
Scale-Space Methods for Live  
Processing of Sensor Data 

Stein Olav SKRØVSETH a,1, André DIAS a,b, Lukas GORZELNIAK b,c,  
Fred GODTLIEBSEN d and Alexander HORSCH b,e,f 

a
 Norwegian Centre for Integrated Care and Telemedicine,  
University Hospital of North Norway, Tromsø, Norway 
b Institut für Medizinische Statistik und Epidemiologie,  

Technische Universität München, Germany 
c Institute of Epidemiology, HelmholtzZentrum München, Germany 

d Department of Mathematics and Statistics, University of Tromsø, Norway 
e Department of Computer Science, University of Tromsø, Norway 
f Department of Clinical Medicine, University of Tromsø, Norway 

Abstract. A temporal scale-space is a vector space spanned by time and a scale 
parameter, and by constructing the scale-space correctly a causal structure can be 
imposed on the scale-space. This enables early warning of significant changes in 
sensor data at an early time, and on any scale. We describe a feasibility study on 
how to use these ideas for live surveillance of monitoring processes such that 
important features can be visualized and users warned about changes an early 
stage. Sensor data from motion sensors on patients with chronic obstructive 
pulmonary disease are used as the example of such system, where important 
pattern are found and visualized using significance plots. 
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Introduction 

Motion sensors and accelerometers are technologies among many others commonly 
applied in telemedicine and e-Health settings that involve generation of vast amounts 
of data. In many situations these data are not visualized during the data generation due 
to the complexity involved, and also due to the limited extent the data are used. Typical 
uses are for pattern detection purposes, e.g., detecting critical changes of a patient’s 
condition. Another reason is that evaluating the data or visualizing them efficiently and 
close to real-time is difficult and requires substantial amount of work on behalf of the 
investigator, whereas the chance of providing valuable insight is limited due to the 
complexity of visualizing the data. Data-driven feedback mechanisms using data as 
they are amassed and presenting informative feedback on changes can be valuable for 
patients, health professionals, and researchers. 

Physical activity (PA) plays an important role in the prognosis of Chronic 
Obstructive Pulmonary Disease (COPD), and a reduction in PA may be an early, 
though unspecific, symptom [1]. PA has been related to lung function decline and 
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linked with an increased risk of hospitalization and mortality in COPD [2]. Using 
accelerometers provides an objective method for assessment of PA [3]. It has been 
shown that the level of PA diminishes with the progression of the disease, reaching its 
lowest level in the most severely ill patients [4]. 

When analyzing data, including time series data such as that provided by 
accelerometers, choosing a scale on which to investigate is crucial. Scale is a feature of 
the world most people are intuitively familiar with, for example when investigating 
maps on different scales or zooming in on digital images. Researchers almost 
invariably face decisions that involve choosing a scale, consciously or not, either in 
study design, data gathering or analysis. Choosing the wrong scale of operation in 
planning or analysis entails discarding all other scales, and thereby loosing potentially 
valuable information. Using scale-space as a visualization tool to find important 
information on any scale has become a well-developed statistical technique, though 
still relatively rare in practical analysis. SiZer (Significant Zero-crossings of 
derivatives) was developed as such a display device, and has subsequently been 
extended to several related ideas [5,6], including efficient computational techniques for 
two-dimensional data such as high-resolution images [7]. Regarding temporal data 
SiZer has the drawback that it is a tool for retrospective analysis, i.e., it can only be 
applied when the data set is complete, and has limited value during data gathering or in 
monitoring of live processes. 

Using temporally adapted scale-space methods on accelerometer output can 
provide the patient or health professional with important insight into changes in their 
PA level on multiple scales, and be an indicator of changes that are predictors for how 
their disease progresses. 

1. Methods and Data 

We restrict analysis to temporal scale-spaces, i.e., vector spaces spanned by time t and 
scale h, where we have observations {(𝑡! , 𝑦!), 𝑖 = 1, . . . ,𝑁} of some parameter 𝑦!  at 
times 𝑡!. For a given scale ℎ, the smoothed kernel regression curve 𝑓!(𝑡) is computed 
based on standard kernel methods [8]. Using appropriate estimators for the mean and 
standard deviation, one can find a confidence interval for the derivative with respect to 
𝑡 , and conclude that for a given location in scale-space (𝑡, ℎ), the data show a 
significantly increasing, decreasing, or no trend [5]. If the data in a region of scale-
space is too sparse for a normality assumption to hold, the hypothesis test is not 
performed, and one does not conclude on the sign of the derivative. Doing this 
procedure for all points in scale-space, one arrives at a map showing regions of interest, 
and structure on all scales. Since this procedure involves massive multiple testing, the 
significance level must be corrected for using, e.g., simultaneous quantiles based on an 
estimate of the number of independent blocks. The method has proven to be a valuable 
approach in a variety of settings, including analysis of blood glucose in patients with 
type 2 diabetes [9] or circulatory research [10]. 



The original scale-space methodology as described above does not respect 
causality in the physical (as opposed to statistical) sense. That is, a data point at time 𝑡! 
affects the estimate of 𝑓!(𝑡) for both past and future values of 𝑡. Indeed, if the kernel is 
Gaussian, which is by far the most popular choice, the range of a single data point is 
infinite into the past and future. However, for live processes, where observations are 
made sequentially, a future estimate of 𝑓!(𝑡) is not meaningful. In order to respect 
causality in this sense, we shift the kernel back, such that for a given scale ℎ, and a 
kernel with finite support on [−ℎ, ℎ], we map the regression curve 𝑓!(𝑡) ↦ 𝑓!(𝑡 − ℎ). 
Thus causality is preserved, and we can infer that any change observed at a time results 
from the data up to that particular time point. Furthermore, we can impose a causal 
structure on the vector space such that one can reliably infer at what point in time a 
change likely originated. We denote these annotated scale-spaces and the associated 

 
Figure 1: Upper panel: The sensor samplings for each minute in three days for a COPD patient as dots 
overlaid by a family plot of kernel smooths with four different bandwidths; ℎ = {10,50,100,200}  min 
with h = 100 min highlighted. For clarity, the upper limit of the y-axis is cropped such that some data 
points are not shown. Lower panel: The c-SiZer plot with statistically significant changes color coded as 
red decreasing and blue increasing activity level. The highlighted bandwidth in the upper panel is 
indicated by the horizontal line. Light gray areas in the upper left and lower right corners are where the 
effective sample size is too small for a normality assumption to hold, and dark gray areas have no 
significant gradient. 

 



causal structure c-SiZer. Though one cannot infer a causal relationship in a statistical 
sense between events in this manner, the results can be interpreted in light of colluding 
information from other sources, such that this information is particularly useful when 
analyzing data originating from several heterogeneous sources. c-SiZer is implemented 
with an R interface [11], core modules are implemented in C for computational 
efficiency. 

We based our work on data from a previous study, in which patients with COPD 
who had been admitted for a 3-week in-patient physical recovery program with the 
diagnosis of smoking-related COPD of stage IV according to the GOLD classification 
[12]. We processed the data from a male, 65 years old, body mass index 39, classified 
as having severe COPD. PA level at the hip was assessed using the triaxial RT3 
accelerometer (Stayhealthy, Monrovia, CA), worn in a holster at the non-dominant side 
of the waist. The RT3 is small and lightweight and records activity of the three 
orthogonal directions as vector magnitude units (VMU) [13] in time intervals of 1 
minute. 

2. Results 

In Figure 1 we show the data from the patient's sensors for three full days expressed as 
VMU along with the corresponding c-SiZer plot in the lower panel. Since the sampling 
rate is fixed, there is a fixed lower limit on the scale on which the data can be analyzed, 
which in this case is at log ℎ = log!" 5 ≈ 0.7 as we have chosen a required estimated 
sample size of 5. The number of underlying data points is large and there is much 
significant variation, and therefore there is much structure in the data that is picked up 
in the c-SiZer plot. On the scale of ℎ = 10!min ≈ 17  h there is a clear day/night 
pattern, while at larger scales a decreasing overall trend is visible. At the smallest 
scales, interpreting the pattern is difficult without knowledge of the patient's situation, 
but it is likely to be meaningful as a live information feedback to those close to the 
situation. On scales between these ranges non-trivial patterns emerge such as regular 
forks in the significance regions during the day. These types of trends would be very 
hard to spot investigating the raw data, and requires a specific bandwidth choice if 
doing kernel regression, and could be easily missed by choosing another bandwidth. 
Only by using a multiscale approach do such features become apparent. 

3. Discussion  

 Sensors have become ubiquitous in our day-to-day living. They provide a useful way 
to monitor processes, including the activity levels of chronic patients. Clever use of 
these types of technologies is a way to help patients manage their own diseases, and 
alleviate a challenged health care system. However, this approach relies on the 
individual's ability to correctly interpret the presented information and to be able to act 
upon it. This is far from trivial, but visualization techniques as described offer good 
chances to overcome the problem. c-SiZer allows for early detection of trends on any 
scale, such that the patient or anyone monitoring the patient's status can be alerted at 
the earliest possible time that a significant change has occurred. As is clear from the 
example, there are many features at the smallest scales that are not very important from 
this point of view, and might even be obvious to the user without the c-SiZer plot. 



Choosing an appropriate range of scales to focus on is important, depending on the 
application and interest, but this is a far more flexible choice than that of choosing a 
single bandwidth. While patients obviously cannot be expected to investigate full scale-
space plots, these give a statistically sound underpinning to present essential changes in 
their activity. While we have used raw data to investigate the applicability of c-SiZer 
plots, one can easily use the same technique on adjusted data, e.g., by adjusting for 
daily trends we can eliminate the structure that related to these trends to more easily 
access long-term changes in activity level. 

The c-SiZer technique is not limited to sensor data, but can be utilized for a 
number of settings where non-parametric regression is applicable, even situations with 
unevenly sampled data, such as self-measured blood glucose values in diabetes patients. 
By managing the problem of investigating multiple scales simultaneously, one can 
detect trend changes at an early point, and get a retrospective estimate of the 
originating time. 
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