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Abstract

We present a new approach to the recognition of partially
occluded objects employing fuzzy invariant values and fuzzy
if-then-rules, called fuzzy invariant indexing (FII).

Compared with traditional invariant indexing, the fuzzy
method proposed here offers the following advantages:
firstly, as shown in the experimental results of this paper,
the recognition quality may be considerably increased in the
case of similar objects; secondly, the ability is provided to
control the recognition process during the hypothesis evalu-
ation stage, and thirdly, a FII-based recognition system can
be simply extended in a closed form, i.e. new attributes may
be added to the fuzzy classification rules resulting in only
minor changes to the original structure of the system. We
demonstrate the recognition performance of the new FII-
technique for partially occluded (quasi-)planar objects in
real image scenes taken from different camera viewpoints
and conclude the paper with a discussion of the potential of
the method and directions of possible future research.

1. Introduction

The recognition of partially occluded objects is undoubt-
edly one of the most challenging tasks in computer vision.
Recent research has indicated that the use of invariants as
shape descriptors is a promising and powerful approach to
tackle this problem.

Mathematically, invariants are functions of geometric
configurations remaining unaffected under particular clas-
ses of transformations (for good introductory papers see
[2, 6]), e.g. the class of projective transformations mod-
elling the camera mappings of a vision system. Since these
invariants are independent of the viewpoint of the camera,
the measured projective invariant values of an object can
be used efficiently in the hypothesis generation as an index
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into an object-lookup table (see Sect. 2). This technique is
called invariant indexing.

In the recent past, several recognition systems based on
invariant theory have been developed, e.g. an early system
based on the geometric hashing technique [3], the LEWIS-
system [7] or the MORSE-system [4]. All these systems
have to cope with the unavoidable fluctuation of invariant
values caused mainly by noisy imaging hardware and/or in-
accurate feature extraction. This fluctuation causes the in-
variant values (to be used as indices) to be “smeared” over
a certain interval. Hence, if the invariant values of several
object models are close to one another, it may become very
difficult to discriminate between observed objects, i.e. to es-
tablish an unambiguous mapping between the observation
and the correct object model.

We present a new invariant indexing method, called
fuzzy invariant indexing (FII), that uses fuzzy invariant val-
ues, i.e. fuzzified values of invariants, and fuzzy if-then-
rules.

The paper is arranged as follows. In Section 2 we ex-
plain in detail the proposed FII-technique for generating ob-
ject hypotheses. It is shown how FII-classification rules can
be generated automatically from real image data. In Sec-
tion 3 we describe the construction of a FII-based recog-
nition system. The recognition performance of the new
FII-technique is demonstrated in Section 4 for partially oc-
cluded (quasi-)planar objects in real image scenes taken
from different camera viewpoints. Finally, in Section 5 our
conclusions and directions of possible future research are
presented.

2. Object recognition through FII

2.1. Motivation

Since images taken from real-world scenes (and using
real-world equipment) are generally discrete, cluttered, and
noisy, the observed projective invariant values fluctuate be-
tween different perspective views of an object.



This problem must be handled within the indexing stage
of every recognition system based on invariants. In our con-
text indexing means to assign image features to adequate
model features and therefore to generate object hypotheses.

Usually, invariant indexing hashes into a discrete index
space, where all points belonging to an object are marked.
For indexing, a hashing function is evaluated for the mea-
sured independent invariant values of a geometric configu-
ration part of an object. The number of the independent in-
variants depends on the underlying geometric configuration
[2, 6]. For example, a pair of coplanar conics has two inde-
pendent projective invariants (see Sect. 2.2). To overcome
the fluctuation not only a single point of the index space is
marked but also the neighbouring ones. So invariant values
of a certain neighbourhood are mapped to the same object
with equal weight.

Contrary to this, we model the fluctuation of the invariant
values of a geometric configuration that can be extracted
for an object with fuzzy sets. For performing the indexing
the resulting fuzzy invariant values are used in disjunctive
connected fuzzy if-then-rules of the following form:
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where ��
��

denotes the �-th input variable of subrule 	

for the �-th object, ���
��

the corresponding fuzzy invariant
value (generated automatically, see Sect. 2.2), ��� the ouput
variable of subrule	 and ��� the �-th object class modelled
as a fuzzy singleton.

The total amount of antecedents (� �
�) depends on the

number of independent invariants of the underlying geo-
metric configuration of subrule 	 for object � and the total
amount of subrules (
 �) depends on the number of differ-
ent geometric configurations for object �.

Since we use fuzzified invariant values and the genera-
tion of object hypotheses is done by evaluating the fuzzy
rules, we call this approach fuzzy invariant indexing (FII).

2.2. Generation of fuzzy invariant values

The main problem of the fuzzy rule generation is to find
appropriate membership functions to model the fuzzy in-
variant values ����� in (1) for a given object.

The investigation of invariant values measured in dif-
ferent perspective views has indicated that the fluctuations
can be adequately approximated by bell-shaped member-

ship functions 
����� :
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where the parameters ����� �
�
�� determining the shape of

the function are chosen as follows:

� The parameter ���� determines the position of the
maximum of the bell-shaped function (2). Therefore
this parameter should be the mean of the fluctuating in-
variant values: ���� � �

�

�
�
��, where ��� � � � � �

are the invariant values for an object taken in � differ-
ent images.

� The parameter ���� determines the position of the in-
flexions of (2), which are located at ���. This param-
eter should be the standard deviation of the invariant
values: ���� �

�
�

�

�
�
��� � �����

�
� �
� .

For example, consider the two well-known and indepen-
dent projective invariants of a pair of coplanar conics [6]:
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where ����� are the conic coefficient matrices and ��� de-
notes the determinant. Figure 1a shows the invariant values
for an object ’rim’ (such as shown in Fig. 3) measured in
80 images. The invariant values on the �-axis are calcu-
lated using Eq. (3), the invariant values on the �-axis are
calculated using Eq. (4). The distributions of these invari-
ant values are depicted in the histograms in Figures 1b+c.
For the example (Figure 1a) we get the values ��

��
� �����,

��
��

� 	�	�
 for the parameters of the first fuzzy invariant
value and ��

��
� ��	��, ��

��
� 	�	�� for the second. This

leads to the fuzzy invariant values shown in Figures 1d+e.

2.3. Generation of object hypotheses

The object hypotheses are generated through the FII-
technique by inferring the fuzzy rules:


��� 
� ���
������
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where 
��� is the output of 	-th subrule for object � and
���� are the measured invariant values. These subresults are
combined disjunctively:


�� � ���
������


��� (6)

The final result is the indexed �-th object model with the
measured credibility 
�� .
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(a) Invariant values (using Eq. (3),(4))
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(b) Histogram of invariant
values (using Eq. (3))
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(c) Histogram of invariant
values (using Eq. (4))
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(d) Fuzzy invariant value 1
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(e) Fuzzy invariant value 2

Figure 1. Example for the generation of fuzzy
invariant values (test object ’rim’, Fig. 3)

3. The implemented FII-recognition system

Now we apply the proposed fuzzy invariant indexing
technique to an object recognition system for partially
occluded (quasi-)planar objects. The structure of this FII-
recognition system, (see Figure 2), is similar to other sys-
tems like [3, 7] but differs in the fuzzy rule base. As shown
the system is able to learn the fuzzy rules for the recognition
process automatically. This is done offline in the model and
rule generation.

The system consists of the following modules:

1. Edge detection:
The first stage of the recognition system is the edge de-
tection. In the implemented system we use the Canny
edge detector [1], which takes a greyscale image as in-
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Figure 2. FII-recognition system

put, and generates as its output linked edge points.

2. Feature extraction:
In the feature extraction geometric primitives are fitted
to the extracted edge points, where the primitives that
are used depend on the objects to be recognized. For
the object domain shown in Figure 3 straight lines and
ellipses are suitable.

3. Computation of invariants:
As invariants can be computed for different geometric
configurations, this module consists of two steps:

Firstly, the extracted features are grouped into config-
urations for which the invariants can be computed. In
the implemented system we use the invariants of two
geometric configurations: For the invariants of a pair
of conics (see Eq. (3),(4)) all combinations of two el-
lipses are calculated and for the invariants consisting
of three straight lines and a conic [5] all combinations
of three adjoining line segments plus one ellipse are
computed.

Secondly, the invariant values are calculated for the
grouped features.

4. Model and rule generation:
In the model and rule generation stage new objects are
learned automatically: a new object model is generated
that consists of the object name, the extracted features
and the computed invariant values. The fuzzy rules are
generated as described in Section 2.

5. Hypothesis generation:
In this module the measured invariant values are used
to evaluate the rules of the fuzzy rule base. This is



done as described in Section 2.3. If the resulting cred-
ibility 
�� of an indexed object is above a threshold,
a new object hypothesis is generated. This hypothe-
sis consists of the object name, the credibility and the
features used to compute the invariant values.

6. Verification:
The last stage of the recognition process is the verifi-
cation of the generated object hypotheses. This is done
as usually: The hypothesized object model is mapped
into the image and verified against the extracted fea-
tures.

Although this system is for recognizing (quasi-)planar
objects only, this is no principle limitation for the FII-
technique. In principle, the system as described so far might
also be implemented as a classical system using multivariate
pdf’s. However, the aforementioned fluctuations (Sect. 1)
are very hard to model by mere distribution functions be-
cause they may result from systematic (yet unknown) er-
rors, e.g. in the line extraction algorithm. Moreover, the ad-
dition of further attributes (e.g. colour values) would entail
the recomputation of the pdf.

4. Experimental results

The FII-technique has been tested on several real images
with our object recognition system (see Sect. 3). In the se-
quel we first describe the performance of the system based
on two examples. Then we show first experimental results
obtained through the use of additional colour attributes. Fi-
nally, we compare the crisp indexing method with the pro-
posed FII-technique.

4.1. Performance of the FII-recognition system

The performance of the FII-recognition system is tested
for an (originally coloured) object domain of wooden toy
objects, such as rims, tyres, nuts and slats (see Fig. 3).

Figure 3. Test objects

All of these objects are quasi-planar, i.e. the depth of the
objects is small.

The first scene, Figure 4a, is taken perpendicular to the
planar object surfaces. It consists of two three-hole-slats,

a nut, a rim, a tyre and two unknown objects, which over-
lap each other. Since the detected edge points (Figure 4b)

(a) Original image (b) Extracted edge points

(c) Fitted features (d) Result

Figure 4. Recognition of scene I.

as well as the fitted features (Figure 4c) provide a reliable
image description, the system recognizes all of the known
objects displayed in Figure 4d.

In the second scene, Figure 5a, a three-hole-slat, a seven-
hole-slat, a rim and a tyre are used. This scene is taken at
an angle of about 25 degrees. Figure 5b shows the detected
edge points and Figure 5c the fitted features. In this scene
the system detects all of the known objects except for the
three-hole-slat (see Fig. 5d). The problem here is a con-
sequence of an inaccurate feature extraction, so the system
fails to extract the topology of the three-hole-slat correctly.
In this case a single conic is fitted to edge points coming
from the top and the bottom of the three-hole-slat. Hence,
the calculated invariant values differ too much from the de-
sired values and no object hypothesis is generated.

To demonstrate how the fuzzy rules can easily be ex-
tended by adding further attributes, we modify our recog-
nition system by integrating colour attributes to the fuzzy
rules learned before. For this we measure the RGB colour
information of an object along the underlying geometric
structures of the fuzzy rules and transform it into the HSV
colour space. Depending on the saturation of the object
colour we use the hue or the intensity for generating and
evaluating the fuzzy rules, e.g. the rule for the rim in Fig. 3
looks like:

IF (inv1 � 3.8) AND (inv2 � 4.1) AND (hue is RED)
THEN (object is RIM)



(a) Original image (b) Extracted edge points

(c) Fitted features (d) Result

Figure 5. Recognition of scene II.

First experimental results show that this extension reduces
the number of generated object hypotheses by 34%, where
mainly false positives are suppressed. For example, the ex-
tended fuzzy rules decrease the number of hypotheses for
Fig. 4a from 124 to 81 and for Fig. 5a from 192 to 137. As
a result the integration of further attributes enhances the per-
formance of the recognition system in two ways: It speeds
up the recognition process since fewer object hypotheses
must be investigated into in the time consuming verifica-
tion stage and secondly the robustness of the system is in-
creased, since fewer false positives are established.

4.2. Comparison between crisp indexing and FII

In the following we compare the proposed FII-technique
with the usual indexing method. Therefore we implement
a “crisp version” (CII) of our recognition system, in which
we use intervals instead of fuzzy invariant values. To em-
phasize the advantages of the FII-technique we apply the
system to the difficult case of very similar objects. We use
seven different rims with a constant exterior diameter of
�	mm but varying interior diameters of ��mm to �
mm
(see Fig. 6).

For these objects we get the fuzzy invariant values in Fig-
ure 7. Figure 7a shows the fuzzy invariant values computed
for the first invariant of a pair of conics (3) and Figure 7b
the second invariant (4). From right to left the membership
functions represent the objects rim22, rim25, rim28, rim30,
rim32, rim35 and rim38, where the numbers denote the in-

Figure 6. Object domain of seven similar rims
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(a) Fuzzy invariant values of
first invariant (Eq. (3))
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(b) Fuzzy invariant values of
second invariant (Eq. (4))

Figure 7. Fuzzy invariant values of Fig. 6

terior diameters.
As shown, the membership functions overlap each other.

In two cases, between objects rim28 and rim30 as well as
between rim32 and rim35, the overlap is extremely high.
For these objects we expect a considerable difference in the
discrimination property of the two implemented systems.

The comparison is done through recognizing the objects
in 210 different images. The results of this recognition pro-
cess are summarized in Table 1.

Table 1. Recognition results: comparison be-
tween crisp and fuzzy invariant indexing

CII FII

corr. false rate corr. false rate

rim22 27 3 90.0% 27 3 90.0%

rim25 17 13 56.7% 23 7 76.7%

rim28 19 11 63.3% 24 6 80.0%

rim30 6 24 20.0% 11 19 36.7%

rim32 18 12 60.0% 19 11 63.3%

rim35 2 28 6.7% 19 11 63.3%

rim38 19 11 63.3% 29 1 96.7%�
108 102 51.4% 152 58 75.2%

It turns out that the recognition system based on the FII-



technique provides a better discrimination between the ob-
jects than the crisp system; the recognition rate is generally
higher. Only for one object, rim22, we get an equivalent
rate. As expected, we achieved the greatest differences in
the recognition rates for the objects with the biggest “clash”.
The recognition rate of the crisp system for rim30 is only
20% and for rim35 as low as 6.7%. The FII-technique im-
proves these rates to 36.7% and 63.3%, respectively.

Altogether, the FII-recognition system possesses a
recognition rate of about 75.2% while the crisp version of
the system only reaches a rate of 51.4%.

5. Conclusions and future research

We have presented a new invariant indexing technique
for the hypothesis generation of recognition systems based
on fuzzy invariant values and fuzzy if-then-rules. This
method, called fuzzy invariant indexing (FII), enhances the
usual invariant indexing technique in three ways:

� Since the FII-technique generally produces object hy-
potheses with different associated credibilities, a better
discrimination between similar objects is achieved;

� The credibilities of the object hypotheses provide the
ability to control the recognition process, e.g. by ex-
ploring the most credible hypothesis first;

� The recognition system can be extended in a closed
form, i.e. new attributes (also non-invariant attributes
like colour, energy, etc.) may be added to the fuzzy
classification rules resulting in only minor changes to
the original structure of the system.

In the near future we will carry out the following exten-
sions:

� Improve the object discrimination by using multidi-
mensional fuzzy invariant values for modelling the dif-
ferent invariants of a single geometric configuration.

� Use more complex rules and extend the fuzzy rules
through further attributes.

� Extend the implemented FII-recognition system for
recognizing partially occluded 3D objects.
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