A MULTI-AGENT APPROACH TO
SELF-ORGANIZING VISION SYSTEMS

THORSTEN GRAF AND ALOIS KNOLL
University of Bielefeld, Faculty of Technology
P.0.Boz 10 01 81, D-33501 Bielefeld, Germany
E-mail: {graf, knoll} @techfak.uni-bielefeld.de

We present a new multi-agent system architecture for modelling self-organizing
computer vision systems, that provide a great degree of flexibility: Firstly, the
vision systems can be easily incorporated into complex applications; secondly, the
vision systems are able to adapt dynamically to different (possibly changing) tasks
and environmental conditions; thirdly, the architecture provides the ability to han-
dle different competitive information; and lastly, the addition of new processing
modules can be done without rebuilding the complete system. We describe in
detail the basic concepts of the proposed multi-agent system including the agent
architectures, the control strategies as well as the communication language. The
multi-agent system architecture is demonstrated on the basis of a distributed object
recognition system modelled as a society of autonomous agents.

Keywords: multi-agent architecture, computer vision, object recognition

1 Introduction

The generation of computer vision systems applicable to complex industrial
and robotics environments is an important and difficult task. Generally, these
applications impose several conditions to the system architecture: Firstly, it
must be simple to incorporate the vision system into complex applications;
secondly, the vision system must be able to adapt dynamically to different
(possibly changing) tasks and environmental conditions; thirdly, the architec-
ture must provide the ability to handle different competitive information; and
lastly, the addition of new processing modules must be able without rebuilding
the complete system.

Recent research has indicated that modelling vision systems as societies
of autonomous agents is a promising and powerful approach to tackle these
objectives. Boissier and Demazeau' have proposed the MAVI system, a multi-
agent system for visual integration, that is based on the ASIC? multi-agent
control architecture. This architecture is subdivided into different processing
layers, which is is too complex for most vision applications and makes it
difficult to handle the system.

Following the purposive vision paradigms Bianchi and Rillo® have in-
spired a multi-agent vision system employing a behavior based decomposition
in specific tasks, while Yanai and Deguchi* have developed an object recogni-
tion system for integrating different vision strategies. Contrary to the MAVI
system, these approaches share a more rigid architecture which reduce the
applicabilty to different environmental conditions and requirements.

In this paper we propose a new multi-agent system architecture, where
we have tried to combine the advantages of the agent architectures mentioned
above and to give some new impetus.

The paper is arranged as follows. Section 2 covers the basic concepts of
the proposed multi-agent system architecture. This includes a description of
the agent architectures (Sect. 2.1), of the control strategies (Sect. 2.2), and
of the communication language (Sect. 2.3). In Sect. 3 we demonstrate an
implementation of the architecture in a distributed object recognition sys-
tem. Finally, in Sect. 4 we conclude the paper and give some future research
directions.

2 The proposed architecture

2.1 Agent architecture

In contrast to other multi-agent systems, that are used for modelling computer
vision systems, our architecture consists of two different classes of agents: mas-
ter and slave agents. The former perform all of the high-level communication,
planning, and most of the processing tasks while the latter are responsible for
assistance only. Generally, the slave agents are related to a particular master
agent and perform time-consuming tasks in teams.

Master agent

The architecture shared by all master agents is composed of five different
modules:

1. Communication module:
The communication module is responsible for connecting to other agents
using a contract net protocol. It contains methods for sending and re-
ceiving messages as well as mechanisms for performing the negotiation.
Additionally, the communication module includes agent specific functions
for wrapping different data types.

2. General knowledge:
This data base is used for storing general knowledge, like basic planning
strategies and the grammar of the communication language.

3. Individual knowledge:
The individual knowledge base contains all knowledge concerning the par-
ticular agent, like task-specific planning strategies, processing functions
and the provided vocabulary. Note, that it is not required that all agents
share the same vocabulary.

4. Inference engine:
Based on general and individual knowledge the inference engine accom-
plishes all planning and interpretation tasks of the agent. The most
extensive work that must be performed by the inference engine is the
generation of programs appropriate to solve requests of other agents.

5. Working memory:
The working memory is used by the inference engine for storing various
information, like subresults and knowledge about the dynamic environ-
ment.

Slave agent

Since the purpose of a slave agent is simply to assist a master agent in per-
forming time consuming tasks, the slave agent can communicate with its cor-
responding masters only. Slave agents are completely controlled by master
agents, i.d. the master decides how many slave agents he wants to use as well
as which particular processing function must be performed. Therefore slave
agents need only a simple architecture containing the communication module,
processing functions and rudimentary mechanisms for interpreting messages.

2.2 Control strategies

In our multi-agent system architecture the control mechanisms of computer
vision systems are completely decentralized, i.d. each agent accomplishes re-
quested tasks according to its own knowledge and goals. This provides the
capability for modelling flexible computer vision systems.

In order to perform a particular vision task, the corresponding agent
proceeds as follows:

1. The agent analyzes the given task, particularly the instruction, the des-

tination specifications as well as additional constraints. Note, that it is
generally not required that the agent must understand all of the source
specifications.

. According to the task specifications the agent automatically generates a
complex CLIPS®-style program script, that is composed of all required

processing functions as well as further requests to other agents.

. The agent executes the generated program and performs exception han-
dling for unexpected events.

An example of a simple program script, which is automatically generated

by a feature extraction agent, is shown in Tab. 1. This program script is sub-
divided into three different sections: Firstly, in lines 01-04 the agent requests
the extraction of an edge image from the agent society. Secondly, in lines
05-10 all feature extraction functions are performed and lastly, in lines 11-15
an answer is generated.

01 :

02 :

03 :
04 :
05 :
06 :
07 :
08 :
09 :
10 :
11
12 :
13 :
14 :
15 :

Table 1. Automatically generated program script

(bind 7var-gen7 (make-instance instance-gen9 of GMessage
(type REQUEST)))

(send 7var-gen7 put-text "(extract 7dest 7src)(is-a 7dest image)
(has-type 7dest edge) (is-a 7src image) (has-source 7src message)
(has-index ?src 0)")

(send 7var-gen7 put-data (send [input-message] get-data))

(send-message (instance-name-to-symbol ?var-gen7))

(bind ?var-genlO (send ?var-gen7 get-data 0))

(bind 7var-gen3 (extract-edge-points ?var-genlO 10))

(delete-data ?var-genl0)

(bind ?var-genb (extract-conics ?var-gen3 ellipse))

(bind 7var-gen2 (extract-lines 7?var-gen3))

(delete-data ?var-gen3)

(send [output-message]l put-type ANSWER)

(send [output-message] add-text "(extract lines UNKNOWN-2)")

(send [output-message] add-data ?var-gen2)

(send [output-message] add-text "(extract ellipses UNKNOWN-2)")

(send [output-message] add-data ?var-gen5)

2.8 Communication Language

The interaction among the different agents is performed using a flexible human
readable and writeable communication language. Similar to other systems
that are based on the speech act theory we are making the message type
explicit:

<message> ::= <type> <content>

Nevertheless, the allowed message types differ in some important respects:
The message type request is used to request the assistance of other agents.
Generally, this type indicates that an agent is not able to perform a particular
vision task on its own. An answer message is a reply to a request or script
message and the message type inform is used for passing additional informa-
tion to other agents. Furthermore, we provide the message type script, that
can be used for gaining direct access to the capabilities of an agent avoiding
the interpretation mechanisms. Since the agents generally generate programs
in order to perform requested tasks dynamically, programs can be passed
directly.

The content of a message is composed of a message text and additional
message data. An excerpt of the formal grammar used for specifying a message
text is shown in Tab. 2. For reasons of efficiency this grammar allows only one
goal for each message, where a goal is not a specific entity but rather some
kind of global plan, which can be restricted by additional conditions. These
conditions can be complex logical expressions containing variables as well.

Table 2. Formal grammar of messages

<message-text> ::= (<goal> <variable>*) <goal-condition>*

<goal> ::= convert | extract | introduce |

<goal-condition> ::= <attr-condition> | <not-condition> |
<and-condition> | <or-condition>

<attr-condition> ::= <is-a-attr> | <has-name-attr> |

<not-condition> ::= (not <goal-condition>)

<and-condition> ::= (and <goal-condition>+)

<or-condition> ::= (or <goal-condition>+)

<is-a-attr> ::= (is-a <variable> <object-class>)

<object-class> ::= feature | image |

Suppose, we want an object recognition system to extract all ledges as
well as all known red objects shown in an image taken from a camera, whose
server is called ’pythia’, we can simply write the following message text:

(extract ?dest ?src)

(is-a 7dest object)
(or (has-name ?dest ledge)
(has-color ?dest red))

(is-a ?src image)
(has-source 7src camera)
(has-server 7src pythia)

There are two important points to note here: Firstly, the interpretation
of such messages can be realized in a very efficient manner using the pattern-
matching facilities of expert system tools; and secondly, entities can be iden-
tified not only by their unambiguous names but also by their features and
attributes. Although such querying requests are very useful and important
to vision applications, they are generally not supported by other agent-based
vision systems.

3 Experimental results

As a testbed for the proposed agent architectures and communication lan-
guage we have transformed our object recognition system® into a society of
autonomous agents. The agents have been implemented in C++ using the
multi-agent generation tool MagiC7. This tool provides classes for building
different types of agents and mechanisms for encapsulating all of the nego-
tiation protocols and communications. The knowledge as well as planning
strategies of the agents have been modelled using the expert system tool
textitClips 6.10°.

The society of autonomous agents consists of five different agent types,
three master agents and two slave agents, each one corresponding to a partic-
ular vision task:

1. Master/slave image processing agents:

Since most of the image processing algorithms, like convolution and edge
detection, are very time consuming, we build both classes of agents, a
master image processing agent as well as a slave image processing agent.
The master agent performs all of the high-level communication with the
society and incorporates strategies for splitting up particular image pro-
cessing tasks in order to be accomplished by a dynamic team of slave
agents.

2. Feature extraction agent:
The feature extraction agent is responsible for feature specific tasks, in-
cluding extraction of edge points from images and fitting of geometric
primitives like lines and ellipses.

3. Master/slave object recognition agents:
The object recognition agents perform a recognition process based on the
fuzzy invariant indexing technique®. This process consists of grouping
of geometric primitives, invariant calculation, hypothesis generation and
verification. Similar to the image processing agents the master agent
establishes all of the communication and planning strategies while the
slaves are responsible for the execution of particular recognition tasks.

Object
Recognition

T

Master ‘ Slave ‘ ‘ Slave ‘
Feature Object Object
Extraction Recognition Recognition
T A o T A
@ (O
Master
Image
Processing
D
oS

N

‘ Slave ‘ ‘ Slave ‘
Image Image
Processing Processing

Figure 1. Self-organized system structure

Although this multi-agent system is able to recognize the object domain of
(quasi-)planar wooden toy objects only, this is no principle limitation for the
proposed multi-agent system architecture. In order to improve the recognition
capability of the system new agents can be added without rebuilding the
complete agent society.

We have run a number of agents of each type on different plattforms
including Linux-PCs and Sun-Solaris-Workstations. Though we have not ex-
plicitely imposed any hierachical structure on the system, the agent society is
capable of solving complex vision tasks. For doing so, the system organizes
itself.

For example, if we request the task given in Sect. 2.3, the system takes
on a transient system structure as sketched in Fig. 1.

(a) Original image (b) Result

Figure 2. Recognition result for a test scene

The result of this task is shown in Fig. 2. As can be seen, the system
takes an image from the specified camera (Fig. 2a) and extracts all of the
objects (Fig. 2b), that match the object specifications, namely two ledges and
one red rim. All other objects shown in the image are ignored.

The addition or deletion of agents at run time causes no problems con-
cerning the stability of the system (assuming that all agents necessary to
accomplish a task are available). These behaviours are an important factor
for both the autonomy as well as the openness of the system.

4 Conclusion

In this paper we have presented a new multi-agent system architecture dedi-
cated for modelling distributed computer vision systems. It is constructed as

an assembly of autonomous agents which organize themselves in order to solve
a particular vision task. As shown, this architecture has several distinguishing
features, among them it gives flexibility, modularity, autonomy and openness
to the system.

Future research covers the integration of different competitive recognition
methods and the integration of the system into a complex robotics scenario.

Acknowledgments

T. Graf’s contribution to this work was in part funded by the Deutsche
Forschungsgemeinschaft within the postgraduate research unit ”Aufgaben-
orientierte Kommunikation” (task-oriented communication).

References

1. O. Boissier and Y. Demazeau. Mavi: a multi-agent system for visual
integration. In Proc. IEEE Conference on Multisensor Fusion and Inte-
gration for Intelligent Systems, Las Vegas, Nevada, USA, pages 731-738,
1994.

2. O. Boissier and Y. Demazeau. Asic: An architecture for social and in-
dividual control and its application to computer vision. In Proc. Euro-
pean Workshop on Modeling Autonomous Agents in a Multi-Agent World,
pages 107-118, 1994.

3. R. Bianchi and A. Rillo. A purposive computer vision system: a multi-
agent approach. In Workshop on Cybernetic Vision 1996, Proc. IEEE
Computer Society, pages 225-230, 1997.

4. K. Yanai and K. Deguchi. An architecture of object recognition systems
for various images based on multi-agent. In Proc. International confer-
ence on Pattern Recognition, Brisbane, Australia, pages 278-281, 1998.

5. Artificial Intelligence Section. CLIPS Reference Guide Volume I Basic
Programming Guide. Lyndon B. Johnson Space Center, 1998.

6. T. Graf, A. Knoll, and A. Wolfram. Recognition of partially occluded ob-
jects through fuzzy invariant indexing. In Proc. IEEE International Con-
ference on Fuzzy Systems, Anchorage, Alaska, USA, pages 1566-1571,
1998.

7. C. Scheering and A. Knoll. Framework for implementing self-organized
task-oriented multisensor guidance. In Proc. International Symposium on
Intelligence Systems and Advanced Manufacturing, Boston, USA, 1998.

