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Abstract

Data summarization is an enabling technique of Granu-
lar Computing, because of its promise to abstract from
individual observations and to view a phenomenon as
a whole. The linguistic summaries are built around a
fuzzy quantifier which functions as the ‘summarizer’.
Linguistic data summarization therefore presupposes an
underlying model of fuzzy quantifiers, which is of cru-
cial importance to the adequacy of the generated sum-
maries. In the paper, we present an axiomatic theory of
fuzzy quantification. It attempts to formalize the notion
of ‘linguistic adequacy’, in order to eliminate the im-
plausible results observed with existing approaches. We
provide evidence that the models of the theory are plau-
sible from linguistic considerations. Finally we present
three practical models and discuss some of their prop-
erties. These models are computational, and systems
for data summarization can directly profit from our im-
provements by plugging in the new algorithms.

1. Introduction

Humans routinely granulate and condense large
amounts of data in order to perform everyday tasks and
in order to communicate efficiently with others. This is
possible because natural language (NL) provides a class
of expressions specifically designed to summarise in-
formation, viz that of natural language quantifiers. NL
guantifiers, and in particular their approximate variety
(‘almost all’ etc.), provide flexible means for expressing
accumulative properties of collections and can also de-
scribe global (e.g., quantitative) aspects of relationships
between individuals. The modelling of NL quantifiers
might evolve into one of the key techniques for Gran-
ular Computing because these provide a view of the
phenomenon as a whole, by abstracting from individ-
ual observations or data instances. This process is very
different from classification and other techniques that

simplify and enhance the description of individual ob-
jects, but cannot reduce their sheer number. By contrast,
NL quantifiers extract a description of a given collec-
tion (e.g. image region, cluster, class) from the descrip-
tions of the individuals gathered in the collection. The
original information, scattered over a large number of
individuals, is hence distilled into descriptions of only
a few collections of interest, based on their accumula-
tive properties. This process of granulating information
by utilizing second-order properties, i.e. properties of
collections of individuals, or properties of relations be-
tween individuals, will be calledummarization.

2. Data Summarization Based on
Fuzzy Quantifiers

Following Zadeh [19], fuzzy set theory attempts to
model NL quantifiers by operators called ‘fuzzy quan-
tifiers’. Known models are Zadehs-Count approach
[20], the FG-Count approach [20, 14], OWA operators
[15, 16], and the FE-Count approach [10]. The promise
of fuzzy quantifiers for data summarization has soon
been recognized. According to Yager [13, 11], there are
two relevant types of linguistic summaries, which are ei-
ther of the type @) objects in DB are5’, e.g. ‘Few peo-

ple in DB are tall’, or of the relative type) R objects

in DB areS’, e.g. ‘Most tall objects in DB are young’,
where Q is the quantity of agreement (modelled by a
fuzzy quantifier); R, S (‘summarizer’) are fuzzy sets
representing the NL concepts of interest, and DB is a
database.

Today many systems for linguistic data summarization
rely on techniques of fuzzy quantification [8, 7, 11, 17].
The basic ideas described above have often been de-
veloped into elaborate mechanisms for summary gen-
eration and evaluation. However, the underlying mod-
els used for interpreting fuzzy quantifiers, have not un-
dergone that rapid evolution; all of the systems listed
above still rely on some form of thB-count approach
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Figure 1. Results of OWA approach for cri-
terion ‘At least 60 percent of Southern Germany
are cloudy’. (a) Fuzzy region ‘Southern Ger-
many’, relevant pizels white; (b) desired re-
sult: 1, OWA: 0.1; (c¢) desired result: 0,
OWA: 0.6. The results show an undesirable
dependency on cloudiness grades in regions I11
and IV, which do not belong to Southern Ger-
many at all.

or the OWA-approach. This raises severe concerns that
the implausible behaviour reported for these models or
their extensions, might compromise the quality of the
generated summaries [2, 6]. In fact, a rigorous eval-
uation of existing approaches to fuzzy quantification
with respect to their linguistic adequacy has produced
negative results in all cases [2], because the traditional
models E-count approach, FG-count approach, OWA
approach, and FE-count approach) are either too weak
(cannot model the interesting cases) and/or subject to
gross linguistic failure (i.e. results can be obviously im-
plausible). For an example situation in which one of the
approaches fails, consider Fig. 1, which depicts some
results obtained from OWA operators with importance
gualification [16]. More counter-examples, also cover-
ing the other approaches, can be found in [2, 6]. To
mention some typical problems, it appears that non-
monotonic quantifiers (‘about half of the objects in DB
are A’) are notoriously difficult to most approaches, and
extensions to cover such quantifiers usually fail. Most
importantly, none of the traditional approaches yields
convincing results in the important case of multi-place
guantification, e.g. importance qualification like in ‘al-
most allA in DB areB’.

The underlying model of fuzzy quantification is of cru-
cial importance to the linguistic adequacy of the gener-
ated summaries, but the approaches used for data sum-
marization are faced with severe problems. In the fol-
lowing, we will hence focus on the presentation of an
improved theory of fuzzy quantification. This seems
to be methodically preferable, and even most promis-
ing for practical systems that use fuzzy quantifiers, be-
cause it tackles one of core problems of linguistic data
summarization. Existing systems can directly profit

from these improvements by simply plugging in the new
models.

3. The Linguistic Theory of Fuzzy
Quantification

In order to avoid any problems concerning linguistic ad-
equacy, it seems advantageous to profit from the knowl-
edge of linguists, and hence to discuss fuzzy quanti-
fiers in the framework of thénguistic theory of quan-
tification. The Theory of Generalized Quantifiers [1]
(TGQ) rests on a simple but expressive model of two-
valued quantifiers, which provides a uniform represen-
tation for absolute and proportional quantifiers, unre-
stricted and restricted quantification (i.e. involving im-
portances), and even for multi-place quantifiers like
‘more A’s thanB’s areC’s’, composite quantifiers like
‘most A’s andB’s areC’s or D’s’, and non-quantitative
examples like ‘John’ or ‘almost all married’s are
Y’s’. The theory recognizes more than thirty different
types of quantifiers, of which absolute and proportional
quantifiers are only two basic examples [9]. Nonethe-
less, TGQ was not developed with fuzzy sets in mind.
Hence all quantifiers and all argument sets involved in
the quantification (e.g. weights in importance qualifi-
cation) must be crisp. TGQ is therefore not (directly)
suited for real-world applications like data summariza-
tion, which need to deal with imperfect data and non-
idealized interpretations of NL concepts, which typi-
cally lack clear-cut boundaries.

In the following, we attempt to overcome this limitation
by incorporating the notion of fuzziness. We identify a
number of cornerstones of a principled theory:

1. Improved Representation throughary quanti-
fiers and semi-fuzzy quantifiers
An n-ary fuzzy quantifierQQ on a base set
E # o assigns to each choice of fuzzy
subsets Xi,...,X,, of E a gradual result
Q(Xy,...,X,) € [0,1]. Fuzzy quantifiers consti-
tute an expressive class of operators because they
introduce a second order construct for fuzzy sets.
However, they are often hard to define because the
familiar concept of cardinality of crisp sets is not
applicable to the fuzzy sets that form the arguments
of a fuzzy quantifier. It is necessary to introduce a
simplified representation, which must be still pow-
erful enough to embed all quantifiers in the sense
of TGQ. Ann-ary semi-fuzzy quantifiesn a base
setF is a mapping which to each choice afisp
subsetsyy, ..., Y, of FE assigns a gradual result
Q(Y1,...,Y,) €0, 1]. Because semi-fuzzy quan-
tifiers must be defined for crisp input only, they



are much easier to define than fuzzy quantifiers. In
particular, the usual crisp cardinality is applicable
to their arguments and can hence be used to pro-
vide an interpretation for semi-fuzzy quantifiers.

2. A quantifier fuzzification mechanisf@FM) F
assigns to each semi-fuzzy quantifi@ra fuzzy
quantifier7(Q) of the same arity and on the same
base set. These are applicable both to crisp and
fuzzy arguments. QFMs are useful because the
concepts of TGQ can be easily adapted to the case
of semi-fuzzy quantifiers and fuzzy quantifiers. We
can then require that a certain property of a quan-
tifier be preserved when applying the QFM, and
thatF be compatible with certain constructions on
(semi-)fuzzy quantifiers. This can be likened to the
well-known mathematical concept of a homomor-
phism (structure-preserving mapping).

3. We requirecompatibility with concepts of TGQ;
an adequate QFM should preserve all properties
of linguistic relevance. We enforce this by stat-
ing a set of axioms for ‘admissable’ or ‘reasonable’
choices of QFMs, the DFS axioms.

4. We should findmodels of the axioms.e. ‘rea-
sonable’ choices af, and characterise interesting
classes of such models in terms of distinguished
properties;

5. Efficient algorithmamust be developed for imple-
menting the resulting operators.

Following from these requirements, we have developed
an axiomatic theory of fuzzy quantification known as
‘DFS theory’. We start the description of our theory by
listing the 6 axioms that are required:

1. Correct Generalisation. We require that

F(QR)(Xy, -0y Xn) = Q(Xy, .., Xn)

wheneverX,, ..., X,, are crisp (combined with
the other axioms, this condition can be restricted
ton <1).

Rationale: a semi-fuzzy quantifiep is defined
only for crisp arguments, whilg=(Q) is defined
for arbitrary fuzzy arguments. If all arguments are
crisp, @ andF(Q) must match.

2. Membership AssessmentThe two-valued quan-
tifier defined byr.(Y) =1ife € Y andrn.(Y) =
0 otherwise for crispY’, has the obvious fuzzy

an element of the base set, we can define a two-
valued quantifierr, which checks ife is present
in its argument. Similarly, we can define a fuzzy
quantifierm, which returns the degree to whieh

is contained in its argument. It is natural to require
that the crisp quantifier, be mapped t@., which
plays the same role in the fuzzy case.

. Dualisation. We require thatF preserves duali-

sation of quantifiers, i.eF(Q')(X1, ..., Xn) =
SFQ)( Xy, ..., Xy1, 0 X,,) for all fuzzy argu-
ments Xy, ..., X, wheneverQ'(Yy, ..., Y,) =
=Q(Y,...,Y,_1,7Y,) for all crisp arguments
Yi,...,Y,.

Rationale: Obviously, a phrase like ‘all X's are
Y’s’ should have the same result as “it is not the
case that some X's are not Y'’s”.

. Union. We require thatF preserves unions

of arguments, i.e.F(Q)(X1,...,Xn+1) =
F(Q)(Xy,..., X0 1,X, U X,y1) whenever

QY,....Yn41) = Q(Y1,....Y,1,Y, U
Yn+1)-
Rationale: It should not matter whether

“many X's are Y’s or Z's” is computed by
evaluating F(many)(X,Y U Z) or by com-
puting F(Q)(X,Y,Z) with Q(X,Y,Z) =

many(X,Y U Z).

. Monotonicity in Arguments. We require thatx

preserve monotonicity in arguments, i.e.Qf is
nondecreasing/nonincreasing in thé argument,
then 7(Q) has the same property. When com-
bined with the other axioms, the condition can be
restricted to the case th&tis nonincreasing in its
n-th argument).

Rationale: There must be a systematically differ-
ent interpretation of statements like “all men are
tall” and “all young men are tall” where the former
statement expresses the stricter condition.

. Functional Application. Finally we require that

F be compatible with a construction called ‘func-
tional application’, i.e. F(Q')(X1, ..., X,) =
FQ)(fi(X1),..., f1(Xyn)) is wvalid when-
ever Q' is defined by Q'(Yi,....Y,) =
Q(fl(Yl)a R fn(Yn))! where f{a ) f;L are
obtained from the induced extension principle of
F, see [3].

Rationale: This abstract axiom ensures ttat
behave consistently over different domaitis

counterpartr. (X) = ux/(e) for fuzzy subsets of
E. We require thatF (7. ) = 7.

Rationale: Membership assessment (crisp or
fuzzy) can be modelled through quantifiers. For

A QFM F which satisfies these axioms is called a de-
terminer fuzzification scheme, or DFS for short (“de-
terminer” is a synonym from TGQ for “quantifier”). If
F induces the standard negatiemr = 1 — x and the



standard extension principle of [18], then it is called a
standard DFSThese DFSes constitute the natural class
of standard models of fuzzy quantification.

A large number of properties of linguistic or logical rel-
evance are entailed by the above axiomsE s a DFS,
then

e F induces a reasonable set of fuzzy propositional
connectivesi.e. = is a strong negation is at-
norm, V is ans-norm etc. These connectives are
obtained from a canonical construction, see [3];

o F(V)is aT-quantifier and#(3) is anS-quantifier
in the sense of [12]This means that the universal
quantifierv and the existential quantifiétrare in-
terpreted plausibly in every DFS.

e F is compatible with the negation of quanti-
fiers Hence the equatio (Q') (X1, ..., X,) =
SFQ)(Xy, ..., X,) is valid provided that
QM, ..., Y,) = =2Q(Y1, ..., Y,) is valid.
For example, the meanings of ‘at least one tall men
is lucky’ and ‘it is not the case that no tall man is
lucky’ coincide in every DFS;

e F is compatible with the formation of
antonyms Therefore 7(Q')( Xy, ..., X,) =
F(Q)(Xy1,...,Xn-1,7X,) is valid whenever
QY1, ..., Y,)=Q(Y1,...,Y,_1,7Y,).

For example, the meanings of ‘every tall men is
bald’ and ‘no tall men is not bald’ coincide in
every DFS;

e F is compatible with intersections This
means that equatiotF (Q")(X1,...,Xpt1) =
f(Q)(Xl,...,Xn_l,Xn N Xn+1) holds,
provided that equation@’(Yy,...,Yn11) =
QY1,...,Y1,Y, NY,1) holds. For example,
the meanings of ‘at least two X's are Y’s’ and
‘the set of X's that are Y’s contains at least two

elements’ coincide in every DFS;

e F is compatible with argument permuta-
tions In other wordsF(Q')(X1,...,Xn) =
F(Q)(Xsay,---»Xpwm)) is valid whenever
Q/(Yl, ey Yn) = Q(Yﬁ(l)v ceey Y,G(n))a where
(3 is a permutation of1,...,n}. In particular,
symmetry properties of a quantifier are preserved
by applyingF. Hence the meaning of ‘aboib
X's areY’s’ and ‘about50 Y’s are X'’s’ coincide
in every DFS.

e Finally, F is compatible with argument inser-

tion. This means thatF(Q')(X1, ..., X,) =
F(Q)(Xy,...,X,,A) is valid whenever
QY1 ..., Y) = QYi,...,Y,,A), for a

fixed crisp argumentd € P(E). For example,
the meanings of ‘many (married X)'s are Y's’ and
‘(many married) X's are Y's’ coincide in every
DFS.

A number of further important properties are pos-
sessed by every DFS. Every DFS is guaranteed to
map quantitative (automorphism-invariant) quantifiers
like almost all or a few to quantitative fuzzy quanti-
fiers; and it is guaranteed to map non-quantitative quan-
tifiers like John or most married to non-quantitative
fuzzy quantifiers. In addition, every DFS &ntex-
tual, which means that the quantification result ob-
tained forF(Q)(X1, ..., X,) only depends on the be-
haviour of @ inside the ambiguity rangesre(X;) C

Y; C support(X;), wherecore(X;) denotes the ele-
ments with unity membership ardpport(X;) denotes
elements with non-zero membership. Every DFS is also
known topreserve extensign.e. insensitive to the ex-
act choice of the domain as a whole. For example, we
expect that the quantification result of ‘most tall people
are bald’ does not depend on the precise choice of the
domain, as long as it is large enough to contain the fuzzy
subsetdall andbald of interest. For a comprehensive
discussion of adequacy properties of DFSes, see [3].

4. Models for data summarization

We now present three models of the theory, which are
suited for data summarization. The modef (as de-
fined below) is the first DFS that we discovered, and
subsequently implemented for application in an exper-
imental retrieval system for multimedia weather docu-
ments [5]. The model uses the fuzzy median,

min(u1, u2) min(u1, uz)

>3
max(u1, uz) max(u1, u2) < 3
1

3 . else

med 1 (u1,u2) =
2

for all uy,us € [0,1]. med; can be extended to an
2
operator which accepts arbitrary subsetflol ], viz

m; X = med; (inf X, sup X),
2

for all subsets of0, 1]. In the following, we need the cut
range7,, (X) C P(E) of afuzzy subsek at the cutting
level v € [0,1], which corresponds to a symmetrical,
three-valued cut ok at~:

T,(X)={Y CE: X2 CY C X2}



where

Xmin — XZ%*F%’Y ve <O’ 1}
v X>% ’y:0

xmax _ X>%—%’Y Ve (O’ 1]
v XE% ’}/:0

HereX>, = {e € E: px(e) > a} denotesy-cut, and
Xsq ={e € E: ux(e) > a} the stricta-cut. ¢y can

be thought of as a parameter of ‘cautiousness’.)

By applying the extended fuzzy median to the quantifi-
cation results obtained for all choices of arguments from
the cut ranges, we are now able to interpret fuzzy quan-
tifiers for any fixed choice of the cutting parameter. We
hence stipulate

Q,\/(Xh...,Xn) :m%{Q(Yh

for all semi-fuzzy quantifiers and fuzzy arguments. In
order to define DFSes based@n, the results obtained

at each level of cautiousness must be aggregated. This
can be accomplished e.g. by means of integration. We
hence define

Yo) 1 Yi € T,(X0)},

1
M) (X, ..., Xn):/O Q(X1, ..., Xp)dy.

It can be shown that is a standard DFSM is a prac-
tical model because it is both continuous in arguments
and in quantifiers, i.e. robust against slight changes or
noise in the fuzzy argumenis, , . . ., X, and in the def-
inition of the quantifier®.

The integral, which was used in the definition
of M, is not the only possible way of abstract-
ing from the cutting parametery.  The neces-
sary and sufficient conditions on an aggregation
mapping B which make Mp(Q)(X1, ..., Xn)
B((Q(X1, ..., Xn))yep,17) @ DFS have been pre-
sented in [3]. In the course of this investigation, it
turned out that there exists a model-x with unique
adequacy properties. This model was shown to be
the optimal choice from a linguistic perspective, even
among the full class of standard models. It is tmdy
standard modelwhich permits the compositional in-
terpretation of adjectival restriction by a fuzzy adjec-
tive, like in ‘almost all young A's are B’s’. It is hence
guaranteed thatMcx(almost all young) (4, B)
Mcx (almost all)(youngn A, B). The model also pre-
serves the convexity of absolute quantitative quantifiers
like ‘about ten’, ‘between twenty and thirty’. In addi-
tion, is continuous in arguments and in quantifiers and
hence robust against noise; it propagates fuzziness in ar-
guments and in quantifiers, i.e. less specific input cannot
result in more specific outputs. Because of its unique
properties, Mcx is the preferred choice for all appli-
cations that need to capture NL semantics (additional

properties are discussed in [3]). The model can be de-
fined in terms of the cut ranges and median-based ag-
gregation, but also in the following more compact form.

Mex(Q)(X1s <, Xn) = sup{QF w (X1, ..\ Xn) :
Vl gW1a7Vnan}
where
Qv w(X1, ..., Xn) = min(Ev,w (X1, ..., Xn),
inf{Q(Y1,...,Yn): V; CY; CW;}
Ev,w (X1, ..., X5) = minj_; min(inf{px, (e) : e € V;},

inf{l — px,(e): e ¢ W;i}).

Another interesting aspect o¥1¢x is that it consis-
tently generalises the Sugeno integral and hence the ‘ba-
sic’ FG-count approach to arbitraryplace quantifiers,
and to quantifiers that do not fulfill any special mono-
tonicity requirements.

The class of known models has been further broad-
ened by abstracting from the median-based aggregation
mechanism that was used to defilktand (implicitely)
Mcx. The use ofQ, (X1, ..., X,) in these models

is then replaced with a pair of mappings which spec-
ify upper and lower bounds of the quantification results
obtained for all choices dfy, . .., Y, in the cut ranges:

TQ. X1, X, (V) =sup{Q(Y1, ..., Ya) 1 Vi € T,(Xi)}
1o.x1,..x, (v) =inf{Q(Y1, ..., Ya): Y; € T,(Xy)}.
In [4], the full class of models definable by
Fe(@Q)( X1, ..o, Xn) = 8(To.x1,. X0 L0, X1, x0)

has been investigated and the necessary and sufficient
conditions or¢ have been presented which ensure that
Fe be a DFS. Our last examplg,. is representative

of this new type of models. It is defined by

Fowa(Q)(X1, ...

Fowa is astandard DFS. The model is of particular inter-
est because it consistently generalises the Choquet inte-
gral and hence the ‘basic’ OWA approach, to the ‘hard’
cases of general multiplace and non-monotonic quanti-
fiers. Fowa is @ practical model because it is continuous
both in arguments and in quantifiers, which ensures a
certain stability of the results against noise. However,
Fowa does not propagate fuzziness in arguments nor in
quantifiers. It is hence inferior td1cx from an ad-
equacy perspective because less specific input can re-
sult in more specific output. Nevertheless,,,. can

be advantageous if the inputs are overly fuzzy and one
still needs a fine-grained result ranking, because it can
discern cases in which models that propagate fuzziness
ceise to be informative.



5. Perspective [3] I. Gléckner. Advances in DFS theory. TR2000-01,
Technische Fakudt, Universiat Bielefeld, P.O.-Box

. 100131, 33501 Bielefeld, Germany, 2000.
All three models presented above are computational, [4] 1. Glockner. A broad class of standard DFSes. TR2000-

and algorithms which implement the most common 02, Technische Fakadit, Universitt Bielefeld, P.O.-Box
types of quantifiers in these models have been devel- 100131, 33501 Bielefeld, Germany, 2000.

oped [6]. We conclude with an example which demon-  [5] I. Glockner and A. Knoll. Natural-language navigation
strates the suitability of these models to summarize data, in multimedia archives: An integrated approachPho-

see Fig. 2. In this case, the data is comprised of a se- ceedings of the Seventh ACM Multimedia Conference
quence of images, which depict fuzzy regions of cloudi- (MM '99),, pages 313-322, Orlando, Florida, 1999.

[6] I. Glockner and A. Knoll. A formal theory of fuzzy
natural language quantification and its role in granular
computing. In W. Pedrycz, editdgranular Computing:

An Emerging ParadigmPhysica-Verlag, 2001.

ness grades at given points of time. The images are
gualified by importance according to a fuzzy temporal
condition, ‘in the last days’. To compute the results, the

m9d9|M was used _and_ th? quantifiep (for trape- [7] J. Kacprzyk. Intelligent data analysis via linguistic data
zoidal) that was applied is given by summaries: A fuzzy logic approach. In R. Decker and
W. Gaul, editorsClassification and Information Pro-
p. , (Vi,Ya) = { tap(Y1NY2|/Y1]) + Vi # @ cessing at the Turn of the Milleniynpages 153-161.
a,b,c 1, 12 . — .
. c Y=o Springer, 2000.
0 C 2 <a [8] J. Kacprzyk and P. Strykowski. Linguistic summaries
tap(z) = { =4 g<z<b of sales data at a computer retailer: A case study. In
1 © 2>0b. Proc. of 8th Int. Fuzzy Systems Assoc. World Congress

(IFSA ‘99), pages 29-33, 1999.
The use of the improved models presented here is also [9] E. Keenan and J. Stavi. A semantic characterization of
encouraged for future systems that generate linguistic natural language determinersinguistics and Philoso-

summaries from relational data. phy, 9, 1986. o
[10] A. Ralescu. A note on rule representation in expert sys-

tems.Information Science$8:193-203, 1986.
[11] D. Rasmussen and R. Yager. A fuzzy SQL summary

) - ‘ s » | for data di In D. Dubois, H. Prad
o, 4 . .|, anguage for data discovery. In D. Dubois, H. Prade,
o “ w’ lﬁ ‘ Af'. A and R. Yager, editordruzzy Information Engineering

Data:

02 |04 |06 |07 |08 |09 |10 |10 pages 253-264. Wiley, 1997.
Results: [12] H. Thiele. On T-quantifiers and S-quantifiers. The
. . Twenty-Fourth International Symposium on Multiple-
dodd | ) " Valued Logic pages 264—-269, Boston, MA, 1994.
Pl P [13] R.Yager. A new approach to the summarization of data.
cr 7 ?5 “ Information Science28:69-86, 1982.

[14] R. Yager. Approximate reasoning as a basis for rule-
atleast | some- often almost | always based expert system$EEE Trans. on Syst., Man, and
once times always Cybernetics14(4):636-643, 1984.
some o040 | 'Po10s | tPoci | al [15] R. Yager. On ordered weighted averaging aggrega-

tion operators in multicriteria decisionmakindEEE
Figure 2. Image sequence and summarization Trans. Syst., Man, and Cybernetict8(1):183-190,
results for various choices of the criterion Q- 1988.

[16] R. Yager. Connectives and quantifiers in fuzzy sets.
Fuzzy Sets and System§:39-75, 1991.

[17] R. Yager and J. Kacprzyk. Linguistic data summaries:
A perspective. InProc. of 8th Int. Fuzzy Systems As-
soc. World Congress (IFSA ‘99)ages 44-48, 1999.

[18] L. Zadeh. The concept of a linguistic variable and its
application to approximate reasoninigformation Sci-

References ences8,9:199-249,301-357, 1975.

[19] L. Zadeh. A theory of approximate reasoning. In
J. Hayes, D. Michie, and L. Mikulich, editorsachine
Intelligence volume 9, pages 149-194. Halstead, New
York, 1979.

[20] L. Zadeh. A computational approach to fuzzy quanti-
fiers in natural language€omputers and Mathematics
with Applications 9:149-184, 1983.

times cloudy in the last dayskegions that meet
the criterion are depicted white.

[1] J. Barwise and R. Cooper. Generalized quantifiers and
natural language Linguistics and Philosophy4:159—
219, 1981.

[2] I. Glockner. A framework for evaluating approaches
to fuzzy quantification. TR99-03, Technische Fa&ylt
Universitt Bielefeld, P.O.-Box 100131, 33501 Biele-
feld, Germany, 1999.



