consuming compared with the overhead.

The advantage of this approach is the flexibility of the resulting vision system:
agents can be added and deleted at run-time without causing any problems. Fur-
thermore, new functionality can be provided by simply adding appropriate agents
without having precise knowledge of the internal structure of existing agents.

10 A Multi-Agent System Architecture for Distributed Computer Vision

3. Experimental Results

As a testbed for the proposed multi-agent system architecture we have transformed
an object recognition system based on the fuzzy invariant technique’® into a soci-
ety of agents. The agents have been implemented in C++ using the multi-agent
generation tool MagiC®. This tool provides classes for building different types of
agents and mechanisms for encapsulating all of the negotiation protocols and com-
munication. The knowledge as well as planning strategies of the agents have been
modeled using the expert system tool Clips 6.106.

The agent society consists of six different agent types, four master agents and
two slave agents, each one corresponding to a particular vision task:

1. Master communicator agent:
The master communicator agent provides a graphical user interface, to gain
access to the agent society. It allows the user to specify different vision tasks
and visualizes the results.

2. Master/slave image processing agents:
Since most of the image processing algorithms, like convolution and edge de-
tection, are very time consuming, we build both classes of agents, a master
image processing agent as well as a slave image processing agent. The mas-
ter agent performs all of the high-level communication with the society and
incorporates strategies for splitting up particular image processing tasks in
order to be accomplished by a dynamic team of slave agents.

3. Feature extraction agent:
The feature extraction agent is responsible for feature specific tasks, including
extraction of edge points from images and fitting of geometric primitives like
lines and ellipses.

4. Master/slave object recognition agents:
The object recognition agents perform a recognition process based on the fuzzy
invariant indexing technique 7. This process consists of: grouping of geometric
primitives, invariant calculation, hypothesis generation and verification.

Similar to the image processing agents the master agent establishes all of the
communication and planning strategies while the slaves are responsible for
the execution of particular recognition tasks.

We have run a number of agents of each type on different platforms including Linux-
PCs and Sun-Solaris-Workstations. Although we have not imposed any pre-defined
hierarchical structure on the system, the agent society is capable of solving complex
vision tasks.

For example, if we request the task given in Sect. 2.2, the system takes on
a transient system structure as sketched in Fig. 4. The corresponding trace of

A Multi-Agent System Architecture for Distributed Computer Vision 11

message passing is shown in Tab. 2. As indicated, the master object recognition
agent is the only agent capable of recognizing objects in images. Although the object
recognition agent has no knowledge about accessing cameras, the agent is awarded
the contract. In order to solve the recognition task the agent needs geometric
primitives (especially lines and ellipses) extracted in an image. Since the source
specification does not match this requirement, the agent requests to extract the
geometric primitives from the unknown source specifications (2). Next, a feature
extraction agent is awarded the contract. Again, this agent needs the assistance of
the agent society to detect the required edge points from the unknown source (3).
This sub-task is solved by the master image processing agent. The agent grabs an
image from the specified camera (see Fig. 3a) and asks its slaves to apply an edge
operator (4, 5). Note, that the communication between master and slave agents
is very simple. Using the resulting edge image (6) the feature extraction agent
extracts the particular geometric primitives and passes them to the master object
recognition agent (7).

Now, the master object recognition agent is able to recognize the specified ob-
jects. This is done with the assistance of the slave object recognition agents, which
perform the hypotheses generation as well as the verification of the hypotheses
(8-11). Finally, the recognition task is accomplished (12).

Table 2. Trace of message passing

1: REQUEST: (extract 7dest 7src)
(is-a 7dest object) (or (has-name ?dest ledge) (has-color ?dest red))
(is-a 7src image) (has-source ?src camera) (has-server ?src penelope)

2: REQUEST: (extract 7dest ?src)
(is-a ?dest feature) (or (has-type ?dest line) (has-type 7dest ellipse))

(is-a 7src image) (has-source 7src camera) (has-server ?src penelope)

3: REQUEST: (extract 7dest ?src)(is-a ?dest image) (has-type 7dest edge)
(is-a 7src image) (has-source 7src camera) (has-server ?src penelope)

4: REQUEST: (apply-canny)

5: ANSWER: (apply-canny)

6: ANSWER: (extract edge-image penelope-1)

7: ANSWER: (extract lines UNKNOWN-2) (extract ellipses UNKNOWN-2)
8: REQUEST: (generate-hypotheses)

9: ANSWER: (generate-hypotheses)

10: REQUEST: (verify-single-hypotheses)

11: ANSWER: (verify-single-hypotheses)

12: ANSWER: (extract rim UNKNOWN-2) (extract ledge-3 UNKNOWN-2)
(extract ledge-7 UNKNOWN-2)

12 A Multi-Agent System Architecture for Distributed Computer Vision

Object
Recognition

2 9,11 9,11
/ B'IX\\ 8,10

Slave Slave

Object Object
Recognition Recognition

Feature
Extraction

(Slave

Image Image
Processing Processing

Ny

Fig. 4. Self-organized system structure

A Multi-Agent System Architecture for Distributed Computer Vision 13

An example of a simple program script, which is automatically generated by the
feature extraction agent during this recognition process, is shown in Tab. 3. It is
subdivided into three different sections: in lines 01-04 the feature extraction agent
requests an edge image from the agent society, in lines 05-10 all feature extraction
functions are performed, i.e. the fitting of straight lines and ellipses, and finally, in
lines 11-13 an answer is generated.

Table 3. Automatically generated Clips-style program script

01: (bind ?var-gen7 (make-instance instance-gen9 of GMessage (type
REQUEST)))

02: (send ?var-gen7 put-text "(extract ?dest ?src)(is-a ?dest image)
(has-type ?dest edge) (is-a ?src image) (has-source ?src message)
(has-index ?src 0)")

03: (send ?var-gen7 put-data (send [input-messagel get-data))

04: (send-message (instance-name-to-symbol ?var-gen7))

05: (bind ?var-genlO (send ?var-gen7 get-data 0))

06: (bind ?var-gen3 (extract-edge-points ?7var-genlO 10))
07: (delete-data ?7var-genlO)

08: (bind ?var-genb (extract-conics ?var-gen3 ellipse))
09: (bind ?var-gen2 (extract-lines 7var-gen3))

10: (delete-data ?var-gen3)

11: (send [output-message] put-type ANSWER)

12: (send [output-message] add-text "(extract lines UNKNOWN-2) (extract
ellipses UNKNOWN-2)")

13: (send [output-message] add-data ?var-gen2 7var-gen5)

The recognition result of the task is shown in Fig. 5, where Fig. 5a is the original
image taken by the specified camera, Fig. 5b shows the edge image provided by the
image processing agents, Fig. bc are the fitted features computed by the feature
extraction agent, and Fig. 5d shows the final recognition result. As can be seen,
the multi-agent system architecture is able to recognize the objects that match the
given object specifications, namely five 3-hole-ledges and two red rims. All other
objects present in the image are ignored. Unfortunately, the system fails to detect
one red rim, where this deficiency is not a problem of the agent architecture but
rather of an inaccurate feature extraction as can be seen in Fig. 5c.

The addition or deletion of agents at run-time causes no problems of system
stability (assuming that all agents necessary to accomplish a task are available).
These behaviors are an important factor for both the autonomy as well as the
flexibility of the system, i.e. to improve the recognition capability of the vision
system new agents can be added.

14 A Multi-Agent System Architecture for Distributed Computer Vision

(c) Fitted features (d) Result

Fig. 5. Recognition result for a test scene

4. Conclusions and Future Research

We have presented a multi-agent system architecture dedicated to build flexible
self-organizing computer vision systems, which solve given vision tasks by goal-
driven communication processes. The architecture is based on the idea to model a
vision system as a society of autonomous agents, where each agent is responsible
for specific vision tasks, the control strategy of a vision system is decentralized,
and agents communicate using a flexible but easy understandable communication
language. As demonstrated, this architecture has several distinguishing features
such as flexibility, modularity, autonomy and openness.

Future research will concentrate on several aspects that may further enhance
the flexibilty and applicability of a vision system. Two main goals of this investi-
gation are the integration of different competitive recognition methods to provide
redundancy and to enhance the recognition performance as well as the integration
of different learning strategies.

A Multi-Agent System Architecture for Distributed Computer Vision 15

Acknowledgment

T.

Graf’s contribution to this work was in part funded by the Deutsche Forschungs-

gemeinschaft within the postgraduate research unit ” Aufgabenorientierte Kommu-
nikation” (task-oriented communication).

References

1]

(8]

[9]

A. Knoll and B. Hildebrandt, and J. Zhang, Instructing cooperating assembly robots
through situated dialogs in natural language, Proc. IEEE Conference on Robotics and
Automation, Albuquerque, New Mexico (1997)

O. Boissier and Y. Demazeau, Mavi: a multi-agent system for wvisual integration,
Proc. IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems,
Las Vegas, Nevada, USA (1994) 731-738

O. Boissier and Y. Demazeau, Asic: An architecture for social and individual control and
its application to computer vision, Proc. European Workshop on Modeling Autonomous
Agents in a Multi-Agent World (1994) 107-118

R. Bianchi and A. Rillo, A purposive computer vision system: a multi-agent approach,
Workshop on Cybernetic Vision 1996, Proc. IEEE Computer Society (1997) 225-230
K. Yanai and K. Deguchi. An architecture of object recognition systems for various
images based on multi-agent, Proc. International conference on Pattern Recognition,
Brisbane, Australia (1998) 278-281

Artificial Intelligence Section, CLIPS Reference Guide Volume I Basic Programming
Guide, Lyndon B. Johnson Space Center (1998)

T. Graf, A. Knoll, and A. Wolfram, Recognition of partially occluded objects through
fuzzy invariant indezing, Proc. IEEE International Conference on Fuzzy Systems, An-
chorage, Alaska, USA (1998) 1566—-1571

T. Graf, A. Knoll, and A. Wolfram, Fuzzy invariant indezing: a general indexing scheme
for occluded object recognition, Proc. International Conference on Signal Processing,
Beijing, China (1998) 908-911

C. Scheering and A. Knoll. Framework for implementing self-organized task-oriented
multisensor guidance, Proc. International Symposium on Intelligence Systems and Ad-
vanced Manufacturing, Boston, USA (1998)

