
Efficient Computation of Interval-Arithmetic-Based

Robust Controllers for Rigid Robots

Andrea Giusti and Matthias Althoff

Faculty of Informatics

Technical University of Munich

Garching bei München, Germany

Email: {giusti, althoff}@in.tum.de

Abstract—We propose a method for efficient numerical
computation of interval-arithmetic-based robust controllers for
rigid robot manipulators. The use of interval arithmetic for
robust control is the core of a recently proposed approach
which allows a user-defined tracking performance to be ulti-
mately met despite uncertain models and input disturbance,
without requiring an empirical estimation of bounds of per-
turbations from uncertain system dynamics. Our proposed
algorithm combines a modified recursive Newton-Euler scheme
with interval arithmetic computations to automatically obtain
formally guaranteed over-approximative estimations of per-
turbing torques/forces arising from imperfect knowledge of
dynamic model parameters. The resulting algorithm has linear
computational complexity and can be used online. We validate
the applicability of our proposed method with simulations and
tests on a commercially available real-time target computer.

Keywords-efficient computation; robust control; interval
arithmetic; robot manipulators

I. INTRODUCTION

The vast computational resources available today as well

as the effectiveness of modern robot dynamics algorithms

[1] make it possible to implement advanced model-based

control approaches for robots. The quality of the closed-

loop performance of model-based controllers depends on

how well the real system dynamics match the corresponding

mathematical model. When a sufficiently high quality of the

available (nominal) model cannot be ensured, control system

designers can resort to robust control techniques for ensuring

stability and tracking performance (see e.g. [2], [3]).

Most of the methods proposed for robust control require

estimating bounds of perturbation terms arising from un-

certain knowledge of the system dynamics (see e.g. [4],

[5]). Obtaining such bounds on uncertain model compo-

nents leads to time consuming estimation phases and does

not provide formal guarantees. Indeed, to the best of our

knowledge no procedure or methodology has been proposed

for formally obtaining those bounds. To remove the above-

mentioned limitation and provide a quickly deployable ro-

bust controller, we have previously introduced the use of

interval arithmetic for passivity-based robust control of rigid

robots [6]. The resulting interval-arithmetic-based robust

controller is continuous and in principle allows any user-

defined tracking performance to be ultimately (in finite

time) met and maintained. The price to pay for the benefits

introduced mainly relies on the computational complexity

introduced by automatically computing the measurement of

the worst-case perturbation using interval arithmetic. Indeed,

as it will become clearer in Sec. III, the analytical function

for computing the worst-case perturbation using interval

arithmetic is very large for robots with a large number of

joints.

To eliminate the main drawback of the robust control

approach proposed in [6], we introduce the integration of

interval arithmetic computations within a recursive Newton-

Euler (N-E) algorithm [7]. With this approach we enable

the efficient numerical computation of guaranteed over-

approximative sets of torques/forces arising from uncertain

dynamic parameters. In particular, we provide an exten-

sion of the modified recursive N-E algorithm for passivity-

based control originally proposed in [8] (also to handle

prismatic joints), and we describe the introduction of interval

arithmetic computations. Our approach is simple since it

does not require manipulating any symbolic variable, yet

it enables the efficient computation of interval-arithmetic-

based robust controllers for a large number of joints with

linear computational complexity.

A particularly interesting implication of our approach is

that it supports the efficient automatic design of robust con-

trollers for modular robot manipulators [9]. This is achieved

by straightforwardly enhancing the framework proposed in

[10] by storing uncertainty bounds of dynamical parameters

in the modules and applying the algorithm presented here.

Additionally, our proposed algorithm can also be used for

robust dynamic scaling of trajectories [11].

The remainder of this paper is structured as follows:

In Sec. II we recall some preliminary notions on interval

arithmetic, and in Sec. III we describe in detail the problem

that we address. Subsequently, we describe our proposed

solution in Sec. IV and present simulation results in Sec. V.

II. PRELIMINARIES ON INTERVAL-ARITHMETIC

We propose a numerical algorithm based on interval

arithmetic to efficiently realize our previously published

robust control idea in [6]. To preserve fluency and clarity of

the subsequent description, we recall the following central

definitions. The interested reader may refer to [12] for

further details.

Definition 1 (Multidimensional interval): A multidimen-

sional interval is a set of real numbers defined as

[x] := [x,x], x ∈ R
n, x ∈ R

n, xi ≤ xi, for all i = 1, . . . , n.

We denote the scalar case by x instead of x, and we use x

and x to denote the infimum and supremum of an interval

[x], respectively.

Definition 2 (Degenerate interval): An interval [x] whose

infimum x and supremum x are equal is called degenerate

and will be denoted simply by x hereafter.

Definition 3 (Interval-valued function): Given a function

z : Rn→ R
m, its interval evaluation over a set [x] is defined

as:

z([x]) := {z(x) | x ∈ [x]}.

We further define the set-based addition, subtraction and

multiplication as follows.

Definition 4 (Set-based operations): Let IR be the set of

all scalar intervals. For [x] ∈ IR and [y] ∈ IR, the result of

the binary operations ∗ ∈ {+,−, ·} is defined as:

[x]⊛ [y] := {x∗ y | x ∈ [x],y ∈ [y]}.

We straightforwardly implement the above-mentioned oper-

ations as follows (see e.g. [12, App. B]):

[x]⊕ [y] = [x+ y, x+ y],

[x]⊖ [y] = [x− y, x+ y],

[x]⊙ [y] = [min(xy, xy, xy, xy), max(xy, xy, xy, xy)].

While set-based addition and subtraction are applied

element-wise when multidimensional intervals are involved,

we need to further define the interval matrix/scalar-matrix

multiplication.

Definition 5 (Interval matrix/scalar-matrix multiplication):

Given [X] ∈ IR
n×m, [Y] ∈ IR

m×p and [a] ∈ IR, the results

of a matrix and scalar-matrix multiplication are defined

respectively as:

([X]⊙ [Y])i j =
n

⊕

k=1

(

[X]ik⊙ [Y]k j

)

, ([a]⊙ [X])i j = [a]⊙ [X]i j,

where we denote by
n
⊕

k=1

the interval version of the sum-

mation symbol, which involves set-based additions. We can

now conclude this preliminary section by defining the set-

based cross-product which will be required for the robot

dynamics.

Definition 6 (Set-based cross-product): Given two inter-

val vectors [x] ∈ IR
3×1 and [y] ∈ IR

3×1, the result of the

set-based cross product between them is defined as

([x]⊗ [y])1 = [x]2⊙ [y]3⊖ [x]3⊙ [y]2,

([x]⊗ [y])2 = [x]3⊙ [y]1⊖ [x]1⊙ [y]3,

([x]⊗ [y])3 = [x]1⊙ [y]2⊖ [x]2⊙ [y]1.

We constitute that set-based multiplications bind more

strongly than additions and subtractions.

III. PROBLEM DESCRIPTION

Throughout this paper we use bold symbols for matrices

and vectors. We consider rigid robot manipulators composed

of N serially connected links. We denote the mass, the

coordinates of the center of mass and the barycentric inertia

tensor of the ith link respectively by

mi, ci
i =





cx,i

cy,i

cz,i



 and Ii
i =





Ixx,i Ixy,i Ixz,i

∗ Iyy,i Iyz,i

∗ ∗ Izz,i



 .

In this paper, the superscript of vectors indicates the link-

fixed frame in which they are expressed. The superscript

i of the inertia tensor indicates that it is expressed in a

barycentric frame oriented as the ith link-fixed frame. We

introduce the vector of the dynamical parameters of the

manipulator as follows:

∆ = (m1, . . . , mN , cx,1, cy,1, cz,1, . . . , cz,N ,

Ixx,1, Ixy,1, Ixz,1, Iyy,1, Iyz,1, Izz,1, . . . , Izz,N)
T .

The system dynamics can be modeled as [13, Ch. 7]:

M(q,∆)q̈+C(q, q̇,∆)q̇+g(q,∆) = u+d, (1)

where the vector of joint positions, velocities and acceler-

ations are respectively q, q̇ and q̈ ∈ R
N . M(q,∆) ∈ R

N×N

is the symmetric and positive definite inertia matrix,

C(q, q̇,∆)q̇ ∈ R
N is the vector of Coriolis and centrifugal

terms and g(q,∆) ∈ R
N the vector of gravity terms. The

vectors u and d ∈ R
N respectively represent the actuation

and bounded disturbance torques/forces of the joints.

We assume that a nominal value of the dynamical param-

eters ∆0 is available and that the uncertainty of each dynam-

ical parameter is known. Friction is not considered for the

sake of brevity. This does not cause a loss of generality, since

its inclusion is rather straightforward and it does not affect

the proposed idea. In principle, within the proposed setting

and with sufficiently smooth required trajectories qd (at least

twice differentiable), any user defined tracking performance

can be ultimately met by employing the robust performance

control law recently proposed in [6]. In that work, the idea of

using interval arithmetic for feedback control is introduced

to deploy a robust performance controller automatically (i.e.

without the need for estimating bounds of state dependent

perturbations from uncertain model terms). We briefly recall

this controller in the following.

Manipulator q̇

q
d

u

r

g(q,∆0)

M(q,∆0)

C(q, q̇,∆0)
q̇a

q̈a

q̈d

q̇d

qd

ν

Kr

Kr

Interval-arithmetic-based robust controller

κ(t)‖ρ
(

[Φ]
)

‖+ϕ(t)

Figure 1. Block diagram of the closed-loop system.

The control method proposed in [6] builds on passivity-

based control [3], thus exploiting the property that the matrix

N(q, q̇,∆) = Ṁ(q,∆)−2C(q, q̇,∆) is skew-symmetric for a

suitable factorization of C(q, q̇,∆) ∈ R
N×N and thus [13,

Section 7.2.1]:

xT N(q, q̇,∆)x = 0, ∀x ∈ R
N . (2)

The above mentioned robust performance controller is com-

posed of the classical passivity-based control relation

u = M(q,∆0)q̈a +C(q, q̇,∆0)q̇a +g(q,∆0)+ν, (3)

where

q̇a = q̇d +Krq̃, q̃ = qd−q, (4)

and Kr is a diagonal positive definite gain matrix. To

properly handle perturbations from external disturbances and

modelling errors, this controller introduces the novel use of

interval arithmetic with the auxiliary input vector ν . Indeed,

by applying the command of (3) to (1), the following closed

loop relation is obtained:

M(q,∆)ṙ+C(q, q̇,∆)r =−ν +w(q, q̇, q̇a, q̈a,d,∆,∆0), (5)

with r = ˙̃q+Krq̃ and where w(q, q̇, q̇a, q̈a,d,∆,∆0) denotes

the perturbation vector that can be written as follows:

w(q, q̇, q̇a, q̈a,d,∆,∆0) =
(

M(q,∆)−M(q,∆0)
)

q̈a+
(

C(q, q̇,∆)−C(q, q̇,∆0)
)

q̇a +g(q,∆)−g(q,∆0)−d. (6)

The controller is completed by selecting

ν =
(

κ(t)‖ρ
(

[Φ]
)

‖+ϕ(t)
)

r, (7)

where κ(t) and ϕ(t) are positive increasing functions and

where ρ
(

[Φ]
)

is a measure of the worst case disturbance:

ρ([Φ]) = max
(

|Φ|, |Φ|
)

, (8)

where

[Φ] = w(q, q̇, q̇a, q̈a, [d], [∆],∆0). (9)

In (9), w(q, q̇, q̇a, q̈a, [d], [∆]) is an interval-valued function

considering bounded interval vectors of the external distur-

bances [d] and of the dynamical parameters [∆]. A schematic

representation of this controller is shown in Fig. 1. All norms

in this paper are Euclidean norms.

The price to pay for the benefits gained using this con-

troller is the computational cost for obtaining the measure-

ment of the worst case disturbance ρ
(

[Φ]
)

. To the best

of our knowledge, no algorithm for its efficient numerical

computation has been previously made available. This can

be considered as the principal drawback, endangering the

general applicability especially for large N. We address

the problem of designing an algorithm that allows one to

perform the computation of (9) efficiently (without the need

of any symbolic manipulation) and that can be directly used

on-line.

IV. PROPOSED METHOD

To obtain guaranteed over-approximative sets of joint

torques/forces arising from uncertain dynamic parameters

in a computationally efficient way, we propose the idea of

enhancing recursive N-E algorithms with interval arithmetic

computations. In the following we describe the application

of this idea in detail.

Thanks to the growing popularity of passivity-based con-

trol laws, a modification to the standard recursive N-E

algorithm (see e.g. [1], [7]) was introduced in [8] and

allows the numerical computation of the classical passivity-

based control commands in (3) with linear computational

complexity. The algorithm proposed in [8] is described

for revolute joints only. Starting from that approach, we

first introduce a small extension to also handle prismatic

joints, and we additionally include the use of set-based

operations. The resulting interval-arithmetic-based Newton-

Euler algorithm denoted by IANEA∗g(q, q̇, q̇a, q̈,DHtab, [∆])
is presented in Alg. 1.

We consider that the link-fixed reference frames are

assigned according to the standard Denavit-Hartenberg (D-

H) convention [14]. Thus, the orientation of the ith frame

with respect to the previous frame can be written using the

standard D-H parameters (ai, θi, di, αi) with the following

rotation matrix:

Ri−1
i =





Cθi
−Cαi

Sθi
Sαi

Sθi

Sθi
Cαi

Cθi
−Sαi

Cθi

0 Sαi
Cαi



 , (10)

and the position of its origin from frame i−1 expressed in

the frame i with the vector:

pi
i−1,i = (ai di Sαi

di Cαi)
T , (11)

where we abbreviate sin(ξ)/cos(ξ) with Sξ /Cξ . As usual

θi = qi when the joint is revolute and di = qi when it is

prismatic.

In Alg. 1, we denote by ω i the angular velocity of the ith

link, by ωai
an auxiliary angular velocity (whose utility is

described later), by ci
i the position of the center of mass, by

ai
i the acceleration of the link-fixed frame (and by ai

c,i the one

of the center of mass), by Ii
i the inertia tensor in the moving

frame and finally by fi
i/n

i
i the reaction force/torque with the

preceding link. Additionally, we denote the z-axis unit vector

by z0 = [0, 0, 1]T and by DHtab a matrix containing the D-

H parameters and the information for detecting the type of

each joint (revolute or prismatic).

Alg. 1 shares the same algorithmic complexity and struc-

ture of a standard N-E algorithm (see e.g. [13, Sec. 7.5.2])

being composed of two recursions. While the first recursion

(starting at line 11) computes the kinematic relations be-

tween subsequent links from the basis to the end effector,

the second recursion (starting at line 26) runs backward from

the end effector to the basis to compute the balance of forces

and torques of the Newton-Euler equations of dynamics.

As it has been shown in the algorithm proposed in [8] for

revolute joints, an auxiliary angular velocity vector ωa and

an auxiliary joint velocity variable q̇a are introduced to allow

the separation necessary for the Coriolis and centrifugal

terms of the model (e.g. to compute (3) for passivity-based

control) and to obtain (if necessary) the matrix C alone.

We extend the applicability of the algorithm to prismatic

joints by properly introducing the auxiliary angular velocity

in line 19 and 21. In particular, in line 21 the quadratic

dependency of the angular velocity on the right-hand side

has been modified from 2ω i
i× q̇izi of standard algorithms

to ω i
a,i× q̇izi +ω i

i× q̇a,izi, to enable the above-mentioned

separation in the Coriolis and centrifugal model term. It is

worth mentioning that friction and approximated rotor inertia

effects (that we do not include for the sake of brevity) can

be straightforwardly included in line 31 and 33.

The use of set-based operations in Alg. 1 allows one to

handle multidimensional interval vectors of the dynamical

parameters to directly compute over-approximative sets of

joint torques/forces. We are now ready to show in detail

Algorithm 1 Interval-arithmetic-based N-E algorithm:

IANEA∗g(q, q̇, q̇a, q̈,DHtab, [∆]).

Input: q, q̇, q̇a, q̈, [∆], DHtab and the gravity vector g

Output: [u]
1: Initialize number of links N (from DHtab)

2: Initialize ω0
a,0, ω0

0 , ω̇0
0 and p̈0

0 to zero and z0 ← [0,0,1]T

3: Include effect of gravity p̈0
0← p̈0

0−g

4: for i = 1 to N do

5: Set [ci
i] and [Ii

i] using [∆]
6: Ri−1

i ← compute (10) using DHtab and qi

7: Ri
i−1 ← transpose

(

Ri−1
i

)

8: zi ← Ri
i−1z0

9: pi
i−1,i← compute (11) using DHtab and qi

10: end for

11: for i = 1 to N do ⊲ Start of forward recursion

12: if ith joint is revolute then

13: ω i
i ← Ri

i−1

(

ω i−1
i−1 + q̇iz0

)

14: ω i
a,i← Ri

i−1

(

ω i−1
a,i−1 + q̇a,i z0

)

15: ω̇ i
i ← Ri

i−1

(

ω̇ i−1
i−1 + q̈iz0 +ω i−1

a,i−1× q̇iz0

)

16: ai
i← Ri

i−1ai−1
i−1 + ω̇ i

i×pi
i−1,i +ω i

i×
(

ω i
a,i×pi

i−1,i

)

17: else ith joint is prismatic

18: ω i
i ← Ri

i−1ω i−1
i−1

19: ω i
a,i← Ri

i−1ω i−1
a,i−1

20: ω̇ i
i ← Ri

i−1ω̇ i−1
i−1

21: ai
i← Ri

i−1ai−1
i−1 + ω̇ i

i×pi
i−1,i +ω i

i×
(

ω i
a,i×pi

i−1,i

)

+ω i
a,i× q̇izi +ω i

i× q̇a,izi + q̈izi

22: end if

23: [ai
c,i]← ai

i⊕
(

ω̇ i
i⊗ [ci

i]
)

⊕

(

ω i
i⊗

(

ω i
a,i⊗ [ci

i]
)

)

24: end for

25: Initialize [fN+1
N+1], [n

N+1
N+1] and RN

N+1

26: for i = N to 1 do ⊲ Start of backward recursion

27: [Fi
i]← [mi]⊙ [ai

c,i]

28: [fi
i] ←

(

Ri
i+1⊙ [fi+1

i+1]
)

⊕ [Fi
i]

29: [ni
i]←

(

Ri
i+1⊙ [ni+1

i+1]
)

⊕
(

[ci
i]⊗ [Fi

i]
)

⊕
(

pi
i−1,i⊗ [fi

i]
)

⊕
(

[Ii
i]⊙ ω̇ i

i

)

⊕

(

ω i
a,i⊗

(

[Ii
i]⊙ω i

i

)

)

30: if ith joint is revolute then

31: [ui]← transpose
(

[ni
i]
)

⊙ zi

32: else ith joint is prismatic

33: [ui]← transpose
(

[fi
i]
)

⊙ zi

34: end if

35: end for

to
rq

u
e

(N
m

)
to

rq
u
e

(N
m

)

time (s)time (s)time (s)

[φ1]
w1

[φ2]
w2

[φ3]
w3

[φ4]
w4

[φ5]
w5

[φ6]
w6

0

0

0

0

0

0

0

0

0

0

0

0

5

5

5

5

5

555

10

10

10

10

10

101010

151515

151515

202020

20

20

20

20

20

20

404040

-20-20-20

-40-40-40

-5-5

-10-10

1

-1

0.5

-0.5

Figure 2. Simulation results showing the perturbation torques and the computed over-approximative sets for scenario 1.

how (9) can be computed efficiently by using the proposed

algorithm. Indeed, by considering the following relation:

w(q, q̇, q̇a, q̈a,d,∆,∆0)
(6)
=

M(q,∆)q̈a +C(q, q̇,∆)q̇a +g(q,∆)

−
(

M(q,∆0)q̈a +C(q, q̇,∆0)q̇a +g(q,∆0)
)

−d

= IANEA∗g(q, q̇, q̇a, q̈a,DHtab,∆)

− IANEA∗g(q, q̇, q̇a, q̈a,DHtab,∆0)−d,

and by introducing the non-degenerate interval for the dy-

namic parameters, we have

w(q, q̇, q̇a, q̈a,d,∆,∆0)⊆

[Φ] = IANEA∗g(q, q̇, q̇a, q̈a,DHtab, [∆])

⊖ IANEA∗g(q, q̇, q̇a, q̈a,DHtab,∆0)⊖ [d]. (12)

Remark 1: We check if the models generated by the

proposed extension for prismatic joints allow the property in

(2) to be fulfilled, by adopting a similar testing approach that

authors in [8] use for revolute joints. We test the fully general

symbolic models that can be generated by the algorithm for

all combinations of revolute and prismatic joints (up to N=4

for the high computational burden) using the Symbolic Math

Toolbox R© in MATLAB. All tests have been successful.

Remark 2: Since IANEA∗g has linear computational com-

plexity in the number of links O(N), the same is preserved

for computing (12). This algorithm qualifies for online use,

due to its intrinsic computational efficiency and because

there is no need for symbolic variable manipulation. Once

[Φ] is efficiently computed, computing the measure of the

worst-case disturbance is straightforwardly completed us-

ing (8).

V. SIMULATION RESULTS

We verify the applicability of our proposed algorithm

with a realistic simulation-based case study by considering

the Schunk LWA 4-P robot. We use the following desired

trajectory

qd(t) =
(π

2
, −

π

4
,

π

6
,−

π

6
,

π

4
,−

π

2

)T

sin(π t/5) sin(π t/2)

(13)

and the following initial conditions

q(0) = 2ε (1, 1, 1, 1, 1, 1)T , q̇(0) = (0, 0, 0, 0, 0, 0)T .

We further assume that the Euclidean norm of the trajectory

tracking error is required to be less than ε = 0.01rad.

As suggested in [6], for computing (7) we use the follow-

ing functions:

ϕ(t) =
(

ϕP +ϕI

∫ t

0
f (‖q̃‖)dτ

)

,

κ(t) =
(

κP +κI

∫ t

0
f (‖q̃‖)dτ

)

,

with

f (‖q̃‖) =

{

0 if ‖q̃‖< ε ,

‖q̃‖ otherwise,

and for this application we select the following tuning pa-

rameters: κP = 2, κI = 100, Kr = 10I, ϕP = 1, ϕI = 200.

We perform the numerical simulations using MAT-

LAB/Simulink 2015b for two different scenarios (see Tab. II)

with different (unknown for control design) true robot pa-

rameters ∆a, ∆b and without input disturbance for brevity.

The nominal parameters from CAD data are collected in

to
rq

u
e

(N
m

)
to

rq
u
e

(N
m

)

time (s)time (s)time (s)

[φ1]
w1

[φ2]
w2

[φ3]
w3

[φ4]
w4

[φ5]
w5

[φ6]
w6

0

0

0

0

0

0

0

0

0

0

0

0

5

5

5

5

5

555

10

10

10

10

10

101010

151515

151515

202020

20

20

20

20

20

20

404040

-20-20-20

-40-40-40

-5-5

-10-10

1

-1

0.5

-0.5

Figure 3. Simulation results showing the perturbation torques and the computed over-approximative sets for scenario 2.

Tab. I. For these simulations, we use the uncertain param-

eters of the last link and bounds known for control design

collected in Tab. II.

We show the tracking performance for the considered

scenarios for unmatched initial conditions in Fig. 4, where

it can be seen that the desired tracking performance is

ultimately met with no sign of chattering or discontinuity

in the torque commands. The simulations allow us to show

respectively in Fig. 2 and Fig. 3 the evolution over time

of w and the corresponding [Φ], whose over-approximative

nature is visible. As expected, no violation of supremums

Table I
DH AND NOMINAL DYNAMIC PARAMETERS.

Link: 1 2 3 4 5 6

αi (rad) −π/2 π −π/2 π/2 −π/2 0
ai (m) 0 0.35 0 0 0 0
di (m) 0 0 0 0.301 0 0.095
θi−qi (rad) 0 −π/2 −π/2 0 0 0

mi (kg) 3.9 1.62 3.9 1 1.8 1.4
cx,i (m) 0 -0.175 0 0 0 0
cy,i (m) 0.018 0 0.018 -0.129 0.012 0
cz,i (m) 0.019 -0.115 0.019 0.048 -0.012 0.05
Ixx,i 13.3 1.43 13.3 1.62 4 1.7
(10−3kgm2)
Ixy,i 0 0 0 -1.83 0 0
(10−3kgm2)
Ixz,i 0 0 0 0 0 0
(10−3kgm2)
Iyy,i 9.78 24.4 9.78 5.86 2.83 3.5
(10−3kgm2)
Iyz,i 0 0 0 0 0 0
(10−3kgm2)
Izz,i 9.78 24.65 9.78 6.6 2.72 3.15
(10−3kgm2)

and infimums have been experienced. In Fig. 3 bounds are

particularly tight, allowing us to conclude that our proposed

approach is not excessively conservative.

We test the computational efficiency of the proposed

approach using Simulink Real Time 2015b and a commer-

cially available rapid control prototyping system1 equipped

with an Intel Core i7-3770K 3.5GHz and 4GB of RAM.

We use the input signals to the controller recorded in the

above mentioned simulations, and we sample them at 1ms.

We use the sampled signals to feed the overall controller

implemented on the real time target machine to directly

measure the total execution time on the embedded target

machine for processing the control commands. In these

tests the maximum experienced execution time is about

1.72 ·10−5 s, and the average execution time is 1.53 ·10−5 s

1SpeedGoat performance real-time target machine.

Table II
SCENARIOS OF TRUE (UNKNOWN FOR CONTROL DESIGN) DYNAMIC

PARAMETERS AND BOUNDS USED FOR CONTROL DESIGN.

Scenario 1 Scenario 2
∆ ∆

(∆a) (∆b)

m6 (kg) 2.1 2.8 1.4 2.8
cx,6 (m) 0 0.005 -0.005 0.005
cy,6 (m) 0 0.005 -0.005 0.005
cz,6 (m) 0.06 0.1 0.045 0.1

Ixx,6 (10−3kgm2) 2.54 3.4 1.7 3.4

Ixy,6 (10−3kgm2) 0 0 0 0

Ixz,6 (10−3kgm2) 0 0 0 0

Iyy,6 (10−3kgm2) 5.3 7 3.5 7

Iyz,6 (10−3kgm2) 0 0 0 0

Izz,6 (10−3kgm2) 4.73 6.3 3.15 6.3

0.03

0.02

0.01

0
0

0
0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

18

18

20

20

50

100

150

‖e
‖

(r
ad

)
‖u
‖

(N
m

)

time (s)

∆b

∆a

ε

Figure 4. Tracking error and control commands for both simulated
scenarios.

with a standard deviation of 2.88 · 10−7 s, which validates

the on-line applicability of our proposed method.

VI. CONCLUSION

We have presented a computationally efficient approach

for obtaining formally guaranteed over-approximative sets

of joint torques/forces from uncertain dynamic parameters

propagated through the system dynamics of rigid robots.

Our approach simply combines the use of a recursive N-E

algorithm with interval arithmetic operations and enables the

on-line computation of interval-arithmetic-based robust con-

trollers, thus eliminating the original computational draw-

backs. This makes it possible to have a quick commissioning

of robots powered by our modern interval-arithmetic-based

robust controller when a large number of joints is also

considered. Contrary to other robust control methods, our

controller does not require any symbolic variable manipu-

lation or time consuming non-formal steps for estimating

bounds of closed-loop perturbations.

The successful application on a commercially available

real-time target machine validates the computational effec-

tiveness of our approach. Interesting further developments

of this work may involve its application for controlling a

real robot, the consideration of joint elasticity and its use

for robust scaling of trajectories.

ACKNOWLEDGMENT

The research leading to these results has received

funding from the People Programme (Marie Curie Ac-

tions) of the European Union’s Seventh Framework Pro-

gramme FP7/2007-2013/ under REA grant agreement num-

ber 608022.

REFERENCES

[1] R. Featherstone and D. Orin, “Robot dynamics: equations and
algorithms,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation, vol. 1, 2000, pp. 826–834.

[2] C. Abdallah, D. Dawson, P. Dorato, and M. Jamshidi, “Survey
of robust control for rigid robots,” IEEE Control Systems,
vol. 11, no. 2, pp. 24–30, Feb. 1991.

[3] W. Chung, L.-C. Fu, and S.-H. Hsu, Handbook of Robotics.
Springer, 2008, book section Motion Control, pp. 133–159.

[4] L. Bascetta and P. Rocco, “Revising the robust-control design
for rigid robot manipulators,” IEEE Trans. on Robotics,
vol. 26, no. 1, pp. 180–187, Feb. 2010.

[5] S. Zenieh and M. Corless, “Simple robust r - α tracking
controllers for uncertain fully-actuated mechanical systems,”
ASME Journal of Dynamic Systems, Measurement, and Con-
trol, vol. 119, no. 4, pp. 821–825, 1997.

[6] A. Giusti and M. Althoff, “Ultimate robust performance
control of rigid robot manipulators using interval arithmetic,”
in Proc. of the American Control Conference, 2016, pp. 2995–
3001.

[7] J. Luh, M. Walker, and R. Paul, “On-line computational
scheme for mechanical manipulators,” ASME Journal of Dy-
namic Systems, Measurement and Control, vol. 102, pp. 468–
474, 1980.

[8] A. De Luca and L. Ferrajoli, “A modified Newton-Euler
method for dynamic computations in robot fault detection
and control,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation, 2009, pp. 3359–3364.

[9] C. J. J. Paredis, H. B. Brown, and P. K. Khosla, “A rapidly
deployable manipulator system,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation, vol. 2, 1996, pp. 1434–
1439.

[10] A. Giusti and M. Althoff, “Automatic centralized controller
design for modular and reconfigurable robot manipulators,”
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, Sept. 2015, pp. 3268–3275.

[11] J. Hollerbach, “Dynamic scaling of manipulator trajectories,”
ASME Journal of Dynamic Systems, Measurement and Con-
trol, vol. 106, pp. 102–106, 1984.

[12] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction
to Interval Analysis. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2009.

[13] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics:
Modelling, Planning and Control. Springer, 2009.

[14] J. Denavit and R. Hartenberg, “A kinematic notation of
lower-pair mechanisms based on matrices,” ASME Journal
of Applied Mechanics, vol. 22, pp. 215–221, 1955.

