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Abstract— This paper presents the design of the Cognitive
Automobile in Munich. The focus of the capabilities shown hee

Other
Computer system for vehicles

sensor data and

is the navigation on highways and rural roads. The emphasis : //
on higher speed requires early detection of far field objectsso _ knowledge PTOCGSSIHE'

a multi focal active vision with gaze control is essential. &r

increased robustness lidar range sensors are combined with \
vision using an object fusion approach. An elaborate safety Vehicle
concept and a verification stage ensure a safe behavior of the controller
vehicle in all situations. A communication system enableshe
vehicle to perform cooperative perception and action togéter
with similar intelligent vehicles.
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. INTRODUCTION

After a few weeks of driving lessons, an adult human
being is able to drive a car on its own. Most of the Fig. 1. Hardware architecture
time, humans drive remarkably prudent, closely watching
the environment and continuously tracking the behavior of ) ) o
other traffic participants around. However their endurdace Maior léap in system complexity and algorithmic robustness
limited: As they get tired, they get inattentive, sometimed? Order to generate a safe behavior, the vehicle depends on
with serious consequences. a correct situation assessment, that in turn _needs a robust
Technical systems can compensate for this disadvantagception of the vehicle's environment. Moving traffic re-
as they expose no persistence problems. Despite sevetH|r€S all involved perception and control to be executed in
decades of research, the common vehicle is still far frorﬁaal't'me' . .
being able to drive on its own. A modern driver assistance The Tra“rlsreg{qnal CoIIabgrat,!ve Research  Center
system enhances comfort and supports the driver partigulat ] CRC 28) “Cognitive Automobiles” [2] aims to contribute
in emergency situations: For example, the electronic kb significantly to the evolution of machine cognition for

program helps the driver to maintain control when skidding"?‘u'[omo'“ve environments. An interdisciplinary team  of

Those achievements are greatly appreciated, as they redigsearchers in Munich and Karlsruhe works closely together

accidents significantly. to combine different methods, sensors and algorithms. For

Cognitive Automobiles [1] are vehicles that cannot On|>;avaluation and tests we have vehicles in several locations.
react in certain situations but that have enough enviromme};0 ensure a successful cooperation we created unified

knowledge to be able to act on their own. Yet, this requires |Qterfaces, SO that software r‘r_lodules_ can t_)e excha_nged
between the vehicles and combined using fusion techniques
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Fig. 2. Functional software architecture

vehicles and obstacles in the near range. Its two wide angleFor fast interprocess communication we use the real-
cameras, shown in [4], are also used for stereo-based defithe database for cognitive automobiles (KogMo-RTDB) [7].
estimation. The tele camera, shown in [5], is used for early is capable of distributing raw sensor data streams to
recognition of obstacles. Two lidar sensors provide rangseveral processes and at the same time relay vehicle control
data for obstacles and improve object detection in a datmmmands at a rate of 1 kHz between the vehicle guidance
fusion stage as shown in Sec. IV. The combination of a GP@odule and the vehicle controller via CAN bus.
receiver with an inertial measurement unit (IMU) delivers Every software module (light gray) shown in Fig. 2
precise position data for navigation. is connected to the KogMo-RTDB. Hardware components
All raw sensor data is fed directly into a powerful multi- (dark gray) are connected with dedicated interface modules
core multiprocessor computer system as described in [@hat stores all raw data in the RTDB. Every piece of data is
Within an Opteron system all processor cores are linkeerganized within the RTDB in objects that can be created,
together by HyperTransport at a bandwidth of 3.2 GByte/sipdated and destroyed. Other modules can search for certain
Compared to an Ethernet-linked computer cluster this sol@bjects within the RTDB and retrieve their data. For process
tion simplifies management and saves power, because cosynchronization a module can wait for an object to change.
puter infrastructure components (hard disks, console gppw The efficient implementation of the RTDB managdes- 10°
are required only once. As every cognitive software modulepdate and.1 - 10° retrieve operations per second (see [8]),
is executed on this platform, communication is performedepending on the object size and access method being used.
with low latencies. Even large blocks of raw data can be
passed between modules with very low effort, stimulating Il VISUAL ENVIRONMENT PERCEPTION
a tight cooperation between cognitive modules and their The automatic generation of suitable behavior for automo-
developers. Communication with other intelligent vetsclebiles in traffic is mostly based on a comprehensive internal
is achieved using a radio unit. description of the actual traffic-related environment. kiae
The actors and standard sensors of the vehicle itself aytsion is used to gather information about the most relevant
controlled by a dSpace AutoBox. The AutoBox serves also &rts of the environment such as the road itself as well as
a security element as shown in Sec. V. The camera platforp@tic and dynamic objects on the road.
is controlled by a dedicated platform controller. Its maisk ~ The image processing methods used in our vehicle em-

is the inertial stabilization of the tele camera for a stabl@hasize on robustness and real-time capability. The scene

according to the 4D approach [9], [10].
Predicted 2D feature positions based on temporarily and
spatially modeled and recursively estimated objects allow
Fig. 2 gives a rough overview of the software module$or an efficient image processing. Thus, processing time is
used in our cognitive automobile and the data flows betwegrduced and detection is more robust.
them. It is apparent that the data produced by one moduleAn additional feedback loop, applied directly to the first
is often used by several other ones. This includes raw dadtak of the image processing chain, is used to adapt the
like video images that are needed for road tracking as wetbmeras exposure control algorithm depending on the ex-
as object detection, and comprises also the current cam@mcted object positions. Shifting the limited dynamic rang
gaze direction from the gaze control interface. of a camera in a high dynamic traffic scene also contributes

B. Software Architecture



features [15] to achieve real-time capabilities. Withire th
Roadtracker feature model we test the use of other scale space [16] and
illumination invariant features, like [17], [18], [19], (@,
Regionofinterest|  121]. We don’t use the rotational invariance.
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RTDB - Recorder Since image processing suffers from ambient light con-
ditions, the use of additional sensors can yield a drastic
improvement of system robustness. Using active sensa@s lik
lidar scanners overcomes the limitation of the surrounding
light condition using an active sensing principle. The sens

to increased detection robustness [11]. Fig. 3 illustréties itself sends out a laser impulse at a specified angle and
principle structure of the feedback loop using the KogMoMmeasures the time the light takes to come back to the
RTDB and our application for road detection and tracking.Sensor. Besides the very high independence on the light
An inertially stabilized multifocal camera platform for condition, the sensor delivers only a distance measurement
active vision extends the limit of traditional vision basedf the light hits an object. Consequently, every given dis&
approaches for further far-field detection of traffic retatd- Measurement is a potential part of an object. Furthermore,
jects. Miniaturized rotation rate sensors detect low festy with the help of the distance values one can eliminate the
changes of the car’s pitch angle and mostly compensa@@bigUiW within camera pictures resulting fromt the 3D to
image blur induced by vertical motion by active movement ofD Projection model.
the tele-optic camera. Precise mechanics and early feedbac For the given task of combining object hypothesis com-
control loops as well as lightweight cameras are necessdf@ from the processing of both camera pictures and lidar
to reduce latency on the one hand and to increase positiBfocessing, firstly we have to describe the chosen sensor
accuracy on the other hand. setup. The camera rig is located at the front window of the
Two independently steerable wide-angle cameras enlar§@- Consequently, it can only perceive objects which are
the field of view by camera movement, extending the pe ocated ahead of the ego-car. To complement this restricted
ception capabilities e.g. in sharp and hairpin curves.sisdi Perception view, we added a lidar scanner at the rear of
by the capability of very fast camera movements the Afhe car. Additiqnally, we also place one scanner at the front
approach has proven robustness even over camera saccangygper. Both lidar scanners are set up parallel to the ground
neglecting the image frames during camera movement. plane. The sensors can observe 2180an angular resolution
Within the visual perception, an important task is theof 0.25'. )
modeling of an abstract description of the environment, According to the setup of the heterogeneous sensors, ob-
on which an intelligent vehicle is able to act rationallyJ€ct hypotheses in the rear of the car can only be established
Currently this description contains three main claskeees by the lidar scanner. In contrast, objects Iopate_d aheableo.ft
static objectsand dynamic objectsLanes are described by C&r can _be d_etected —assumed that theiobject is located in the
width, curvature derivation of the curvatureyaw angleand ~Perception field of the camera and the lidar — simultaneously
lateral offset(last two with respect to the own vehicle). All Py the camera and the front lidar scanner.
lane parameters_ are directly estir_nated by predjcted 2D edge pata Preprocessing and Object Detection
features [12] with an UD-factorized, sequential, extended _. . : - . .
Finding objects in lidar scanner data is mainly based on

Kalman filter [13][14], as shown in Fig. 4. Static objects are - : ) ! .
described by 3D bounding boxes and a pose vector relat:fggmentmg regions belonging together. For instance,&if th

to the own position. Dynamic objects are represented in t gser rays hit a car, _accordlng FO the distance between the
same way but extended by a dynamic model. We current anner and the object one will get back the contour of

just handle dynamic objects which conform tobicycle e car represented by a certain number of lidar scan-points
Since it is very unlikely that objects are — in the sense of

model ) . :
the lidar scanner — that close to each other, one object will

To increase robustness of the estimation of static (ott:-x?taclEg separated the next object by a distance step in the lidar
on the lane) and dynamic objects (other cars) we enhanpoints. So, the key of finding objects in the lidar data is the

the 4D approach by deature model More descriptive

features than edge features are registered in an object fix%?frf? forrn SILIJbrster:qunent Scr?r}'np\(l)vmﬁs deri]r?ss tglrStaI:CI?j tgzeach
coordinate system. Tracking those registered featurewsll 0 Fe ; S SI ?t?n t?\ ?hfe ha Id ve t-n? nt? N des noth[r f]' ¢
us to estimate the bounding box and pose of the object. or calculating the threshold Just mentioned, another fac

Therefore we use a CUDAimplementation of U-SURF IS very important: as the scanner sends out the laser rays
at equally spaced angles, the local distance between two

ICUDA is an API provided by NVidia for GPU programming consecutiv_e rays grows with the distan_ce betwee_n the sensor
htt p: // ww. nvi di a. com cuda and the object. According to that relation, the point to poin

KogMo - RTDB |

Fig. 3. Fundamental structure of the adaptive exposurer@ont
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Fig. 4. Road tracking using the 4D approach

threshold is a distance dependent value, which grows wittr platooning, should be exactly executed in the cognitive

increasing distance. vehicle. To realize these objectives, besides re-fitting th
After determining the objects, their dimensions and kepdequate actors in the vehicle, path planning based on the

parameters have to be extracted: the estimated object dimefject recognition and maneuver generation with respect to

sions and the supposed center of gravity. the vehicle’s capabilities is necessary.
o i Because this control process completely takes the vekicle’
C. Kalman Filtering of Detected Objects motion in hand and can cause fatal damage to the vehicle

After segmenting the objects, an association and trackirand people in case of an erroneous implementation, it should
stage has been implemented. Association means that dye accomplished precisely, in bounded delays and without
newly detected object has to be associated to an object framors by means of variable control algorithms. Furtheenor
the last scan cycle. As the central association measuremants also required to implement a safety concept to detext th
we take the center of gravity as the most important featurmergency situation and in this case bring the vehicle back
and determine the distance to every predicted object. ¢f thto a safe status.
distgnce is_ less than_ a certain threshold value, we .havng Experimental Vehicle
positive object association: we have found the old object in

the new scan. Otherwise, a new object hypothesis must be/\N A_‘Ud_i Q7 (Diesel 3.0, YOC: 200_6) with autqmatic
established. transmission was employed as experimental vehicle. The

In our contribution, the tracking is realized by a linear® 928 module is integrated between the gas pedal and its

Kalman filter based on an uniform movement model [23]_control unit. The steering function is realized by a bruskle

The change of speed is modelled by a Gaussian noise Souﬂ(\{@gaﬂux motor, which is directly mounted on the steering

Therefore, the filter is capable of predicting the objectespe rod. To ar}plz thefbral;es, th solur:ionsdared implemﬁnt]?d
in addition to the object position. For the case of a positivgecause of the safety demand on the redundancy. The first

object association, the corresponding Kalman filter haseto /S€S the normal brake booster, which allows directly bogdi

updated. For objects without any possible associationya ndhe brakipg pressure in the master cylinder._ Th_e second is a
Kalman filter has to be set up. pneumatic actor to push the brake pedal, which is powered by

the off-the-shelf air suspension. A powerful dSpace AutoBo
D. Fusion of Object Hypothesis takes the overall motion control of the vehicle. In the pafal

As already mentioned, the object hypotheses coming fromode_the PXI Box from NaFionaI Instru_njents works as th_e
the lidar sensors have to be combined with the obje(\ﬁlatchmg and safety machine. In addition, the vehicle is

hypotheses from the image processing stage. To this end, {@UiPPed with the monitoring and emergency stop as Fig. 5
use a maximum likelihood estimator for the object positions> 'OWS-

The image processing stage delivers the specific varianGe Vehicle Motion Control

for their object positions. The variance related to therlida The knowledge about one’s own performance is a prereg-
hypotheses can be inferred out of the Kalman filter. Agjsite for independent decision making and action selactio
we know all the key parameters of the assumed Gaussigg execute an action that is represented by a corresponding
likelihood functions, it is possible to multiply them and capapility, you need to know which conditions for its exe-
search for its maximum as the optimization criterion for thgytion must apply and whether they are satisfied. Complex

estimated position. maneuvers are composed from different time-coordinated
V. VEHICLE CONTROL IN COMBINATION WITH plriving fiction capabili.ties, which depend on lower-skilivel _
SAFETY CONCEPT ing basics; the associated performance can only be provided
o if all the necessary conditions are met. The representation
A. Motivation of vehicle capabilities can be found in so-called capapilit

Autonomous driving including accelerating, braking, stee networks [24]. The concept represents an approach to ab-
ing and other advanced maneuvers, such as lane chamfi@act essential skills to a general extent. An ability node



consists of an organizational, operational and monitoring
component to perform the encapsulated functionality. The
modeling of this behavior is carried out in state machines;
within the operational component execution models of the
required function are deposited. The controller topologly i
not fixed; control parameters can be adapted to the respectiv
conditions on runtime, complete sets of parameters can be
changed or different controller structures can be usedrtApa
from the purely static representation of the availabilify o
skills, there is a dynamic component. Each capability node
takes the current availability of the required componemts i
account. The dynamic availability depends on the status of
necessary components, which will be given from part of the

safety concept. Due to the fact that accumulated knowledgg,j yehicle via CAN bus. There the collected signals will be
is available on the encapsulated functionality in captisi analyzed in the watchdog program, which makes the check
in form of execution models, availability modes, progresss ihe actor status and signal plausibility. Subsequerhtty t
dimensions, etc. across the system via the capability T&IWO sta1s of the components will be sent back to the motion
this knowledge can also be used to predict the ability of agsniroller for the dynamic availability determination. ah
expected performance. Prediction is particularly useful  oryor js detected in the actor or software program from the
decision making and planning of autonomous systems.  ode-based diagnose, it would call the warning or emending
method depending on the error classification. Meanwhile it

should indicate its location and deliver the necessarycadvi

The object recognition modules like image processing G, the driver. If the error exists in a certain time threshak
the communication between cooperative vehicles are generdmergency program will automatically bring the vehiclevint

ing the scene tree in the KogMo-RTDB. Based on the objeghq fajl-safe mode with the redundant hardware/softwane. T
cha_ractenstlcs, their positions, and their predictegttaries  oqundant system is already implemented in the cognitive
an ideal path can be calculated. vehicle design and the knowledge base of the diagnose

A set of rudimentary and adjustable commands is presystem will be established via the SIL, HIL simulation
calculated and updated continuously by the vehicle Contrﬂz/ethod.

interface as shown in Fig. 2. This assures that the planned
path is drivable within the vehicle’s capabilities as désenl VI. SAFETY ASSESSMENT BY VERIEICATION
in paragraph V-C. The stopping of the vehicle at a defined
braking distance and the adjustment of the current acceler-The verification module decides if planned trajectories
ation are the skills in longitudinal direction. The abilty are safe using methods of hybrid verification. Safety as-
follow a path and to change the lateral offset of the vehicleessment is performed based on the regions of positions,
to the lane according to a clothoid model are the skills itthat traffic participants surrounding the autonomous car ca
lateral direction. Currently the lateral maneuvers and theeach within future time intervals. These possible posgio
longitudinal maneuvers are successively executed. are also referred to as the reachable sets of the traffic
This set of maneuvers, the estimated objects and thgiarticipants. Reachable sets are computed based on tlaé init
corresponding trajectories are the input variables of defini state (position, velocity) and an uncertain dynamic model
state machine. We are using fuzzy logic as proposed in [26f the traffic participants. Uncertain models are regarded a
to reduce the amount of possible states. The maneuvdynamic models, where inputs and parameters are uncertain
progress is continuously observed and compared to théthin certain sets. This allows to compute reachable sets f
desired trajectory. So the emerge of new obstacles, tingdasses of traffic participants, such as cars, trucks orchisy
lags or deviations can lead to a reconfiguration or even to aGiven the reachable sets of traffic participants, one can
termination of the current maneuver. state the following: if the reachable sets of the autonomous
car following its planned trajectory, do not intersect with
any reachable set of other traffic participant (for all time
intervals within a certain prediction horizon), the trag@y
The safety concept as shown in Fig. 5 focuses on th& the autonomous car is guaranteed to be safe. In addition,
online safety warranty of the cognition units. Cognitioritean the probability distributions of possible positions offtia
include all the hardware and some software programs whigarticipants are computed within their reachable sets;dero
are related to the vehicle motion control. The basic pritecip to compute a probability of safety for the planned trajegtor
is that the driver is capable of taking back the control oAn exemplary situation that is verified using probabilistic
the vehicle at any time in case an error situation is detectectachable sets is presented in Fig. 6(a). This situation is
Firstly the PXI BOX acts as the watching machine, integratrot safe, as the probabilistic reachable sets for the second
ing all the information from sensors, actors, motion coifgro time interval of both vehicles intersect. The computation

Safety
Module

Fig. 5. Safety concept

D. Decision Making and Path Planning

E. Safety Concept



of probabilistic reachable sets of traffic participants &-p until the crossing cars have passed. Note that the reachable
formed online in the autonomous car. As mentioned abovsets of cars overlap to a certain degree, such that individua
the prediction is limited to a time horizan. After a certain cars cannot be distinguished after a certain predictioe.tim
time incremeniAt = t,,.1 —t;, the computation of reachable
sets is reset regarding the updated measurements of tfie traf
situation. The procedure is illustrated in Fig. 6(b). 180
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A. Computing Probabilistic Reachable Sets of Traffic Partic Fig. 7. Reachable sets of the intersection scenario
ipants

The motion of traffic participants is modeled in two stages. /|| cOMMUNICATION FOR INTER-VEHICLE
First, the paths that a vehicle can follow are generatedy The COOPERATION

do naturally arise from the possible routes that the vehicle .
can take in the examined road network segment. Besidfs Motivation
the possible paths of a vehicle, the deviation from these For the realization of cognitive capabilities, the vehicle
paths is modeled by a static piecewise constant probabiliiged not only to be able to perceive and understand their
distribution that varies between road user types. In a skcognvironment and act appropriately, they also have to be
step, the longitudinal dynamics of the vehicles along thable to communicate with each other to support functions
paths is considered. The dynamics is modeled by a hybrigich as cooperative perception, distributed object fuaiuh
automaton [26] which combines discrete and continuowordinated behavior decision. The key requirements @ thi
dynamics. Within each discrete mode, a continuous dynamiggntext are bandwidth and real-time capability. Furtheeno
model is defined, capturing all possible behaviors withithe communication design has to be decentralized, self-
the discrete mode, e.g in moadeceleration all behaviors organizing and fault-tolerant.
ranging from no to full acceleration are considered. A morg,
detailed description on the modeling of traffic particimant
concerning path generation and path following is given Qn the networ.k Ia_yer, the data streams.from and.to the Qata
in [27]. object communication module are multiplexed with main-
In order to be able to efficiently compute probabilisticienance messages that handle network topology detection,
reachable sets of the hybrid dynamics of traffic participantUni- and multicast routing as well as security signaling]{30
their mixed discrete/continuous dynamics is abstracted fo loopback interface allows the connection of external
Markov chains. A detailed description of the abstraction t§€curity modules, such as a secure socket wrapper. All of
Markov chains and the computation of probabilistic reachthese functions are implemented transparently so that no
able sets using Markov chains is given in [28], [27]. Bemodlflcatllon.for controlling these modules are necessary to
sides computing probabilistic reachable sets for eacfigraf@ny application.

Implementation

participant individually, a more sophisticated compuatatof ~ The data object communication module itself integrates
reachable sets encountering the interaction of traffidgiart Seamiessly with other applications, the central interfaee
pants has been proposed [29]. ing the real-time database. Through a simple API, other

applications notify the communication module about data
objects that should be se(itexported”) to other vehicles.
The numerical example considering interaction betweeReceived(“imported”) data objects are automatically stored
traffic participants shows an intersection scenario asctiegbi  in the real-time database, organized hierarchically utacher
in Fig. 7(a) illustrating the initial setting. Card and B informational object that contains data about the sending
approach the crossing from a street that has no right @khicle. Also, information about the networks radio toylo
way and carg”' and D have right of way. In Fig. 7(b)-7(d), is available to other applications, aiding, for instanegtisg
one can see the probabilistic reachable sets for selected tiup cooperative groups based on the connectivity of vehicles
intervals (the darkness of the color indicates the probighil Applications that depend on data objects from other vehi-
It is clearly recognizable that car4é and B decrease their cles can simply search the database for the presence of an
velocity when they approach the crossing and that they waibject of the specific data type and will in return get a list of

B. Numerical Example



relevant objects. From the hierarchical organization irepa

El

and child objects, the application can deduce the origin of a

data object, if necessary. Whenever a data object is updat[%ﬁ
in the senders database, it is exported to other vehicles,
imported by those vehicles that receive it and updated i1l

the receiving vehicles’ databases. Applications waiting f

an update of that data object can then retrieve the object

from the database and resume processing.

VIII. CONCLUSIONS AND OUTLOOK

In this work the design of the Cognitive Automobile in

Munich is presented. It features all characteristic congots

[12]

[13]

[14]

with emphasis on robust situation assessment and safe-beHad
ior. The communication link between two vehicles is testec{m]
cooperative behavior has been shown in simulation [31]. One

of our next steps is to demonstrate cooperative perceptifii]

and maneuvers in real-world.

To increase the speed and robustness of the visual peis

ception we focus first on a scene-dependent best parameter

estimation on the physical sensor level and second, on iy
proving the prediction step in [9] by a visual enhanced ego-
motion estimation and by focusing on keypoint descriptor0]

solving the correspondence problem more reliable.
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